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Abstract
As software systems have become larger, exhaustive testing
has become increasingly onerous. This has rendered statisti-
cal software testing and machine learning techniques increas-
ingly attractive. Drawing from both of these, we present an
active learning framework for blackbox software testing. The
active learning approach samples input/output pairs from a
blackbox and learns a model of the system’s behaviour. This
model is then used to select new inputs for sampling.
This framework has been developed in the context of com-
mercial video games, complex virtual worlds with high-
dimensional state spaces, too large for exhaustive testing. Be-
yond its correctness, developers need to evaluate the game-
play of a game, properties such as difficulty. We use the
learned model not only to guide sampling but also to summa-
rize the game’s behaviour for the developer to evaluate. We
present results from our semi-automated gameplay analysis
by machine learning (SAGA-ML) tool applied to Electronics
Arts’ FIFA Soccer game.

Introduction
It is no news that software systems are very complex and
difficult to debug. Because exhaustive testing or a proof of
correctness for large systems is difficult or impossible, there
has been increasing interest in statistical software testing. A
secondary, and less focused, subject of study has been the
use of machine learning for software testing, attempting to
learn a model of the system’s behaviour based on static or
dynamic analysis.

We present an active learning framework for blackbox
software testing that combines aspects of both of these broad
approaches. In our approach, labelled examples are obtained
by sampling from the space of initial system states and user
actions, and then running the blackbox to obtain the labels.
This training set is then used to learn a model of the sys-
tem’s behaviour. Once a model has been learned, it is used
to determine where further sampling should occur, increas-
ing the training set for the next iteration of model learning.
This intelligent sampling strategy attempts to allocate lim-
ited testing resources effectively.

Contemporary commercial video games are an example
of very complex software systems that have tight devel-
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opment cycles and high reliability standards because after-
market patching is not always an option. Furthermore, be-
yond the standard software correctness requirements, they
have a more nebulous goal of “enjoyability” that is impossi-
ble to specify or measure exactly. It is up to the designer to
decide whether a game’s behaviour is appropriate and col-
lected data can only assist in the evaluation. In this context,
machine learning serves a dual role where the learned model
is used to summarize a game’s behaviour for the developer
and also to direct the sampling of additional points.

We will briefly review related software testing literature
before turning to a description of the task facing game de-
velopers and our view of machine learning’s role within that
task. In order to make the research concrete, we present our
case study, Electronic Arts’ FIFA Soccer title. This game
has been analyzed using our analysis tool, SAGA-ML (semi-
automated gameplay analysis by machine learning), which
is game independent and treats the game as a black box.

Results are presented to the developer using the Soc-
cerViz visualization tool, a game-specific component that
displays the learned models in a more comprehensible for-
mat. Details of this specific implementation of our overall
framework are explained, including the learning and active
sampling approaches. Experimental results show, first and
foremost, that the tool correctly identifies so-called “sweet
spots” in the game (situations where it is too easy to score).
We then compare the performance of a variety of active
learning methods in a rule-learning context, including a rule-
based sampling approach developed specifically for this task
that offers robust performance. A further study demonstrates
that active learning becomes more important as dimension-
ality increases. We conclude with remarks on the reception
of this work by the industry and its potential for a greater
role in game development and software testing generally.

Related Work
Substantial work in the software testing literature relates to
our overall approach. Statistical software testing, often ex-
emplified by the Cleanroom approach (Poore & Trammell
1996), uses sampling to test large input spaces, in some
cases offering bounds on the probability of missed errors.
Much of this work involves the construction of a statistical
model of user input, such as a Markov chain (Whittaker &
Thomason 1994), and using that to generate test cases.



Machine learning has also appeared in software testing,
albeit in a more sporadic fashion, with the use of classifi-
cation trees (Porter & Selby 1990)(Cheatham, Yoo, & Wahl
1995), logistic regression (Denaro, Morasca, & Pezzè 2002),
and inductive logic programming (Bergadano & Gunetti
1996). On a related line, estimation of distribution algo-
rithms (EDA) (Sagarna & Lozano 2005) and genetic algo-
rithms (GA) (Wegener et al. 1997) have also been applied
to software testing, combining sampling and implicit (GA)
or explicit modelling (EDA) of a system’s behaviour.

Closely related to our case study, genetic algorithms have
been used for testing of the FIFA Soccer title (Chan et al.
2004), generating long sequences of actions that are likely to
score. Some IBM research on coverage analysis uses a form
of clustering and shares our emphasis on the visualizability
of the learned model (Lachish et al. 2002). Finally, inde-
pendently and in parallel with our own work, active learning
has been proposed and tried as a software testing methodol-
ogy (Bowring, Rehg, & Harrold 2004). Work of this kind,
originating from the software testing research community,
corroborates our belief that active learning has much to of-
fer automated software testing.

The Gameplay Analysis Task
While we believe the active learning framework has much
to offer software testing in general, we will specifically con-
sider the task of gameplay analysis for commercial com-
puter games, a problem which offers a unique set of chal-
lenges beyond the typical software testing requirements. It
is difficult to characterize gameplay analysis precisely. This
is largely due to the fact that it inevitably involves some hu-
man judgement. “Enjoyability” is essentially impossible to
quantify. An integral but complex part of enjoyability is the
gameplay offered and an important aspect of good gameplay
is appropriate difficulty. A game that is too hard is frustrat-
ing, while too little challenge can be boring. In multi-player
games it is important that the game be fair, offering no player
an intrinsic advantage.

In the gameplay analysis task, the developer selects some
metrics for evaluating gameplay (e.g. probability of win-
ning, average time to win/lose, average resources consumed
to win, etc.). The scope of the analysis is necessarily limited
to a small part of the game, since even these small pieces
may be expensive to evaluate. Sampling and machine learn-
ing are used to obtain a model of the game’s behaviour, of-
fering both a summary for the developer and predictions for
unsampled regions of the space. It is up to the developer
to examine this information and decide whether it is accept-
able or whether changes are required. It is this interactive
approach that leads us to call the process semi-automated,
and why we emphasize the role of the learned model as a
basis for visualization.

Electronic Arts’ FIFA Soccer
We have used SAGA-ML to analyze scenarios in the Elec-
tronic Arts (EA) soccer game, FIFA’99. Games are gener-
ally too complex to be analyzed in their entirety. There-
fore, it makes sense to analyze specific scenarios, especially

when the game itself distinguishes between scenarios (e.g.
different levels, minigames, and control modes). We have
explored a small set of scenarios in FIFA, but here we will
only consider the corner kick and the shooter-goalie scenar-
ios.

In the corner kick scenario, the ball has rolled across the
endline and was most recently touched by the defenders. It
must be kicked back in from the corner by a member of the
offense. This is a key opportunity for the player’s teammates
(positioned and controlled by the game AI) to score. The
player must pick a spot for the ball to land when they kick.
The success or failure of the player’s teammates in scoring
depends on where the ball lands. The specific metric we
consider is a single number: the probability of scoring given
that a single teammate touches the ball after the player kicks
it (otherwise the ball might continue in play for some time
before scoring). The initial game state is trivial in this case;
it is only necessary that the game be in its special corner kick
mode. The player action is the target for the ball, (xk , yk),
so there is a two-dimensional space to explore.

In the shooter-goalie scenario, the player controls a
shooter placed somewhere near the goal and shooting to-
ward it, with the goalie placed to defend the goal. All other
players are absent from the scenario. This tests the abil-
ity of the player to shoot and the goalie to block shots on
goal, a critical part of the game. The metric is a single num-
ber, the probability of scoring from the player’s kick. The
initial game state of this scenario consists of the shooter’s
position, (xs, ys), and the goalie’s position, (xg , yg), on the
field. The shot is aimed automatically, so this scenario has a
four-dimensional space.

Semi-Automated Gameplay Analysis
The overall architecture of the SAGA-ML approach is
shown in Figure 1. The game engine is treated as a black
box and SAGA-ML interacts with it through an abstrac-
tion layer. This layer is game-specific and translates game-
specific data and function calls to an abstract state format
used by SAGA-ML. The sampler component uses the ab-
straction layer to evaluate situations by running the game
with an initial state and a sequence of actions, and then ob-
serving the outcome. The learner uses the data gathered by
the sampler to construct a concise model (or summary) of the
game’s behaviour. The learner may then request more sam-
ples to refine its model. Together the sampler and learner
form the active learning part of the system. Finally, the
learned model is passed to the game-specific visualizer for
the designer to evaluate. Note that the visualizer could use
the game engine to render views for the developer. We will
now discuss each of these components in greater detail using
our FIFA scenarios to illustrate.

Abstraction
Games have far more variables than we can reasonably ex-
pect to interpret. When evaluating a game, we are interested
in specific metrics (e.g. goals scored, time elapsed, etc.) but
we must also specify the initial state (e.g. position, speed,
etc.) and player actions (e.g. move, shoot, etc.) we want to



Figure 1: Architecture
sample. The abstraction layer transforms the raw game vari-
ables to form the corresponding game state, player actions,
and metrics used by SAGA-ML. These are three vectors of
numbers exchanged between SAGA-ML and the abstraction
layer to control and observe the game.

Often, games store internal information that is optimized
for rendering graphics or physics simulation, and the raw
game variables may be inappropriate for directly modelling
gameplay behaviour. For example, FIFA stores player posi-
tions as x-y coordinates on the field, but the actual outcome
of a shot on goal is determined by the angle between shooter
and goalie, the distance between them, and the relationship
of the shooter to the goalposts. If the learner only sees the
x-y coordinates, it may not be able to deduce the underly-
ing rules used by the game engine or it may learn an overly
complex model. Therefore, the abstraction layer also serves
to interpret the raw game variables into useful features. For
FIFA soccer, we have hand-crafted a set of features, chiefly
converting from Cartesian to polar coordinates. In general,
game developers will have a good understanding of what
features are relevant to the game’s behaviour so this trans-
formation, while important, is similar to the code required
to implement game behaviours in the first place.

Rule-Based Learning
For this project, we decided to use rule-based learning,
chiefly because rules are more readily interpretable than
many other machine learned representations. For example,
in the shooter-goalie scenario, such a rule might be: IF the
shooter is within 5 metres of the goalie AND the angle be-
tween shooter and goalie is between 30◦ and 40◦ AND the
goalie is within 1 metre of the goal’s centre THEN the prob-
ability of scoring is greater than 70%. Even so, large sets
of rules are difficult to absorb, so a game-specific visualizer
called SoccerViz has been constructed for displaying these
rules in an intuitive fashion. Showing regions on a soccer
field and arrows indicating movements, the developer can
see the purport of the rules in a natural setting. The decision
tree learner C4.5 (Quinlan 1994) was used since it is able to
produce suitable rules but the architecture admits the use of
any rule-based learner. We have conducted preliminary ex-
periments using the rule learner SLIPPER (Cohen & Singer
1999) that we will not present here.

Active Learning
The literature on active learning offers many algorithms
for deciding where to sample next, chiefly differing in the

Figure 2: (a) Positive and negative samples in a 2-D space.
(b) A single, positive rule learned from samples. (c) A
second, overlapping positive rule learned from samples.
(d) Overlapping rules joined into a single positive region
(dashed lines are original rule boundaries).
heuristics they use to identify “interesting” regions. We ex-
plored several approaches, including uncertainty sampling
(Lewis & Gale ), Query by Committee (QBC) (Seung, Op-
per, & Sompolinsky 1992) (more specifically, we imple-
mented Query by Boosting and Query by Bagging (Abe &
Mamitsuka 1998)), and Bootstrap-LV (Saar-Tsechansky &
Provost 2004). Furthermore, we developed a new active
learning technique specifically for rule-based learning sys-
tems which we have called decision boundary refinement
sampling. Space does not allow us to describe all of these
techniques, but we will elaborate on this new method.
Decision Boundary Refinement Sampling In a two-
dimensional space, such as the corner kick scenario, the
rules describe rectangles where the prediction is positive
(true) or negative (false) (this is just an example, predictions
could be more complex, e.g. probabilities). Figure 2 (a)
shows the results of a set of samples. Figure 2 (b) shows a
single, positive rule learned from these samples represented
as a rectangle. Figure 2 (c) shows a second, overlapping
rule learned from the same data. If there are several rules
that overlap, but all agree in their prediction, then we can
merge them together to form a region (as shown in Figure
2 (d)). This idea extends to higher-dimensional data, where
the regions are composed of hyper-rectangles.

Decision boundary refinement sampling was developed
specifically for rule learners. To ensure that a region’s
boundary is correct, new samples are randomly placed on
both sides of the boundary within a small margin. The size
of the margin is specified by a parameter. These samples
help confirm or refute the boundary during the next iteration
of learning. Sampling near the boundaries between overlap-
ping, agreeing rules is wasteful, so we cannot simply sample
at rule boundaries but must identify the regions to do effec-
tive sampling. Fortunately, it is straightforward to construct
the regions and place the samples accordingly. A secondary
mechanism used was default rule sampling. The default
rule refers to those regions of the space not covered by the
learned rules. Sample are placed uniformly in these regions.
In the experiments here, 50% of the samples are placed by
boundary refinement, and 50% by default rule sampling.



Figure 3: High probability scoring rules learned for corner kick.
Experimental Results

We present two main results. The first is the discovery of a
significant sweet spot in the FIFA Soccer game corner kick
scenario. Since this is the ultimate, practical objective of the
work, this is a substantial achievement. The second is an
accuracy study that more objectively assesses our approach.

Visualization of Sweet Spots in Corner Kick
Our visualization tool, SoccerViz, displays high scoring
probability regions (>40%) in the corner kick scenario as
rectangles placed on the field. While the visualization is
not the focus of this paper, we show an example in Figure
3. This result is quite significant as the large region near
the centre represents a definite “sweet spot”. Moreover, it
is large enough to be easily exploitable by the player. This
result was of substantial interest to Electronic Arts and we
regard it as a strong demonstration of the method’s practical
value.

Accuracy Testing
Testing data for our accuracy studies was obtained by ex-
haustive sampling over a fine grid in the search space. In
low-dimensional scenarios, we can use this approach to ob-
tain a gold-standard for evaluating our techniques. We label
each grid element positive (i.e. >40% probability of scoring)
or negative based on this sample and refer to these as the tar-
get concepts. The instability of C4.5 (i.e. small changes to
data can give very different rules) adds substantial variance
to the plots so accuracy results were smoothed by windowed
averaging over six neighbouring iterations.

Blurring When evaluating the performance of any learn-
ing system, the eventual use is an important consideration.
In gameplay analysis, we are interested in identifying be-
haviours in the game that can be systematically reproduced
(e.g. an area where the player can repeatedly score with
ease). However, human players have limited precision in
control, so tiny regions of the state space with high-scoring
probability are not really what developers are concerned
about since the player is unlikely to be able to visit that exact
state repeatedly. Therefore, we ignore very small anomalous
regions in our target concepts by “blurring” the regions. This
is done by using a flood-fill on the fine grid to identify re-
gions with a common prediction. If a region is below a cer-

Figure 4: Blowup of corner kick target concepts displayed
as crosshatch: Unblurred (left) vs. Blurred (right)
tain size (essentially a resolution parameter) and surrounded
on all sides by a differing prediction, it is relabelled to that
prediction. This effectively removes small contradictory re-
gions from larger consistent regions in the target concepts.
Figure 4 shows the target concepts before and after blurring.
The white patches are grid elements with a high probabil-
ity of scoring. The large region shows many small negative
grid elements in the unblurred version that are gone after
blurring. Blurring should also be applied to the learned con-
cepts. However, C4.5’s built-in decision tree pruning pre-
cludes such tiny regions so blurring has no effect.

For the corner kick and shooter-goalie scenarios, initial
uniform random samples of 1000 and 500 points respec-
tively were taken and each iteration of active learning sam-
pled 300 additional points. All samplers used default param-
eters. The true positive rate results (TP) are shown in Figure
5 (a) and (b) and false positive rate (FP) in Figure 6 (a) and
(b). For the corner kick scenario, most methods perform
on par with random sampling in terms of TP rate, which is
somewhat disappointing. FP rates are worse for random in
general. For shooter-goalie, the picture is somewhat more
promising, with several active learners outperforming ran-
dom on TP and offering comparable performance on FP.

Dimensionality Study
The fact that uniform random sampling performs quite well
raises the question of whether active learning is worthwhile.
We hypothesize that active learning becomes more impor-
tant as dimensionality increases because uniform random
must sample sparsely. Unfortunately, it is impractical to ob-
tain a gold standard for accuracy testing in higher dimen-
sional spaces. Instead, we studied the impact of dimen-
sionality with synthetic data. We randomly placed 37 dis-
joint target concepts (each dimension’s width randomly in
[0.001075, 0.021933]) with a total volume of 1, in spaces
of increasing dimension (4, 6, 8, and 10—the range of each
dimension is [0,1]). Uniform random and the active learners
we compared on true positive rate (TP) (Figure 5 (c), (d),
(e) and (f)) and false positive rate (FP) (Figure 6 (c), (d),
(e) and (f)). After an initial uniform random sample of 500
points, each iteration of active learning sampled 100 addi-
tional points. All samplers used default parameters. Our
aim was not a detailed comparison but simply to discover
if any active learner is advantageous in higher-dimensional
spaces. In these studies, we see uniform random sampling
falling behind in terms of both TP and FP as dimensionality
increases, confirming our hypothesis that low dimensional-
ity explains its good performance on the two real scenarios.
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Figure 5: True Positive Rate: TP rate per iteration for six sampling methods on corner kick, shooter-goalie, 4, 6, 8, and 10
dimensional synthetic data.
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Figure 6: False Positive Rate: FP rate per iteration for six sampling methods on corner kick, shooter-goalie, 4, 6, 8, and 10
dimensional synthetic data.



Figure 7: Sampling behaviour of Bootstrap-LV on 9 rectan-
gles with probabilities ranging from 0.1 to 0.9.
A comment on Bootstrap-LV
In studying these active learning methods, we have made
a discovery regarding Bootstrap-LV. Figure 7 shows the
Bootstrap-LV sampling of a field with nine target concepts
(scoring probabilities range from 0.1 to 0.9 with zero every-
where else). Bootstrap-LV wastes the majority of its sam-
ples in regions that are almost certainly negative. Visually, it
looks similar to uniform random sampling. This represents
an intrinsic weakness in Bootstrap-LV. Specifically, when
the number of data points with high scores (uncertainty or
“local variance") is greatly outweighed by the number with
low scores, Bootstrap-LV will tend to select only samples
with low scores. This follows from one of its key defin-
ing properties—that it treats the scores as probabilities and
samples from this distribution instead of simply choosing
the N points with the highest scores. For example, suppose
there are 100 unlabelled points, of which 4 have fairly high
scores, e.g. x, and 96 have substantially lower scores, e.g.
x/10. Because there is a 24:1 ratio of “lows" to “highs", but
their score ratio is only 1:10, a low-scoring point is 2.4 times
more likely to be chosen than a high-scoring point each time
Bootstrap-LV draws a sample. This issue is worthy of fur-
ther exploration in case some correction can be applied.

Conclusions
We presented an active learning framework for automated
software testing, demonstrating it on the gameplay analysis
task. The approach samples a blackbox to learn a model
of its behaviour that serves two purposes: visualization and
active learning. Our study on FIFA Soccer identified signif-
icant sweet spots in the game. Furthermore, Electronic Arts
is adopting the approach in-house for testing future FIFA ti-
tles. Beyond these anecdotal results, we show that active
learning offers scalability to higher-dimensional scenarios.
Future work includes new, higher-dimensional scenarios, re-
fining our own rule-based active learning method, and work-
ing with new games or other types of software.
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