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The widening gap between processor speed and memory latency increases the importance of crafting
data structures and algorithms to exploit temporal and spatial locality. Refinement-based pathfind-
ing algorithms, such as Classic Refinement (CR), find quality paths in very large sparse graphs
where traditional search techniques fail to generate paths in acceptable time. In this paper, we
present a performance evaluation study of three simple data structure transformations aimed at
improving the data reference locality of CR. These transformations are robust to changes in com-
puter architecture and the degree of compiler optimization. We test our alternative designs on
four contemporary architectures, using two compilers for each machine. In our experiments, the
application of these techniques results in performance improvements of up to 67% with consistent
improvements above 15%. Analysis reveals that these improvements stem from improved data
reference locality at the page level and to a lesser extent at the cache line level.

Categories and Subject Descriptors: E.1 [Data Structures]: Lists, Stacks, and Queues; I.2.8 [Com-
puting Methodologies]: Artificial Intelligence—Problem solving, control methods, and search:
Graph and tree search strategies

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Cache-conscious algorithms, classical refinement, pathfinding

1. INTRODUCTION

The problem of finding a path linking two vertices in a graph is generally
referred to as pathfinding. Pathfinding has applications in many industries
such as computer games, freight transport, travel planning, circuit routing,
network packet routing, and so on. For instance, in the real-time strategy
(RTS) video-game genre pathfinding is used for conducting troop movement
on the game map [DeLoura 2000]. In these games, pathfinding consumes up
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to 50% of total computation time [Correspondence with David C. Pottinger of
Ensemble Studios; Pottinger 2000]. Pathfinding typically entails finding a min-
imum length path. We can find a minimum length path linking two vertices in
O(V +E) using the Breadth-First Search (BFS) algorithm [Cormen et al. 1991].
However, in a time-sensitive application, such as RTS video games, hundreds
of paths may need to be generated in the span of a single second in a graph
featuring millions of vertices. Under such circumstances the use of BFS re-
sults in unacceptable pathfinding performance. Applications can substantially
improve pathfinding performance by settling for quality paths, that is, paths
with lengths slightly longer than the minimum. Refinement-based search (RBS)
algorithms generate a quality path linking two vertices by way of restricting
the portion of the graph that is searched [Holte et al. 1996]. RBS algorithms
have been shown to generate paths that are only 10% longer than the minimum
while doing a fraction of the work done by BFS. Unsurprisingly, variants of RBS
are employed in time-sensitive applications to achieve acceptable pathfinding
performance. Classic Refinement (CR), an RBS algorithm, partitions a large
graph into many subgraphs, and generates an abstract graph that describes
the interconnections among the subgraphs. A path between two vertices, u and
v in the original graph is found by: (1) identifying the vertices in the abstract
graph that correspond to the partitions containing u and v; (2) finding a path,
in the abstract graph, between the identified vertices; (3) using this abstract
path to find a path in the original graph.

This paper presents a performance evaluation study of three techniques for
improving the data reference locality of CR: (1) data reordering; (2) data dupli-
cation; (3) and merging of independent data structures into a common memory
area. We demonstrate that combining these techniques can result in perfor-
mance improvements of up to 67% with consistent improvements above 15%.
Through analysis of hardware counter profiles, as well as memory access trace
data, we demonstrate that these results stem from improved data reference
locality at the page level and, to a lesser extent, at the cache line level. By
testing on four different architectures with GCC and vendor compilers, we also
demonstrate that our techniques are robust to changes in hardware as well as
to the level of compiler optimization.

Section 2 presents a generic method for graph abstraction for RBS as well
as the CR algorithm. Section 3 describes the baseline implementation and our
three techniques. Section 4 presents our experimental framework while Sec-
tion 5 contains the results and subsequent analysis of our experiments. Finally,
Section 6 discusses related work.

2. ABSTRACTION AND SEARCH

For completeness, we describe the process used to create abstraction hierarchies
and present the CR search algorithm.

2.1 Graph Abstraction

Let G0(V0, E0) be the input graph, also called the source graph, to a RBS al-
gorithm. Let G1(V1, E1) be an abstraction of G0 as defined below. Both G0 and
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Fig. 1. A three-level abstraction hierarchy.

G1 are undirected and unweighted graphs. G0 is partitioned into connected
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subgraphs. The abstract graph G1 must have one vertex for each subgraph of
G0. If a vertex v0

i in G0 maps to a vertex v1
p in G1, we say that v1

p is the image
of v0

i at abstraction level 1. (Note: v1
p should be read as “vertex p at abstraction

level 1”.) We also say that the set of vertices in G0 that map to vertex v1
p in G1

is the preimage of v1
p. The abstract graph G1 has an edge (v1

p, v1
q) if and only if

there is an edge (v0
i , v0

j ) in G0 such that v0
i belongs to the preimage of v1

p and
v0

j belongs to the preimage of v1
q . This transformation ensures that paths in G0

can be mapped to corresponding paths in G1.

2.2 Abstraction Hierarchies

Because we can create an abstract graph for any undirected graph, we can
create an abstraction of an abstraction to generate an abstraction hierarchy.
A sequence of graphs {G0, G1, . . . , Gn−1} is an abstraction hierarchy for source
graph G0 if Gi+1 is an abstraction of Gi for 0 ≤ i < n − 1. An example of a
three-level abstraction hierarchy is shown in Figure 1.

2.3 Abstraction Generation

To generate an abstraction hierarchy, we use the “max-degree” STAR algo-
rithm [Holte et al. 1996]. The input is the source graph G0 and a radius r.
Given a graph Ga, the first step is to generate an abstraction Ga+1 by parti-
tioning Ga into connected subgraphs. The STAR algorithm partitions Ga into
subgraphs whose maximum diameter is at most 2r. The algorithm selects a
vertex va

i in Ga. If va
i is not in a subgraph, a new subgraph is created. Next a

breadth-first traversal of Ga starting in va
i is used to find the other vertices of
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this subgraph. This traversal ignores vertices that already belong to another
subgraph. The traversal stops at vertices that are r edges away from va

i . Once
all vertices in Ga are assigned to subgraphs, we proceed to generate Ga+1.

2.4 Refinement-Based Search

RBS algorithms use an abstraction hierarchy to find short paths between a start
vertex and a goal vertex. Examples of RBS algorithms are CR, Path Marking,
and Alternating Opportunism [Holte et al. 1996]. These algorithms vary in
terms of efficiency and the quality of the paths generated. This paper focuses
on CR.1

2.4.1 Definitions and Notations.

Definition 2.1. An ordered list of Ga vertices, P = {va
0 , va

1 , . . . , va
k−1}, is a

path in Ga if and only if Ga contains the edges (va
0 , va

1 ), (va
1 , va

2 ), . . . , (va
k−2, va

k−1).
We use the notation P [ j ] to refer to the j th element in path P .

Definition 2.2. A path P = {va
0 , va

1 , . . . , va
k−1} in Ga is a constrained path

if and only if it is the shortest path between va
0 and va

k−1, such that vertices
va

0 , va
1 , . . . , va

k−1 belong to the preimage of the same vertex va+1
p .

Because the preimage of va+1
p is a connected subgraph of Ga, when com-

puting a constrained path, a search algorithm can restrict its search space to
the vertices in the preimage of va+1

p . In a constrained path all vertices are in the
same preimage. G0 may contain a shorter path between va

0 and va
k−1 than the

constrained path P , but any such path will contain at least one vertex outside
the preimage of va+1

p , and therefore will not be a constrained path.

Definition 2.3. Let va+1
p and va+1

q be two vertices in Ga+1 such that
(va+1

p , va+1
q ) is an edge in Ga+1. Let va

i be a vertex in the preimage of va+1
p . Then

there exists a path from va
i to any vertex in the preimage of va+1

q . A constrained
jump path J from va

i to the preimage of va+1
q is the shortest path between va

i and
any vertex in the preimage of va+1

q , such that any edge traversed by J connects
vertices that belong either to the preimage of va+1

p or to the preimage of va+1
q .

Again, a shorter path from va
i to the preimage of va+1

p may exist in G0, but it
would have to include at least one vertex outside the preimage of va+1

p or va+1
q

and thus not be constrained.

2.4.2 Classic Refinement. Figure 2 presents pseudocode for the CR al-
gorithm. Given a source graph G0 and an abstraction hierarchy A =
{G0, G1, . . . , Gn−1}, we are interested in finding a path in G0 between a source
vertex s0 and a goal vertex g0. The CR algorithm starts by finding a path, Pn−1,
between sn−1 and gn−1, the images of the source and goal vertices in the highest
level of the hierarchy, Gn−1. If no such path exists then the algorithm returns a

1Although not the focus of this paper, the optimizations presented in Section 3 are also applicable
for improving the performance of Path Marking and Alternating Opportunism.
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CLASSICREFINEMENT(A, s0, g0, n)
1: sn−1 ← LOOKUPVERTEXIMAGE(s0, n − 1)
2: gn−1 ← LOOKUPVERTEXIMAGE(g0, n − 1)
3: Pn−1 ← FINDPATH(sn−1, gn−1, n − 1)
4: if |Pn−1| = 0 then
5: return NULL
6: for i = n − 2 to i = 0
7: Pi ← {}
8: b ← LOOKUPVERTEXIMAGE(s0, i)
9: for j ← 0 to j = |Pi+1| − 1

10: J ← FINDCONSTRAINEDJUMPPATH(Gi , b, Pi+1[ j + 1])
11: Pi ←APPEND(Pi , J )
12: b ←LASTVERTEX(J )
13: endfor
14: gi ← LOOKUPVERTEXIMAGE(g0, i)
15: C ← FINDCONSTRAINEDPATH(b, gi , i)
16: Pi ←APPEND(Pi , C)
17: endfor
18: return P0

Fig. 2. CR algorithm.

NULL path indicating that no path exists between s0 and g0 in G0 (steps 1–5).
If a path was found in Gn−1, CR iterates through each remaining level of ab-
straction, starting at Gn−2 and going down the abstraction hierarchy to G0 (for
loop at step 6).

Let Pi+1 = {si+1, vi+1
1 , . . . , vi+1

k−2, gi+1} be the path found in Gi+1. In order to
compute the path Pi, CR initializes b to the image of s0 at abstraction level i. CR
then computes the constrained jump path J from b to a vertex in the preimage
of the next Pi+1 vertex, Pi+1[ j + 1] (step 10). By definition the last vertex in J
is the first vertex in the preimage of Pi+1[ j + 1] visited by J . CR appends the
constrained jump path J to Pi and updates b so that it is now the first vertex
visited in Pi+1[ j + 1] and iterates until the preimage of gi+1 is reached.

Finally, when b is the initial vertex in the preimage of gi+1, CR computes
a constrained path C between b and gi, the image of g0 in Gi (step 15) and
appends C to Pi.

Once the algorithm reaches the bottom-most level of the abstraction and P0
has been generated, the algorithm is finished and path P0 is returned.

3. DATA STRUCTURE TRANSFORMATIONS

This section describes the three data structure transformations that we pro-
pose for improving the performance of CR. The techniques are characterized as
follows: We use the graph shown in Figure 3 as an example in our presentation.
We begin with a description of our baseline implementation.

3.1 Baseline

Our baseline implementation of CR is based on sound implementation tech-
niques for sparse graph traversal algorithms. Because we are interested in
graphs with a low degree of connectivity, we utilize adjacency lists to represent
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Fig. 3. Running example.

Fig. 4. Fields in the data structure of a vertex.

graphs. Figure 4 shows the 32-bit fields in the data structure used to represent a
vertex vi

a in the baseline implementation. ID is the vertex unique identification,
the traversal visit marker (TVM) indicates if the vertex has been visited, BP is
a back pointer used to store the previous node visited. BP is used to reconstruct
the path once the goal node is encountered. IMG is a pointer to the vertex’s
image, and DEG is the degree of vi

a. Figure 4 illustrates the data structure for
v0

0 in Figure 3.
The TVM is used to determine if the vertex has already been visited in the

current search. The TVM of every vertex is initialized to zero before the first
search takes place. A global search counter (GSC) is maintained. Before the
first search takes place GSC is set to 1. Whenever vertex vi

a is visited during
the zth search, its TVM is set to GSC. When the zth search completes, GSC is
incremented. Therefore, any vertex that has a TVM smaller than GSC during
search z, has not been visited yet. An alternative design that would be very
conservative in space usage would use a bit vector to represent the visited
state, with one bit per vertex. Such a design has three disadvantages when
compared with our TVM approach: (1) it requires bit vector manipulation, thus
making the code more difficult to maintain; (2) it requires the reinitialization
of the visited field before the start of each search; (3) the memory locations
that contain the bits may be distant from the data structure that contains the
vertex information in memory, and thus may not benefit from the spatial locality
encountered when the TVM is embedded within the vertex structure. Because
the TVM is a 32-bit integer, we do not have to reinitialize it unless we search
more than four-billion times.

Through manual data placement, we ensure that all vertices in a given
graph are stored in a single contiguous region of memory with one vertex data
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Fig. 5. Memory layout without vertex clustering.

structure immediately followed by another. Such an approach is advantageous
compared to dynamically allocating memory on a per node basis. In addition to
being faster, our manual data placement method ensures that the in-memory
distance between vertices is consistent between different trials of the same
experiment.

3.1.1 Constrained Path Finding Algorithm and Queue Representation. We
use BFS to search for constrained paths and constrained jump paths. BFS stores
vertices to be visited in a working queue. This queue is sometimes implemented
as a circular buffer to save memory [Cormen et al. 1991]. However, we found
that the overhead of checking for wraparound and overflow is high. Our ap-
proach eliminates this bookkeeping by allocating two buffers, each of which is
large enough to accommodate a pointer to every vertex in the graph. During
search we alternate between buffers, using one buffer to dequeue nodes discov-
ered in the previous round of node expansion and the other buffer to queue up
newly discovered nodes. Even though we could just as easily use only a single
buffer to implement the queue for BFS, we found the two queues superior to
a single queue. Using buffers instead of circular queues is a practice found in
pathfinding engine implementations in video games [Freecraft; DeLoura 2000],
as well as BFS-based implicit graph search [Korf 2003].

3.2 Vertex Clustering

Vertex Clustering is our data reordering technique. Consider the input graph
shown in Figure 3. A naive implementation of the abstraction generation algo-
rithm stores the vertices in memory in the order in which they appear in the
original graph. Figure 5 shows the resulting layout of the vertex data struc-
tures in memory. In this figure, each small box represents a 32-bit memory
field. For convenience of drawing, we present eight 32-bit fields per line. We
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Fig. 6. Memory layout with vertex clustering.

identify the 32-bit field where the data structure corresponding to each vertex
of Figure 3 starts. Consider the search for a constrained jump path from v1

0 to
v1

2 starting at v0
0 and ending at v0

3 in the example of Figure 3. The shaded areas
in Figure 5 show the memory locations that are accessed in this search. The
lighter shade denotes a single access while the darker shade marks a location
accessed twice during the search. Besides the irregular memory access pattern
shown in Figure 5, the baseline implementation also keeps a separate work
queue, and therefore performs accesses to a separate region of memory that
are interleaved with the accesses shown in Figure 5. These accesses not only do
not benefit from spatial locality, they also are potential source of conflict misses
in the data caches.

We use the technique of vertex clustering that consists of rearranging the
vertex data structures in memory, such that vertices that map to the same image
are located in close proximity of each other in memory. Clustering takes place
after the abstraction hierarchy formation. To cluster vertices we simply place all
vertices that have a common image into a contiguous memory region. Figure 6
shows a memory layout after one possible application of vertex clustering. The
shaded areas in this figure are the memory locations that are accessed for the
same constrained jump path search from v1

0 to v1
2 starting at v0

0 and ending at
v0

3. Notice how the memory accesses are much closer to each other in memory.
Though not addressed in this paper, we expect the benefits of vertex clustering
to be more pronounced in abstractions generated with a larger radius.

3.3 Image Mapping

Image mapping replicates data to improve spatial locality. With the data struc-
ture shown in Figure 4, pathfinding exhibits poor spatial locality even after
vertex clustering has been applied. For instance, consider the constrained jump
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Fig. 7. Vertex data structure for abstract map.

Fig. 8. Vertex data structure for abstract map with embedded queue.

path example in Section 3.2. In order to constrain search to vertices that map to
v1

0 we need to access the IMG field of each vertex encountered during search. As
a result, in Figure 6, we see that the baseline implementation accesses mem-
ory locations that are far from the locations where we find data structures for
vertices in the preimage of v1

0.
The image mapping technique eliminates this unfavorable memory access

pattern through an augmentation of the vertex data structure as shown in
Figure 7. The change from Figure 4 is that the adjacency list contains not only
a pointer to the neighboring vertices, but also the IMG field of each neighbor.
Thus when finding paths we do not need to access remote memory locations to
determine the image of a given vertex.

3.4 Embedded Queue

The next source of poor memory reference pattern is the working queue of BFS.
This queue is likely to reside in a remote memory region. Thus, a constrained
path search exhibits interleaved accesses to two separate regions of memory:
(1) the graph vertex region and (2) the BFS working queue region. Frequent
switching between two potentially distant memory regions has two adverse
effects. First, it may cause cache thrashing, that is, entries that will be used
later are discarded because of memory conflicts. Second, it may prevent the
memory accesses from benefiting from the free prefetching that most cache
memories offer in the form of large cache lines. In other words, because of poor
spatial locality in the memory accesses, the algorithm may not benefit from
implicit prefetching of the vertex pointers in the working queue.

The embedded queue technique keeps the information about vertices yet to
be visited by BFS within the vertex’s data structures. Embedding the queue
merges two independent data structures, the graph and the queue, into a com-
mon memory area. To implement a BFS embedded queue, we augment the
vertex data structure with an additional field, the embedded queue pointer
(EQP), as shown in Figure 8. The EQP field of a vertex contains a pointer to the
last vertex that was added to the working queue. We now present the modified
constrained jump path search algorithm with these three modifications.

3.5 The Embedded Queue Constrained Jump Path Algorithm

An important component of CR is the algorithm that finds a constrained jump
path from a start vertex s to any vertex in an image I . This algorithm assumes
that if vertex s is in abstraction level a, then Ga+1 has an edge between the image
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EMBEDDEDQUEUECONSTRAINEDJUMPPATH(G(V , E), s, I )
1: E Q P (s) ←NULL
2: w ← s
3: w′ ← NULL
4: while TRUE
5: while w �= NULL
6: for v ∈ V such that (w, v) ∈ E
7: if Image(v) = I
8: BP(v) ← w
9: return v

10: if Image(v) �= Image(s)
11: continue
12: if TVM(v) = GSC
13: continue
14: BP(v) ← w
15: EQP(v) ← w′
16: w′ ← v
17: TVM(v) ← GSC
18: endfor
19: w ← EQP(w)
20: endwhile
21: w ← w′
22: w′ ← NULL
23: endwhile

Fig. 9. Embedded queue constrained path algorithm with abstract map.

of s and the vertex representing I . Figure 9 presents the modified constrained
jump path algorithm that uses embedded queues to store the work queue.

The pattern of vertex visitation in BFS can be viewed as an expanding wave
that starts at the initial vertex. If we divide this expansion into phases, in phase
0 we visit the starting vertex s, in phase 1 we visit all the immediate neighbors
of s. In phase 2 we visit all the vertices that are two hops away from the starting
vertex, and so on. The embedded queue algorithm uses w to access the linked
list formed by the EQPs of the vertices that are being visited in the current
phase. It uses w′ to build the linked list of the vertices to be visited in the next
phase.

When traversing a list in a given phase of the BFS algorithm, we use EQP
to find the next vertex to be visited. In the initialization (steps 1–3), the EQP of
the starting vertex s is assigned NULL to ensure that the phase 0 will termi-
nate, and NULL is also assigned to w′ to ensure that the next phase will also
terminate. The first vertex of phase 0 is s. The algorithm terminates when a
vertex whose image is I is encountered (step 7). The accesses to the neighbors
of v in the for loop (step 6) benefit from spatial locality because they are stored
in an adjacency list. Vertices that are not in the same image as the starting
vertex (step 10) or that have already being visited (step 12) are not included in
the working list for the next phase.

The image mapping technique ensures that the comparison between the
image of v and the image of the starting vertex s (step 10) accesses data internal
to the data structure of v and thus benefits from spatial locality. With the use
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Table I. Techniques Featured in Each Implementation

Embedded Vertex Image
Implementation Queues Clustering Mapping

Baseline

Q--
√

-V-
√

--I
√

QV-
√ √

Q-I
√ √

-VI
√ √

QVI
√ √ √

of the embedded queue technique, the accesses to EQP (steps 15 and 19) are
within the data structures of vertices v and w and thus also benefit from spatial
locality.

The direction in which the embedded queue is constructed and traversed in
the algorithm shown in Figure 9 matters. We build a backward queue in the
sense that the newly discovered vertex v is placed at the front of w′, not the
rear. The advantage of this traversal direction is that when we finish building
the queue, we start to visit vertices in the reverse order in which they were
added to the queue. Thus, we are likely to visit vertices that we have recently
visited and benefit from temporal locality in the cache memories.

4. EXPERIMENTAL FRAMEWORK

In order to test the effect of the techniques described in Section 3, we im-
plemented eight versions of the constrained path finding algorithm.2 We ex-
tensively tested the performance of these implementations on four different
machines using two compilers on each system and four regular graphs as in-
put. This section describes the algorithm implementations, the machines and
compilers used, the input graphs, and the conditions under which the various
experiments are performed.

4.1 Our Implementations

Using ANSI C we wrote eight CR implementations. Each implementation fea-
tures a different mix of the techniques of queue embedding (Q), vertex cluster-
ing (V), and image mapping (I). The Baseline implementation features none of
these techniques. Implementations are referred to by three character names,
where each character indicates either the presence or absence of a given tech-
nique. For example, Q-I features embedded queues and image mapping, but
not vertex clustering. Table I shows how the implementations are named.

4.2 Experiments and Hardware

We conducted experiments on four systems based on different processors: SGI
(MIPS R12K), IBM (IBM Power3), AMD (AMD Athlon XP), and INTEL (Intel

2The source code of our implementations along with sample input data and documentation can be
found at the following URL: http://www.cs.ualberta.ca/∼amaral/sources/JEA/.
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Table II. Systems and Compilers Used in the Experiments

Feature SGI IBM AMD INTEL

Processor Type MIPS R12K POWER3 2000+ XP Pentium 4
Clock frequency 350 MHz 450 MHz 1667 MHz 2260 MHz
Capacity 32 KB 64 KB 64 KB 8 KB

Data Cache L1 Associativity 2-way 128-way 2-way 4-way
Line size 32 bytes 128 bytes 64 bytes 64 bytes
Capacity 4 MB 8 MB 256 KB 512 KB

Data Cache L2 Associativity 2-way 4-way 16-way 8-way
Line size 128 bytes 128 bytes 64 bytes 64 bytes

Data TLB L1 Capacity 56 entries 256 entries 32 entries 128 entries
Associativity Fully 2-way Fully Fully

Data TLB L2 Capacity None None 256 entries None
Associativity 4-way

Virtual memory page size 16 KB 4 KB 4 KB 4 KB
Data TLB coverage 896 KB 1,024 KB 1,152 KB 512 KB
TLB miss handler Software Hardware Hardware Hardware
Main memory capacity 1 GB 1 GB 1 GB 1 GB

Compilers
MIPSpro (7.2.1) IBM XLC (6.0) Intel (6.0) Intel (6.0)

GCC (2.7.2) GCC (2.9) GCC (2.96) GCC (2.96)
Hardware event measurement library Perfex PMAPI PMC PAPI

Pentium 4). On each system we used GCC and the processor vendor’s compiler
to build our implementations with -O0 and -O3.3 Unless specified otherwise,
all results presented in this paper were obtained with -O3 and a vendor-based
compiler, except in the case of the SGI system where GCC was used. Detailed
specifications of each system as well as information about compilers can be
found in Table II.

All measurements encompassed the computation of 10,000 paths between
random pairs of vertices.4 Computing each path includes: (1) searching for
the path and (2) reconstructing the path into a linked list via a BP pointer
traversal.5 Our main performance metric is execution time (measured as wall-
clock time). We also used hardware event counters to measure various processor
and memory events.6 All execution times and hardware event totals were ob-
tained on an unloaded machine. We always report the best result from several
runs of each experiment. We always run our experiments as the single user in
the machine and without other concurrent applications. In our experiments, we
observed a variance between different runs of the same experiment that was
consistently well below 1%. Thus choosing the best of several runs for each ex-
periment eliminates spurious interactions with the operating system operation.
We also collected traces of memory accesses made to heap memory associated
with the abstraction hierarchy and, when applicable, with the queue vectors.
This additional data was collected in separate runs to prevent interference with
the time and hardware event measurements. This data enables us to construct

3On the AMD, we used the Intel C compiler as the processor vendor’s compiler.
4We used a low-overhead portable and deterministic random number generator described in Press
et al. [1992].
5Reconstruction of paths took between 1% and 17% of the execution time.
6We used hardware event measurement libraries (see Table II).
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various metrics. For instance, we computed the average number of distinct
memory blocks accessed during search. By using block sizes corresponding to
the cache line and page capacities found in our systems, and assuming minimal
amounts of data reuse between successive searches, we can approximate the
amount of traffic at each level of the memory hierarchy.

We tried to minimize code discrepancies between implementations. The main
changes from the Baseline are as follows: (1) for vertex clustering the code
stays the same; (2) for image mapping we slightly alter the lines of code that
determine the image of a neighbor vertex; (3) for embedded queues, however,
we had to replace the queue vector code with a pointer manipulating code that
traverses the embedded queues.

4.3 Input Graphs

The core of our experiments was performed using four types of input graphs.
We considered several instances of each graph type:

2D-Grid. A two-dimensional grid with a height of h and a width of w. A 2D-Grid
has h × w vertices. Except for border vertices, a vertex located at (x, y) has
edges to all vertices located at (x + a, y) and (x, y + b), where a, b ∈ (−1, 1),
thereby yielding an average vertex degree of approximately 4. We made h = w
and varied its value from h = 256 to h = 1024 by increments of 128.

2DD-Grid. Same as 2D-Grid, but the average vertex degree is approximately 8
due to the introduction of diagonal edges to all vertices located at (x+a, y+b),
where a, b ∈ (−1, 1).

3D-Grid. A three-dimensional grid with height h, width w, and depth d . A
3D-grid has h × w × d vertices. Except for border vertices, a vertex located
at (x, y , z) has edges to all vertices located at (x + a, y , z), (x, y + b, z), and
(x, y , z +c), where a, b, c ∈ (−1, 1), thereby yielding an average vertex degree
of approximately 6. We made h = w = d and varied h from s = 48 to s = 96
by increments of 8.

3DD-Grid. Same as 3D-Grid, but the average vertex degree is approximately
26 due to the introduction of diagonal edges. A vertex (x, y) has an edge to
all vertices, except for itself, located at (x + a, y + b, z + c), where a, b, c ∈
(−1, 0, 1).

Collectively, these graphs are representative of graphs with two-dimensional
and three-dimensional topologies. For example, 2D-Grid and 2DD-Grid graphs
are similar to graphs representing RTS game-worlds and road-maps. 3D-Grid
and 3DD-Grid graphs on the other hand are similar to graphs used to represent
three-dimensional objects, such as buildings and bridges. These grids are empty
in the sense that they are not populated with obstacles as a grid in a computer
game would be. In an empty grid the shortest path between any two points is
always a straight line. However, our pathfinding algorithm does not use this
knowledge. By using empty graphs to study our techniques, we avoid side effects
caused by irregularities in the graphs. For completeness, in Section 5.6 we
present a performance-oriented case study using nonempty graphs of realistic
terrains.
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Table III. Number of Vertices and Edges at Each Level of the Abstraction Hierarchy for the
Largest Instance of Each Graph (A dash indicated the absence of a level.)

2D-Grid 2DD-Grid 3D-Grid 3DD-GridGraph Type
1024 1024 96 96Size

Measure |V | |E| |V | |E| |V | |E| |V | |E|
G0 1,048,576 2,096,104 1,048,576 4,188,162 884,736 2,626,560 884,736 11,254,460
G1 196,779 559,645 116,964 465,806 116,784 644,850 32,768 398,908
G2 24,480 71,371 12,996 51,302 9,369 63,754 1331 14,230
G3 2973 8578 1444 5550 699 3375 64 468
G4 392 1,039 169 600 154 281 8 28
G5 68 137 25 72 68 67 1 0
G6 9 14 4 6 1 0 – –
G7 3 2 1 0 – – – –
G8 1 0 – – – – – –

Table IV. Average Vertex Degree at Each Level of the Abstraction Hierarchy for the
Largest Instance of Each Graph (A dash indicated the absence of a level.)

Graph Type Size G0 G1 G2 G3 G4 G5 G6 G7 G8

2D-Grid 1024 4.0 5.7 5.8 5.8 5.3 4.0 3.1 1.3 0
2DD-Grid 1024 8.0 8.0 7.9 7.7 7.1 5.8 3.0 0 –
3D-Grid 96 5.9 11.0 13.6 9.7 3.6 2.0 0 – –
3DD-Grid 96 25.4 24.3 21.4 14.6 7.0 0 – – –

All graphs are connected thereby enabling the search for a path between
two randomly selected vertices. Abstraction hierarchies are generated with the
STAR method with a radius of 2. The vertices of G0 are placed in memory in the
order in which they are read-in (see Section 5.1). The generation of Gi+1 iterates
through vertices in Gi in the order in which they appear in memory, selecting yet
to be classified vertices as starting points for new subgraphs. Newly generated
Gi+1 vertices are placed in memory in the order in which they are created.
The abstraction generation algorithm iterates until the resulting abstraction
level has no edges. For vertex clustering, after the abstraction hierarchy is
generated, vertices that belong to the same image are stored, one after another,
in a contiguous memory location.7

Table III contains a summary of the abstraction hierarchy of the largest
instance of each graph type in terms of vertex and edge totals present at each
level of abstraction. Table IV does the same for the average vertex degree.

5. RESULTS AND ANALYSIS

Our experimental study findings can be summarized as follows:

—The combination of vertex clustering and image mapping (-VI) can reduce
baseline execution times by upward of 43%. If vertices in the input graph
are not ordered according to their vicinity, -VI can reduce baseline execution
time by as much as 67%.

7The order in which vertices appear in the contiguous memory location reflects the order in which
they were created during the abstraction generation process.

ACM Journal of Experimental Algorithmics, Vol. 9, Article No. 1.2, 2004.



A Performance Study of Data Layout Techniques • 15

—The reduction in execution time is correlated with the reduction in TLB
misses, and to a lesser degree to cache miss reductions. This observation sup-
ports the assertion that our techniques improve search performance through
improved data reference locality.

—The execution time improvements are robust to changes in the hardware
architecture, compilers, and in the level of compiler optimization.

—Although the addition of queue embedding to -VI produces performance im-
provements in some system and input graph combinations, indiscriminate
use of the queue embedding technique is not advisable.

—While some of our techniques increase the memory space required to store
the abstraction hierarchy, they can also reduce the dynamic memory footprint
(DMF) of search, thereby decreasing memory subsystem traffic as a whole,
especially at the page level.

—The results of a case study involving graphs representing realistic terrains
suggest that our techniques are applicable to improving pathfinding perfor-
mance in a variety of graphs.

5.1 Initial Vertex Order

The order in which vertices appear in the input graph can have a significant
effect on the performance gains produced by our techniques. In our experiments,
with the absence of vertex clustering, the order in which G0 vertices appear in
memory reflects the order in which they appear in the input graph. In addition,
due to the nature of our abstraction generation process, the vertex order present
in the input graph may also influence the order of vertices at higher levels of
abstraction. Thus, the order in which vertices appear in the input graph can
have an effect on data reference locality by affecting the in-memory proximity
of vertices belonging to the same preimage. To study this effect, we define two
types of input graph vertex ordering. In the default vertex order (DVO), vertices
are ordered to capture the natural vertex order for the given graph type. The
DVO of each graph type is as follows: 2D-Grid and 2DD-Grid vertices are ordered
as left-to-right rows stacked on top of each other in a top-to-bottom manner,
3D-Grid vertices are organized as front-to-back ordered instances of 2D-Grid
graphs, and 3DD-Grid graph vertices are organized as front-to-back instances
of 2DD-Grid graphs. The randomized vertex order (RVO) of each graph type is
generated by randomly scrambling the vertex order of DVO.

Performance gains achieved for DVO are indicative of the gains one can expect
from the techniques presented in this paper. We use RVO to explore the upper
bounds of the performance gains achievable with our techniques. Arbitrary ver-
tex orderings such as RVO may seem artificial. After all, programmers do not
tend to intentionally scramble the vertex order of their two-dimensional grids.
However, arbitrary vertex orders can occur in practice. For example, consider a
graph representing a national road system where vertices correspond to cities
and junctions. If the vertices appear in the input graph in an order that re-
flects an alphabetical sort of their labels (that is, city names), their ordering
might have little correlation with their geographic proximity. Previous work
has shown that it is beneficial to place vertices in memory in an order based
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Table V. Percentage Improvement Over Baseline for Seven Combinations of the Data Layout
Techniques on Four Machines, Using the Largest Instance of Each Graph Type

DVO RVO

System Version 2D 2DD 3D 3DD 2D 2DD 3D 3DD

Q-- 3.0 −1.2 2.3 −16.4 −1.0 −1.8 2.0 0.6
-V- 0.7 10.7 4.4 2.3 54.9 56.5 51.6 56.6
--I −2.8 0.7 14.7 24.0 18.9 19.5 33.6 40.0

SGI QV- 6.2 8.3 6.9 −13.3 52.9 54.0 49.8 51.3
Q-I −2.4 −6.0 11.3 0.7 17.1 17.5 31.2 38.0
-VI 15.5 22.1 34.3 33.8 65.8 62.1 67.8 53.9
QVI 12.2 8.8 30.2 5.1 62.6 58.5 64.9 57.2
Q-- 3.4 3.8 −6.0 −9.2 −2.6 −2.3 −1.1 −1.0
-V- 0.8 14.9 9.3 3.5 52.2 51.3 45.3 45.9
--I −9.5 −9.4 14.8 27.5 9.1 9.8 25.4 30.9

IBM QV- 6.3 13.8 10.2 −7.0 50.5 55.2 44.1 43.5
Q-I −4.9 0.1 17.1 14.8 7.3 11.0 23.9 30.5
-VI 5.1 18.7 41.0 39.5 61.7 58.5 63.9 56.0
QVI 16.3 22.7 43.8 26.9 62.6 61.3 65.2 56.7
Q-- 1.2 −1.8 −1.0 −20.3 −2.9 −5.1 −6.3 −6.0
-V- 4.4 10.0 11.4 5.0 42.8 46.3 34.9 48.2
--I −4.1 −3.7 18.7 17.7 8.4 1.2 19.9 21.9

AMD QV- 7.3 3.7 9.4 −14.0 40.4 41.5 31.0 30.7
Q-I −3.5 −7.2 17.0 −8.4 5.7 −3.2 16.3 16.8
-VI 13.2 13.5 39.0 28.6 54.2 51.8 55.5 54.0
QVI 16.2 7.6 37.2 3.3 52.5 47.8 52.6 47.1
Q-- −0.7 2.7 −3.4 −9.1 −4.9 −5.9 −5.5 −8.8
-V- 2.0 17.3 9.9 7.9 48.7 48.6 41.9 40.9
--I −7.2 −8.2 15.2 24.6 15.5 10.5 26.7 20.6

INTEL QV- 4.9 15.0 7.6 −1.4 45.8 44.4 38.9 −8.8
Q-I −7.2 −4.1 12.9 11.6 12.9 4.2 23.0 13.9
-VI 10.8 16.1 40.3 38.0 58.9 52.9 63.1 55.8
QVI 12.5 17.3 37.6 24.6 57.0 50.6 61.3 47.3

The best improvement for each machine/graph combination is displayed in bold text.

on a sorting of their geographical locations [Edelkamp and Schrödl 2000]. A
comparison of the RVO with the DVO performance gains in Table V confirms this
observation. For the remainder of the experiments and analysis in this paper,
we use DVO exclusively.

5.2 Execution Time

We begin by exploring how the performance of our techniques compares with
the Baseline. Which one is the best performing implementation? From the
results shown in Table V, with the exception of 2D-Grid graphs, -VI generally
produces the best performance improvements over Baseline. In the case of
2D-Grid graphs however, QVI outperforms -VI.

Figures 10(a)–10(b) illustrate the performance gains achieved by QVI for
2D-Grid graphs and by -VI for 2DD-Grid, 3D-Grid, and 3DD-Grid graphs. These
figures showcase the percentage reductions of execution time produced by the
best performing implementation for each graph type in comparison with the
Baseline implementation. Each figure presents results for all sizes of the given
graph type using all four systems. The bars are composed of two segments
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Fig. 10. Execution time for the best performing implementation for each graph type compared with
the Baseline implementation. The top of each bar is annotated with the corresponding percentage
reduction in execution time.

stacked on top of each other. The lighter segment denotes the execution time reg-
istered by QVI, in the case of Figure 10(a), and -VI in the case of Figures 10(b)–
10(d), while the darker segment corresponds to the additional execution time
required by Baseline. The top of each bar is annotated with the magnitude
of the performance improvement. Performance gains vary from graph type to
graph type. For 2D-Grid and 2DD-Grid graphs the performance gains range from
0.5% to 22.1%, while for 3D-Grid and 3DD-Grid graphs the performance gains
range from 15.3% to 40.3%. In all instances the performance gains are positive
and generally consistent across hardware platforms for each graph type. This
indicates that QVI and -VI are robust with respect to changes in the hardware
architecture.

Are QVI and -VI robust to compiler changes as well? In short the answer is Yes.
Figure 11 is a study of the percentage reduction in execution time produced by
QVI or -VI over Baseline for the largest instance of each graph type. Results are
presented for all systems and compilers, comparing two levels of optimization,
-O0 and -O3. In all instances QVI and -VI produce nontrivial performance gains
over Baseline. Because similar performance gains are obtained with -O0 and
-O3, with both GCC and vendor compilers, QVI and -VI improve performance
improvements seems to be orthogonal to compiler optimizations.

5.3 Data Reference Locality Improvement

Using hardware event counters for runs presented in Figures 10(a)–10(d), we
examined the effectiveness of our best performing implementations in terms of
their effect on data reference locality during search.
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Fig. 11. A study of the percentage reduction in execution time produced by QVI or -VI over Baseline
for the largest instance of each graph type. Results are presented for all systems and compilers,
comparing two levels of optimization, -O0 and -O3.

Figures 12(a)–12(d) compare Baseline and the best performing implemen-
tation for some graph/system combinations in terms of the total number of L2
data cache and TLB misses. In each figure, we consider all graph sizes and
we order the measurements, along the horizontal axis, according to the per-
centage reduction in execution time. All figures show a correlation between the
reduction in TLB misses and the reduction in execution time. This result indi-
cates that page-level data reference locality improves with our techniques and
is responsible for some of the performance improvement.

Figures 12(a) and 12(b) show that data reference locality at the cache line
level generally did not improve in the case of 2D-Grid and 2DD-Grid graphs.8 We
suspect that because the abstraction hierarchy levels of two-dimensional grids
have lower average vertex degrees (see Table IV) than three-dimensional grid
abstraction hierarchy levels, there is less opportunity to eliminate secondary
cache misses with respect to the baseline implementation. On the other hand,
Figures 12(c) and 12(d) show significant improvements in data reference locality
at the cache line level for 3D-Grid and 3DD-Grid graphs. Collectively, these
figures present a nontrivial link between performance gains and data reference
locality improvements, especially at the page level.

5.4 Should Queue Embedding be Used?

Table V shows that the combination -VI produces definite improvements on all
the machines and graphs studied. The advantage of queue embedding, however,
is questionable at best. Queue embedding is motivated by the following intu-
ition: placing the information stored in the queue in the same memory region as
the vertex information should prevent frequent switches between two distant
memory regions and thus improve performance. However, the execution time
improvements presented in Table V indicate that queue embedding is not ad-
vantageous for several graphs and systems. Figure 13 underscores this point.
This graph shows the percentage change, in the execution time, when queue

8Occasionally, the number of L2 cache misses increases in experiments involving 2D-Grid and
2DD-Grid graphs.
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Fig. 12. Study of the correlation between execution time reduction, reduction in TLB misses, and
changes in L2 cache misses for select implementations.

embedding is added to a -VI implementation. In many instances adding queue
embedding to -VI significantly hurts performance. As this result goes against
our original intuition, we want to investigate why this is the case. Some im-
mediate observations are: (1) Q is detrimental to the 3DD-Grid on all systems;
(2) for the remaining graphs, the influence of Q on performance is very different
on the IBM than on the other systems.
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Fig. 13. Percentage reduction in execution time when Q is added to -VI.

Table VI. Misses in Data Cache (DC), Secondary Cache (DSC), and TLB, and Graduated
Instructions (all Measured in Millions) for -VI and the Percentile Change for QVI

2D-Grid 2DD-Grid 3D-Grid 3DD-Grid

QVI QVI QVI QVI

System Metric -VI Change -VI Change -VI Change -VI Change

DC Misses 80.3 10.0% 66.0 23.9% 22.3 14.7% 35.9 39.3%
DSC Misses 12.1 40.2% 10.9 68.6% 4.6 28.3% 9.6 58.2%

SGI
TLB Misses 7.2 −6.6% 5.6 −15.0% 1.7 −5.5% 0.87 −10.9%
Instructions 2,782 −16.2% 2,480 1.9% 908 −8.4% 1,667 23.9%
DC Misses 48.6 −44.0% 36.7 −32.1% 7.0 8.0% 13.3 9.8%
DSC Misses 7.3 9.2% 7.1 9.8% 3.3 4.2% 3.3 4.2%

IBM
TLB Misses 10.3 −38.4% 6.8 −42.5% 1.3 1.7% 1.0 0.0%
Instructions 2,257 −7.3% 1,775 9.9% 639 −1.1% 1,012 28.9%

Table VI shows the variation in primary (DC) and secondary (DSC) cache
misses, TLB misses, and number of instructions graduated for the IBM and SGI
systems when Q is added to -VI. The number of TLB misses drops significantly
when queue embedding is used, confirming our speculation of higher locality
at the page level when the data accesses are not switched frequently from the
area where the vertex’s data are stored to the separate area where the queue is
stored. However, embedding the queue results in a much higher rate of cache
misses both for the primary and secondary caches. Our best explanation for
this effect is that queue embedding accesses suffer from the “pointer chasing”
problems, that is, a field in the current vertex must be accessed before the
next element of the queue is known. In general, compilers have a hard time
optimizing code with this kind of data access pattern [Chilimbi and Hirzel 2002;
Stoutchinin et al. 2001]. On the other hand, a vector-based queue lends itself
well to optimizations both by the compiler and by the underlying hardware. For
example, nonbinding prefetch instructions can be issued by the hardware and/or
inserted by the compiler. Also vector-based queue benefits from wide cache
lines because a single cache line contains several queue entries. In contrast,
with embedded queues a single cache line is not likely to contain more than
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Fig. 14. Abstraction hierarchy memory footprints of all implementations for all instances of each
graph type.

one or two queue entries. Queue embedding also results in a larger number of
instructions graduated for graphs with a high degree of connectivity (high ratio
of edges per vertex) such as 2DD-Grid and 3DD-Grid. In such graphs, the working
queue is much larger than in 2D-Grid and 3D-Grid. This empirical evidence is
indicative of the code generator having less success with the linked-list nature
of the queue embedded code.

We also experimented with comparisons between compilation at levels -O0
and -O3 on the SGI machine and discovered that the compiler eliminates ap-
proximately 10% more stores when operating at a higher level of optimization
for -VI than for QVI. This is further evidence that the code generated for QVI is
more difficult to optimize.

In summary, we do not recommend the use of queue embedding for graphs
that have high connectivity because of the difficulty that compilers have opti-
mizing the code. This lack of efficient optimization manifests itself in higher
primary and secondary cache misses, and a larger number of instructions
graduated.

5.5 Memory Space Requirements and Memory Footprints

With the exception of vertex clustering, the techniques described in this paper
increase the memory space required to store the data for a given abstraction
hierarchy because the data structure for each individual vertex is larger.

Figure 14 shows the growth in the memory footprint of the abstraction hier-
archy for all combinations of graph instance and implementation used in our
experiments.9 Each bar is composed of four segments stacked on top of one

9We refer to the amount of space required to store the abstraction hierarchy as its memory footprint.
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Fig. 15. The percentage reduction produced by each implementation over Baseline in the dynamic
memory footprint. Results are presented for all graph types using two block sizes, capturing typical
cache line and page capacities.

another showing the abstraction hierarchy memory footprint of all implemen-
tations for a given graph instance. On average, queue embedding increased the
memory footprint by 10.7% for 2D-Grid graphs, 7.7% for 2DD-Grid graphs, 8.7%
for 3D-Grid graphs, and 3.2% for 3DD-Grid graphs. For image mapping, average
increases were 46.2% for 2D-Grid graphs, 61.4% for 2DD-Grid graphs, 56.7% for
3D-Grid graphs, and 83.4% for 3DD-Grid graphs. In all instances, the abstrac-
tion hierarchy memory footprint is well below the main memory capacity of all
of our test systems. Thus, we observed virtually no page faults.

In contemporary architectures with virtual memory management, the mem-
ory space allocated for data storage is not necessarily a major concern. Instead,
an algorithm designer seeking to improve performance should primarily be con-
cerned with the amount of memory accessed during program execution, that
is, the DMF. For example, relational database systems have long used data
redundancy to improve query performance. Although the memory footprint of
the database system may increase, the amount of memory accessed to execute
a query decreases. With that in mind, we measured the DMF as the average
number of distinct memory blocks referenced during a single search.10 The DMF
measure encompasses stores and loads made to the memory region containing
the abstraction hierarchy, and, when applicable, the queue vectors. In mea-
suring the DMF of each implementation we used two block sizes, 64 and 4096
bytes, capturing typical cache line and page capacities. Assuming a negligible
amount of data reuse from one search to the next, we can use DMF to gage the
amount of memory subsystem traffic generated by each implementation, both
at the cache and at the page level.

Figures 15(a) and 15(b) present a study of the effect of our techniques on
reducing the DMF using block sizes of 64 and 4096 bytes, respectively. The
figures compare the DMF of each implementation to the DMF of Baseline for
the largest instance of each graph type. Each bar represents the percentage
reduction in the DMF. For example, −11.1% for the 2D-Grid in Figure 15(a)

10DMF is somewhat akin to the I/O measure commonly used in external memory algorithm analysis.
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Fig. 16. Overhead snapshots of 5 of the 16 terrain maps used in our nonempty graph performance
study. Each snapshot is annotated with the grade of obstacle coarseness in the corresponding map.

means that QV- references 11.1% more distinct 64-byte memory blocks than
Baseline.

At the cache line level, Figure 15(a), image mapping is the most effective
technique in reducing the DMF. When used in isolation, techniques other than
image mapping cause the DMF to increase. When image mapping is combined
with the other techniques, the DMF improvement is greater than the sum of the
DMF improvements of each technique. This result indicates that our techniques
complement each other.

At the page level, Figure 15(b), vertex clustering produces the largest reduc-
tions in DMF. Image mapping also yields DMF improvements, although only
for three-dimensional grids. The use of queue embedding makes very little dif-
ference on the DMF at the page level, although it appears to be somewhat more
effective than at the cache line level. Combining techniques appears to have a
similar effect at the page level as it does at the cache line level.

Overall, our techniques yield significant decreases in the DMF of search.
The largest improvements result from combining techniques and are generally
better at the page level than at the cache line level. In addition, two-dimensional
grids tend to benefit more than three-dimensional grids, especially at the cache
line level.

5.6 Case Study

So far our investigation used only empty graphs. What about nonempty graphs?
Do our techniques improve search performance for nonempty graphs? To shed
light on this issue, we present a case study involving a class of nonempty
graphs. In particular, we examine the performance of our implementations us-
ing fractal-generated two-dimensional terrain maps.

Researchers in the field of mobile robotics often utilize fractal-generated
terrains to model both terrestrial and extraterrestrial terrains [Singh et al.
2000; Yahja et al. 1998]. We generated sixteen 1024 × 1024 fractal-based ter-
rain maps. Approximately 60% of the points in each map correspond to free
space, with the remaining portion representing obstacles. The maps vary in
terms of the coarseness of terrain obstacles, ranging from a grade of 4 to a
grade of 64 in increments of four.11 Figure 16 presents overhead snapshots
of five of our maps with increasing grades of obstacle coarseness. Each map

11Coarseness grade is roughly equivalent to the maximum diameter of an obstacle.

ACM Journal of Experimental Algorithmics, Vol. 9, Article No. 1.2, 2004.



24 • R. Niewiadomski et al.

was converted into two explicit graph instances, a 2D form and a 2DD form. A
2D instance is akin to a 2D-Grid in that it features only perpendicular edges,
while a 2DD instance is similar to a 2DD-Grid because it has both perpendicular
and diagonal edges. Because the maps are essentially two-dimensional grids,
we used an input graph vertex order similar to the DVO of our 2D-Grid and
2DD-Grid graphs. We note, however, that unlike our empty graphs, our fractal-
generated graphs are not connected. As a result, a path between two randomly
selected vertices in the graph is not always possible. The manner in which we
generate the abstraction hierarchy lends itself to detecting whether or not two
vertices are connected (see Section 4.3 ). In particular, to check whether or not
s0 is connected to g0 we merely check if sn−1 = gn−1; if sn−1 �= gn−1 then s0 is
not connected to g0.12

The experimental results show our techniques yielding nontrivial perfor-
mance gains for both the 2D and 2DD graph instances of the fractal-generated
terrain maps. In general, QVI was the best performing implementation on the
IBM while -VI was superior to other implementations on the remaining sys-
tems. Figure 17 shows the percentage reduction in execution time achieved
over Baseline by QVI, in the case of the IBM, and -VI, in the case of the re-
maining systems. Results are presented for all 2D instances in Figure 17(a),
and for all 2DD instances in Figure 17(b). Both figures show performance gains
on each system being relatively consistent across all grades of obstacle coarse-
ness. The average performance gain on each system varies between 10.6% and
19.6% for 2D instances, and between 5.8% and 15.2% for 2DD instances. How
do these gains compare to those achieved for the empty 2D-Grid and 2DD-Grid
graphs? As a basis of comparison, we compare the results from our experiments
involving the 768 two-dimensional grids, since the 768 grids feature approxi-
mately the same number of vertices as our maps. On average, the performance
gains achieved for fractal instances were 11.9% larger than the ones attained
for the 768 2D-Grid graph. In the case of 2DD instances, however, performance
gains were typically 32.2% smaller than in the case of the 768 2DD-Grid graph.
These experimental results with nonempty graphs indicate that our techniques
improve path finding in irregular graphs.

6. RELATED WORK

This paper presents an extensive performance evaluation of the techniques
presented in Section 3. These techniques were first described in Niewiadomski
et al. [2003]. To our knowledge there is no previous work specifically addressing
the locality of abstraction search algorithms such as CR. Nonetheless, we find
research addressing graph search locality in general. For instance, Edelkamp
and Schrödl address the problem of thrashing of pages at the virtual memory
level [Edelkamp and Meyer 2001; Edelkamp and Schrödl 2000]. They apply
their localized A∗ to a route planning system. In a nutshell, their strategy

12In our code we generate a pair of randomly selected vertices. If the two vertices are not connected
we do not try to find a path between them and move onto generating another pair of randomly
selected vertices. We do this a total of 10,000 times. As such, in our experiments involving the
fractal-generated graphs the total number of paths actually found is less than 10,000.
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Fig. 17. Summary of the performance gains attained by the best performing implementations on
each system for both the 2D and 2DD graph instances of our fractal-generated terrain maps. For
each machine and implementation the bars correspond to the percentage reductions of Baseline
execution times. Each bar corresponds to a given graph instance, with the number at the bottom
of the bar denoting the grade of obstacle coarseness in the corresponding map.

involves improving reference locality by sorting vertices based on their relative
geographic locations and altering the order in which states are expanded during
search.

In the field of external memory algorithms, we find various techniques for
improving the I/O efficiency of external memory graph search [Agarwal et al.
1998; Arge et al. 2000; Chiang et al. 1995; Meyer et al. 2003; Nodine et al. 1993;
Vitter 2001]. Typically, external memory algorithm techniques are akin to ver-
tex clustering (grouping) and image mapping (data redundancy). For instance,
blocking of data is used to minimize the number of page faults incurred during
the traversal of paths in planar graphs. Variants of vertex grouping are also
used to increase the performance of sparse matrix multiplication [Gibbs et al.
1976; Pinar and Heath 1999].

Graph partitioning, needed for abstraction generation, is a well-studied prob-
lem [Daz et al. 2002; Karypis et al. 1997; Patel and Cote 1981]. For example,
consider the problem of partitioning a graph into k subgraphs such that each
subgraph has roughly the same number of vertices and the number of inter-
subgraph edges is minimized. The ability to partition graphs in this manner
could enable the targeting of specific page and/or cache-line capacities during
the abstraction generation process. Although, such an approach could lead to
enhanced data reference locality, its effect on path quality is unclear to us.
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Also of interest are the ideas explored in the realm of cache oblivious al-
gorithms [Arge et al. 2002; Brodal and Fagerberg 2003; Frigo et al. 1999]. In
general, the aim of the cache oblivious paradigm is to improve the data access
locality of algorithms independent of memory hierarchy parameters. However,
we are yet to come across a cache oblivious approach that enhances the local-
ity of general sparse graph search. Korf finds that when searching an implicit
graph with BFS, compared to checking for duplicates as you go, sorting the
working queue before its expansion permits the elimination of duplicates, lead-
ing to better performance and possibly fewer data cache misses [Korf 2003].
It remains to be seen if this approach can be effective for explicit graph BFS
involving graphs such as two- and three-dimensional grids.

The Artificial Intelligence community focuses on reducing the search
space [Russell 1992], to produce improvements of orders of magnitude. The
gains obtained with the data structure transformation oriented techniques
presented in this paper are orthogonal to the search space reduction, and the
two techniques can be easily combined. These techniques are also orthogo-
nal to performance improvements obtained through compiler transformations
that improve data placement [Calder et al. 1998; Chilimbi et al. 1999]. How-
ever, the automated techniques found in contemporary compilers are quite in-
ept at improving data locality with respect to graph search in general. Even
with the ongoing development of profile-oriented compilation, we expect this
to continue to be the case because techniques such as our embedded queue
and image mapping methods not only require a change in the manner data
is laid out in memory but also require changes to the search algorithms
themselves.

Our techniques are particularly efficient at improving page-level locality
as indicated by the large TLB miss reductions. Increasing the page size is a
general-purpose approach for improving page-level locality [Winwood et al.
2002]. However, there are numerous drawbacks and implementation details
that still need to be addressed. For instance, page swap time and fragmenta-
tion become bigger issues as page size grows. In terms of use of large page sizes
for RBS pathfinding codes, we believe that it may be warranted in scientific
computations but generally undesirable for interactive desktop applications
such as commercial video games.

7. CONCLUSION

Research in the AI and computer game communities has produced algorithms
to quickly find short paths in very large sparse graphs. However, the effects of
temporal and spatial locality in the implementation of these algorithms have
been mostly overlooked. This paper demonstrates that three simple data struc-
ture transformation techniques can consistently improve the performance of
CR pathfinding for sparse graphs. In our experiments, these techniques im-
proved data reference locality resulting in performance improvements of up to
67% with consistent improvements above 15%. In addition, these techniques
appear to be orthogonal to compiler optimizations and robust with respect to
hardware architecture.
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