
Holte, Mkadmi, Zimmer, MacDonald 1 AI Journal (Revised)

Speeding Up Problem Solving by Abstraction:
A Graph Oriented Approach

R.C. Holte, T. Mkadmi,
Computer Science Dept., University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.

holte@csi.uottawa.ca

R.M. Zimmer,
Computer Science Dept., Brunel University, Uxbridge, England, UB8 3PH.

Robert.Zimmer@brunel.ac.uk

A.J. MacDonald
Electrical Eng. Dept., Brunel University, Uxbridge, England, UB8 3PH.

Alan.MacDonald@brunel.ac.uk

Abstract

This paper presents a new perspective on the traditional AI task of
problem solving and the techniques of abstraction and refinement. The
new perspective is based on the well known, but little exploited, relation
between problem solving and the task of finding a path in a graph
between two given nodes. The graph oriented view of abstraction
suggests two new families of abstraction techniques, algebraic
abstraction and STAR abstraction. The first is shown to be extremely
sensitive to the exact manner in which problems are represented. STAR
abstraction, by contrast, is very widely applicable and leads to significant
speedup in all our experiments. The reformulation of traditional
refinement techniques as graph algorithms suggests several
enhancements, including an optimal refinement algorithm, and one
radically new technique: alternating search direction. Experiments
comparing these techniques on a variety of problems show that
alternating opportunism (AltO) a variant of the new technique, is
uniformly superior to all the others.

1. Introduction

Path-finding, the task of finding the shortest path between two given
nodes in a graph, has been studied in computer science (CS) for almost
forty years. Theoretical advances are still being made [Cherkassky et al.,
1993] and real-world applications abound. For example, there are
commercial products that find routes optimizing the cost or time to drive
between two locations in a city or country.

Holte, Mkadmi, Zimmer, MacDonald 2 AI Journal (Revised)

Path-finding arises as a subtask in many areas of artificial intelligence
(AI). For example, in natural language understanding, lexical
disambiguation has been partially solved by finding paths between word
senses in a knowledge-base [Hirst, 1988]. Another example is PROTOS
[Porter et al., 1990], a case-based knowledge acquisition and reasoning
system, that "explains" the differences between two cases' features by
finding paths connecting them in a conceptual network. Path-finding is
also an integral part of robot motion planning. Although a robot's state-
space and actions are continuous, modern techniques [Donald et al.,
1993; Kavraki and Latombe 1993, 1994] for motion planning discretize
the space, use standard CS techniques to find a path in the graph created
by discretization, and then transform the path into a continuous motion.

Path-finding is intimately related to the well-studied AI tasks of
problem solving, planning, and heuristic search. The techniques
developed for these tasks in AI differ from CS path-finding techniques in
three main ways. Firstly, AI techniques extend and speed up the CS
techniques by incorporating search control knowledge, such as problem-
specific heuristics. Secondly, unlike the CS techniques, the techniques
developed in AI are not always guaranteed to find optimal paths. The
aim in AI is to develop techniques that very quickly find near-optimal
paths.

The third difference between AI and CS techniques concerns how
graphs are represented. In CS graphs are typically represented explicitly,
for example with an adjacency matrix or with an explicit list of
successors for each node. By contrast, graphs are represented implicitly
in almost all AI research (for exceptions see [Banerji, 1980] and work
cited therein). In an implicit representation each node is represented by a
description in some language and its successors are computed by
applying a set of successor functions (operators) to the node's
description. In AI the language used to represent nodes and operators is
usually a STRIPS-like notation [Fikes and Nilsson, 1971]. A node is
described by a set of logical predicates (literals) and an operator is
described by a precondition. A precondition is a set of literals a node
must satisfy in order for the operator to be applicable to it, together with
lists specifying which literals the operator adds to and/or deletes from the
node's description when applied.

The speedup afforded by AI techniques would be welcome in any
application currently using CS techniques. For example, in [Donald et al,
1988] the authors propose to replace their current search technique,
breadth first search, by A∗ [Hart et al., 1968].

There are two obstacles preventing AI techniques from being used to
speed up applications currently using CS techniques. The first is that in
these applications the graphs are represented explicitly, whereas the AI
techniques require the graphs to be represented in the STRIPS notation.
In fact, there is a generic way of encoding any explicit graph in the

Holte, Mkadmi, Zimmer, MacDonald 3 AI Journal (Revised)

STRIPS notation with just one operator and two predicates (see figure
1).

Operator Preconditions Deletes Adds

move node1,node2()
at node1(),

edge_ exists node1,node2()











at node1(){ } at node2(){ }

Fig. 1. Generic way of encoding an explicit graph in STRIPS notation.

The only other obstacle to speeding up path-finding applications by
using AI techniques is that good search control knowledge is needed to
do so. Without good heuristics, for example, A∗ is no faster than
standard CS techniques.

Unfortunately, good search control knowledge is often not readily
available [Prieditis, 1993]. Recognizing this, some AI research has
investigated techniques to automatically generate search control
knowledge, either by learning from experience (e.g. [Minton, 1990]) or
by analyzing the description Ð i.e. the implicit representation Ð of the
graph (e.g. [Korf, 1985a], [Etzioni, 1993]).

Abstraction is the most widely studied analytical technique for
creating search control knowledge. The general idea is to create from the
given graph G a "simpler" graph

)
G . To find a path between two nodes

in G , one first finds a path
)p between the corresponding nodes in

)
G

and then uses
)p to guide the search for the path in G . Various methods

for using
)p to guide search have been studied; the most common one is

called refinement.
Having dealt with the only obstacles, it would seem that applications

currently using CS path-finding techniques could be speeded up simply
by using existing AI abstraction techniques. However, there is one
additional obstacle that was not initially apparent. Existing abstraction
techniques depend for their success on being given a "good" implicit
representation. Consider, for example, ALPINE, a state-of-the-art
abstraction system [Knoblock, 1994]. ALPINE can construct useful
abstractions given certain implicit representations for the Towers of
Hanoi graph (defined in Appendix A) but fails completely if given other
implicit representations (e.g. the single-operator representation on p. 295
of [Knoblock, 1994]). As it happens, the generic way to encode an
explicit graph in the STRIPS notation is a "bad" representation for
ALPINE.

In this paper we investigate abstraction and refinement as techniques
for searching explicitly represented graphs. This "graph-oriented"
approach to these topics is very different from the "description-oriented"

Holte, Mkadmi, Zimmer, MacDonald 4 AI Journal (Revised)

approach traditionally taken in AI. The main practical motivation for
taking a new approach has been outlined in the preceding paragraphs:
there exist important applications, even within AI, with explicitly
represented graphs for which there is no known implicit representation
that is "good" for existing abstraction techniques.

At the technical level, the main contributions of this paper are new
high-performance abstraction and refinement techniques. The new
abstraction technique, STAR abstraction, is specifically designed for
explicitly represented graphs. Unlike any previous technique STAR
abstraction is guaranteed to speed up search in a wide range of
commonly occurring circumstances. Several new refinement techniques
are presented, including one (AltO) that is superior in terms of
robustness and performance. Although developed by analyzing existing
refinement techniques from the graph-oriented perspective, all the
refinement techniques can be applied equally well to explicitly or
implicitly represented graphs. The combination of STAR abstraction and
AltO refinement often produces impressive speedup. For example, when
applied to a road map of Pittsburgh, the "search effort" (defined below)
required to find a route between two locations is almost 30 times less
using STAR/AltO than using breadth-first search. Moverover, the routes
found are within 33% of the optimal length.

Because of their robustness, our new techniques also provide a fail-
safe backup to existing techniques in the case of graphs that have a
succinct implicit representation and are also sufficiently small that it is
feasible to represent them explicitly. To illustrate this point, consider the
Blocks World (defined in Appendix A). In [Bacchus and Kabanza, 1994]
it is shown that, in the absence of domain-specific search control
knowledge, both the paper's own planner and SNLP [McAllester and
Rosenblitt, 1991] suffer from a combinatorial explosion with as few as 6
blocks. As there is a standard, succinct, implicit representation for the
Blocks World, it is natural to apply ALPINE to this space. Unfortunately
the standard representation is particularly bad for ALPINE; it produces
no abstraction (p. 296, [Knoblock, 1994]). But with 6 blocks the graph
contains only 7057 states and can readily be abstracted and searched
using our new techniques.

In addition to these technical contributions, we feel that, at a more
general level, the graph-oriented view of abstraction is itself a research
contribution. It gives a fresh slant on an old subject which we have found
particularly fertile. In the graph-oriented view an abstraction is defined
by partitioning a graph's nodes, and any partitioning is a legitimate
abstraction. This view immediately suggests a host different abstraction
(partitioning) techniques. Two are discussed in detail in this paper, but
we have experimented with several others, and our software is written to
make it easy to define new ways of partitioning (abstracting) and to
combine multiple partitioning methods in an arbitrary manner. Likewise,

Holte, Mkadmi, Zimmer, MacDonald 5 AI Journal (Revised)

the graph-oriented view of refinement is simple and thought-provoking.
Refinement is any technique for "caching" the results of search in the
abstract graph and using them to guide (order or prune) search in the
original graph. Described this way, possible refinement methods abound.
In this paper alone we introduce edge-path refinement, node-path
refinement, opportunism, first-successor versus all-successors,
alternating direction, and path-marking. It is worth mentioning, although
it will not be further discussed in this paper, that A∗ [Hart et al., 1968],
HPA [Pohl, 1970], and Graph Traverser [Doran and Michie, 1966] are
also members of this broad family of refinement techniques [Holte et al.,
1994, 1995]. This abundance of techniques for abstraction and
refinement is unique in the literature, and is a direct result of the fertility
of the graph-oriented approach. It naturally leads to many ideas and, in
addition, makes them simple to implement.

Section 2 gives definitions for problem-solving, abstraction, and
refinement as they typically appear in the literature. The techniques
described in this section are referred to as classical, to distinguish them
from the novel techniques developed in sections 4 and 5. Section 3 gives
the graph-oriented counterparts of these definitions. Section 4 introduces
two variations on classical refinement, a technique for finding the
optimal refinement of an abstract solution, and a radically new
technique, Alternating Search Direction. Section 5 presents two new
families of abstraction techniques, one of which is the "Algebraic"
abstractions. Algebraic abstractions have certain desirable properties, but
are shown in an experimental study to be highly sensitive to the way in
which a state space is described: similar descriptions of the same space
can lead to very different performance of the algebraic abstraction
techniques. The development of a new, robust abstraction technique
begins with an simple analysis of the work involved in solving a problem
using an abstraction hierarchy. This analysis produces specific
recommendations which are the basis for a new abstraction algorithm.
The new abstraction algorithm and refinement techniques are evaluated
experimentally in section 6.

1.1 Methodological Comments

In addition to the major experiment in section 6, various experimental
results are reported throughout sections 4 and 5. With the exception of
the experiment in section 5.1, the purpose of these experiments is to
compare the performance of two algorithms or to examine the effect on
performance of some particular parameter. Generally speaking these
follow the usual pattern for such experiments. But there are some points
about their experimental design that deserve comment.

We feel it is important methodologically to use a diverse set of
"domains" in any experiment in order to gain some appreciation of the

Holte, Mkadmi, Zimmer, MacDonald 6 AI Journal (Revised)

generality of the results. The graphs used in our experiments are
described in Appendix A. Three of these (Bitnet, KL-2000, and Permute-
7) are drawn from real applications. One (Words) is a real graph that is
not associated with any particular application, and three (5-puzzle,
Blocks-6, and TOH-7) are based on puzzles. The puzzles were included
because they are easily generated, can be scaled to a convenient size, and
are widely studied in AI. An interesting outcome of our experiments is
that these "toy" domains are not any easier for our systems than the
"real" ones; if anything, performance on the "toy" domains is poorer than
average.

In these experiments two performance measurements are of interest:
solution length and "work". Solution length is of interest because
abstraction, in combination with refinement, is not guaranteed to produce
optimal solutions. Work is what abstraction aims to reduce: the purpose
of abstraction is to speed up problem-solving. We originally measured
work in terms of CPU time, but this was abandoned for three reasons:
first, because it would have prevented us from executing the experiments
on different CPUs; secondly, because it proved extremely sensitive to
low-level programming details of no significance to the algorithms
themselves; and finally, because our implementation is designed for
flexibility (it is an experimental workbench). It is far from being
optimally coded, or even equally-optimally coded for the various search
techniques we compared. Instead of CPU time we measured edges
traversed, which is closely related to the traditional nodes expanded.
When a node is expanded, all of its neighbours are computed.
Traditionally this counts as 1 unit of work; our measure counts the
number of neighbours generated.

In addition to systems that we particularly wished to evaluate, we
have included in our experiments systems whose performances provide
useful points of reference. The classical refinement system, for example,
is representative of existing refinement algorithms. The optimal
refinement algorithm provides a bound on the solution lengths that could
possibly be produced by systems in the same family as classical
refinement. Breadth-first search provides the optimal solution length and
also is representative of standard CS techniques.

Section 5 is the most interesting from a methodological point of view.
The experiment in 5.1 was devised in response to casual observations
made during the use of our first system, which was based on algebraic
abstraction. Certain failings of the system were at first dismissed as
unlucky accidents, but when they persisted we decided a systematic
examination was needed. We identified particular aspects of the system
we suspected as the source of difficulty. These are presented in section 5
as the defining characteristics of algebraic abstractions but they
originally had no such special status. A system was built whose the
express purpose was testing if these characteristics alone would cause

Holte, Mkadmi, Zimmer, MacDonald 7 AI Journal (Revised)

the failings we had observed. The experiment confirmed our suspicions
and forced us to investigate methods of abstraction that did not have
these problematic characteristics.

The general research methodology underlying section 5 is one we feel
would be effective in many areas in AI. For example, it has produced
novel and significant contributions in the field of machine learning
[Holte et al, 1989; Holte, 1993]. The key idea is to actively investigate
the weaknesses in a system's behaviour with the aim of identifying the
algorithmic sources of those weaknesses.

2. Problem Solving, Abstraction and Refinement: Standard
Definitions

A problem space is a set of states and a set of operators, where an
operator is a partial function1 mapping states to states. A problem is a
pair of states, start,goal 2, and a solution to problem start,goal is a
sequence of operators that maps start to the goal . Problem solving is
the task of finding a solution to a given problem. Except for special
classes of problems, problem solving is a search intensive process.

The majority of research on problem solving has used a STRIPS-like
notation [Fikes and Nilsson, 1971] to represent problem spaces, and
defined problem space in terms of this notation as follows: A problem
space is defined as a set of states, a set of operators, and a formal
language (containing constants, variables, function symbols, predicate
symbols, etc.). A state is a set of sentences in the formal language. An
operator maps one state to another by adding to or deleting from the set
of sentences (i.e. the state) to which it is applied. The preconditions of an
operator, which specify the states to which it may be applied, are stated
in the formal language.

An abstraction of a problem space P is a mapping from P to some
other problem space,

)
P . It is worthwhile to distinguish three types of

1[Knoblock, 1994] assumes the application of an operator to a state produces a
unique next state (p.249). [Bacchus and Yang, 1994] defines an operator to be a partial
function but points out that most systems actually use operator "templates" not
operators (p.68). As we shall see in section 5.1, requiring operators to be functions has
far reaching consequences: it is expensive to enforce and it makes an abstraction system
extremely sensitive to the exact manner in which a problem space is defined.

2Everything in the paper extends readily to the more common definition in which
there may be multiple goal states (and multiple start states).

Holte, Mkadmi, Zimmer, MacDonald 8 AI Journal (Revised)

mappings between problem spaces: embeddings, restrictions, and
homomorphisms3.

If an embedding is applied to P , the result is a problem space that
includes all of P and more besides. The best known embedding
techniques are dropping operator preconditions and extending the set of
operators with macro operators. A restriction does the opposite; if
applied to P the resulting problem space is embedded in P . This type of
mapping is not widely studied, but examples may be found in [Fink and
Yang, 1993] and [Prieditis and Janakiraman, 1992]. A homomorphism is
a many-to-one mapping from P to

)
P that "preserves behaviour" (an

exact definition is given in the next section). [Korf, 1980], [Knoblock,
1994], and [Yang and Tenenberg, 1990] use homomorphic mappings of
problem spaces. Hybrid systems are possible but uncommon. One
example, described in [Knoblock et al., 1991a], is PRODIGY with both
EBL (which creates macros and therefore results in an embedding) and
ALPINE (which is homomorphic). In the literature, the term abstraction
is applied equally to all three types of mapping. In this paper we shall
restrict its use to homomorphic mappings. This usage encompasses all
the widely studied modern "abstraction" techniques except for dropping
operator preconditions4.

Within the STRIPS framework, abstraction is achieved by removing
symbols from the formal language and from the definitions of the
operators and states. This has several effects, all of which are intended to
make problem solving much faster in the abstract space than in the
original space. There are usually many fewer states: two states that differ
only in symbols removed from the language are indistinguishable in the
abstract space. This reduces the size of the problem space. Some
operators become identities, because all the predicates they add and
delete have been removed from the language: this can reduce the
branching factor in the space. The abstract space will sometimes also
have a higher density of goal states than the original space. Consider, for
example, an abstract space which contains only two states: assuming that
there is at least one goal state in the original space, then the abstract
space has a solution density of at least 50%.

3There are problem space mappings of other types (such as isomorphisms [Korf,
1980]), but the term "abstraction" is not normally applied to these.

4All three types of mappings can be treated accurately in a graph-oriented
framework. The reason to distinguish them is quite simply because they have very
different formal properties. For example, embeddings introduce redundancy which
causes the so-called "utility problem" (for macro-operators, see [Minton, 1985; Greiner
and Jurisica, 1992]; for dropping preconditions, see [Valtorta, 1984; Hansson et al.,
1992] where it is proven that this type of embedding cannot speedup A* search). By
contrast, restrictions and homomorphisms do not introduce redundancy: they have
difficulties of their own, but not a utility problem caused by redundancy.

Holte, Mkadmi, Zimmer, MacDonald 9 AI Journal (Revised)

The abstract solution will not usually be a valid solution in the
original space. When the symbols removed to create the abstraction are
taken into account, some of the operators in the abstract solution may
have unfulfilled preconditions and some of the predicates in the final
goal state may not be established. Nevertheless, there are several ways
that an abstract solution can be used to guide search for a solution in the
original space. For example, its length can be used as a heuristic estimate
of the distance to the goal [Pearl, 1984; Prieditis and Janakiraman,
1993]. Alternatively, its individual steps can be used as a sequence of
subgoals whose solutions link together to form the final solution
[Minsky, 1963; Sacerdoti, 1974; Chakrabarti et al., 1986; Yang and
Tenenberg, 1990; Knoblock, 1994]. In the latter case, the abstract
solution serves as a skeleton for the final solution. The process of
"fleshing this skeleton out", called refinement, involves inserting
operator sequences between the operators in the abstract solution.
Refinement is the technique for using abstract solutions that will be
discussed in this paper; elsewhere we have studied the "heuristic" use of
abstract solutions and the relation between the two techniques [Holte et
al., 1994, 1995].

The following description of the refinement process is based on the
account in [Knoblock et al., 1991b]. In this section, and in the remainder
of the paper, we shall generally denote the abstraction of an object x by

)x . Let φ be the mapping that maps an operator f in the original space

to the abstract operator
)
f . Thus

φ −1

)
f() is the set of operators that refine

)
f . Now consider refining the abstract solution

)
f1L

)
f n for the problem

start,goal . In outline, the refinement algorithm builds a final solution

by constructing sequences f i
∗ that are spliced in between f i−1 and f i .

Finally, if necessary, a sequence f n+1
∗ is added after f n .

In more detail, the procedure is as follows: First set i = 1, and
si = start . Find any sequence of operators f1

∗ mapping s1 to a state ′s1

that satisfies the preconditions of some

f1 ∈φ −1

)
f1(). If the preconditions

of f1 are satisfied by s1 itself then f1
∗ is the identity (empty sequence)

and ′s1 = s1 . Next, apply f1 to ′s1 to get s2 , increment i , and repeat this
process until the operator sequence f1

∗ f1 f 2
∗ f 2L f n

∗ f n has been
constructed. This sequence maps s1 (start) to some state sn+1 . The state
sn+1 is guaranteed to be equivalent to the goal state under the abstraction
mapping φ , but it may not be equal to the goal state. If it is not,

Holte, Mkadmi, Zimmer, MacDonald 10 AI Journal (Revised)

construct a sequence f n+1
∗ mapping sn+1 to the goal state. The final

solution mapping start to goal, then, is f1
∗ f1 f 2

∗ f 2L f n
∗ f n f n+1

∗ .

The two disk Towers of Hanoi

We shall illustrate the use of abstraction and refinement with the two
disk Towers of Hanoi problem (defined in Appendix A).

Operator Preconditions Deletes Adds

move_ small p1, p2() small_ on p1(),
p1 ≠ p2









small_ on p1(){ } small_ on p2(){ }

 move_ large p1, p2()

 small_ on p3(),
large_ on p1(),

p1 ≠ p2,

p1 ≠ p3 ,

p2 ≠ p3





























large_ on p1(){ } large_ on p2(){ }

Fig. 2. The two disk towers of Hanoi problem.

In this problem the pi are variables which stand for pegs, and specific
pegs have the names 1, 2, and 3.

Example 1
If this problem space is abstracted by deleting predicate small_ on ,

the operators are as follows:

Holte, Mkadmi, Zimmer, MacDonald 11 AI Journal (Revised)

Operator Preconditions Deletes Adds

move_ small p1, p2() p1 ≠ p2{ } { } { }

 move_ large p1, p2()

large_ on p1(),

p1 ≠ p2,

p1 ≠ p3 ,

p2 ≠ p3





















large_ on p1(){ } large_ on p2(){ }

Fig. 3. First abstraction of the two disk towers of Hanoi.

The abstract operator move_ small is the identity, and move_ large
moves the large disk onto any peg.

Suppose we wish to use this abstraction to solve the following
problem:

start state: small_ on 1(),large_ on 1(){ }
goal state: small_ on 3(),large_ on 3(){ }.

We first abstract the problem and then we solve it. The abstracted
problem is:

start state: large_ on 1(){ }
goal state: large_ on 3(){ }.

Suppose we find the shortest abstract solution. This is
move_ large 1,3(). This abstract solution is refined as follows to produce
our final solution. Since f1 = move_ large 1,3() is not directly applicable
to the start state, we need to find a sequence of operators that maps the
start state to a state in which f1 can be applied. We obtain:

f1
∗ = move_ small 1,2() ,

s1 = small_ on 2(),large_ on 1(){ }.

Now we apply f1, to get

s2 = small_ on 2(),large_ on 3(){ }.

There are no further operators in the abstract solution, but s2 is not the
goal state, so we need to find a sequence of operators that maps s2 to the
final goal state.

Holte, Mkadmi, Zimmer, MacDonald 12 AI Journal (Revised)

f 2
∗ = move_ small 2,3()

The complete solution, then, is f1
∗ f1 f 2

∗ , i.e.,

move_ small 1,2(), move_ large 1,3(), move_ small 2,3() .

Example 2
Equally, we could have abstracted the space in example 1 by deleting

the predicate large_ on. This leaves move_ small unchanged while
move_ large is abstracted to the identity operator:

Operator Preconditions Deletes Adds

move_ small p1, p2() small_ on p1(),
p1 ≠ p2









small_ on p1(){ } small_ on p2(){ }

 move_ large p1, p2()

small_ on p3(),

p1 ≠ p2,

p1 ≠ p3 ,

p2 ≠ p3





















 { } { }

Fig. 4. Second abstraction of the two disk towers of Hanoi.

The shortest abstract solution to our problem in this abstract space is:

move_ small 1,3()
The refinement of this solution proceeds as follows. The first operator

in the abstract solution is directly applicable to the start state, so f1
∗ is

the identity and ′s1 = s1 is the start state. Applying f1 to ′s1 produces the
state

s2 = small_ on 3(),large_ on 1(){ }.

The state s2 is equivalent to the goal state but not equal to it. We now
search for a sequence of operators, f 2

∗ , leading to the goal state from this
state. One such sequence is

f 2
∗ = move_ small 3,2(),move_ large 1,3(),move_ small 2,3().

The final solution, then, is

Holte, Mkadmi, Zimmer, MacDonald 13 AI Journal (Revised)

move_ small 1,3(),move_ small 3,2(),
move_ large 1,3(),move_ small 2,3()

The first thing to notice about this solution is that it is not optimal.
This is often the case with solutions constructed by refinement.
Abstracting a path in the original space always makes it shorter (or keeps
it the same length) but not all paths are shortened the same amount.
Consequently the abstraction of the shortest solution in the original space
may not be the shortest abstract solution.

A more important thing to notice about this solution is that the states
that are passed through in the course of executing f 2

∗ are not all
equivalent to the goal state. For example, after applying the first operator
of the sequence f 2

∗ we are at state small_ on peg2(),l arge_ on peg1(){ } .
This is not equivalent, under this abstraction mapping, to the goal. This
is not permitted in the particular definition of refinement we shall be
using in this paper, called monotonic refinement in [Bacchus and Yang,
1994]. In monotonic refinement the operators added in refining the
abstract solution must not change the abstract solution. According to this
strict definition, the operator sequence f ∗ is a refinement of

)
f ∗ if and

only if the abstraction of f ∗ is exactly the same sequence of operators as

)
f ∗ . In other words, the only operators that can be added during

refinement are ones that are identities at the abstract level. In our
example this means that in f1

∗ , f 2
∗ , etc., only move_ large can be used.

Restricted in this way, there is no refinement of the abstract solution: it
is said to be unrefinable.

There are several possible approaches to the problem of unrefinable
abstract solutions. Upon encountering an unrefinable step in an abstract
solution one could temporarily relax the definition of refinement (as in
"strategy first search" [Georgeff, 1981]). Or one could abandon the
abstract solution and return to the abstract space to search for another
abstract solution. Another alternative, which is shown in [Bacchus and
Yang, 1994] to be particularly effective, is to construct abstractions in
such a way that refinability is guaranteed (such abstractions are said to
have the downward refinement property). This is the approach we have
taken. The abstract space in Example 1 has the downward refinement
property.

The result of abstraction is another problem space, to which the
abstraction process may be applied recursively to create a tower of
successively more abstract problem spaces. This tower is called an
abstraction hierarchy. Although many systems truncate this tower, for
the purposes of analysis and exposition, its top is assumed to be the
trivial space consisting of one state and one operator (the identity).

Holte, Mkadmi, Zimmer, MacDonald 14 AI Journal (Revised)

3. A Graph Oriented View of Problem Solving

In this paper, a graph is a triple N, L, E , where N is a set of nodes,
L is a set of edge labels, and E is a set of edges. Nodes are unlabelled Ð
in fact, we show later in this paper that it is useful to ignore both edge
and node labels. An edge is a triple n1,n2 ,l , where l is a label, and n1

and n2 are nodes. The direction of the edge is given by the order of n1

and n2 : edge n1,n2 ,l leads from n1 (the source) to n2 (the destination).

If there is an edge n1,n2 ,l then n2 is called a successor of n1, and n1 a
predecessor of n2 . A node is never counted among its own successors or
predecessors even if there is an edge from the node to itself. An
invertible graph is a graph in which for every edge n1,n2 ,l there exists

an edge n2 ,n1, ′l . A graph is non-deterministic if there exist two edges
with the same label and source node and different destination nodes, i.e.,
n,n1,l and n,n2 ,l ; otherwise it is deterministic.

An edge-path in a graph is a sequence of edges, e1e2Lek such that,
for all i such that 1 ≤ i ≤ k − 1, the destination node of ei is the source
node of ei+1 . The source node of the edge-path e1e2Lek is the source
node of e1 and the destination node is the destination node of ek . A node-
path in graph G is a sequence of nodes n1n2Lnk such that there exists in

G an edge ni ,ni+1,li for all i , 1 ≤ i ≤ k − 1. Node-path n1n2Lnk has
length k , source node n1, and destination node nk . For every edge-path
there exists a unique node-path, and for every node-path there exists one
or more edge-paths. The term path, in this paper, means node-path, not
edge-path.

A problem space can be equated with a graph as follows. Each state in
the problem space corresponds to a node in the graph. The labels in the
graph are the names of the operators in the problem space. Each operator
corresponds to a set of edges, one edge for every state satisfying the
operator's precondition: there is an edge s1,s2 ,l if and only if the
operator with name l maps s1 to s2 . Because operators are functions,
state space graphs are always deterministic. Because a solution to a
problem start,goal is a sequence of operators it corresponds to an
edge-path with source node start and destination node goal . The
process of solving problem start,goal , then, is the process of finding
an edge-path from start to goal in the state space graph.

Holte, Mkadmi, Zimmer, MacDonald 15 AI Journal (Revised)

3.1 A Graph Oriented View of Abstraction

An abstraction is a mapping from one problem space to another.
Having established a correspondence between problem spaces and
graphs, it follows that an abstraction, from a graph oriented perspective,
is some sort of mapping from graphs to graphs. In particular, it is a
graph homomorphism, defined as follows.

A graph homomorphism, φ , from one graph, G1, to another, G2 , is a
pair of functions φn ,φe(), whereφn maps nodes in G1 to nodes in G2 , and
φe maps edges in G1 to edges in G2 , such that for every edge

e = n1,n2 ,l in G1, φe e() = φn n1(),φn n2(), ′l . That is, the image of e has
as source and destination the images of the source and destination of e
There is nothing assumed about the relationship between l and ′l .

The definition of homomorphism imposes a strong constraint on the
mappings of nodes and edges. For example, if G1 is connected, then φe

completely determines φn . Moreover, a homomorphism is specified up
to label choices just by defining the node mapping, φn: the mapping of

an edge n1,n2 ,l is forced to be an edge in G2 from φ n1() to φ n2() .
Indeed, this is how most of our abstraction creating algorithms proceed.
They partition the nodes into classes and map all the nodes in the same
class to the same abstract node. The partition therefore determines the
node mapping which, in turn, determines the edge mapping.

The constraint on mappings implies that if φn ,φe() is a
homomorphism from G1 to G2 , then φe can be extended in exactly one
way to a mapping on paths. The extension works by simple
juxtaposition; that is φe e1e2Len() = φe e1()φe e2()Lφe en(). The definition
of homomorphism ensures that this construction works. A consequence
of this construction is that the pattern of connectivity in G1 is, in some
sense, preserved, or mirrored, in G2 . The opposite is not true: there can
be paths in G2 that are not images of G1. For example, suppose there is
an edge e = n1,n2 ,l in G1 for which there is no inverse, i.e. no edge
from n2 to n1. If n1 and n2 are mapped to the same node, n , in G2 , then
e must be mapped to n,n,l , which is a path from φn n2() to φn n1().

The abstractions we create contain only paths which are images of
paths in the original graph. More precisely, the abstractions we construct
are all quotients of the original graph. The quotient of a graph G1 is
defined as follows. Every homomorphism, φ , from G1 to G2 determines

Holte, Mkadmi, Zimmer, MacDonald 16 AI Journal (Revised)

equivalence relations on both the edge set and node set of G1 as follows:
let x and ′x be two nodes (or two edges), then we say that x and ′x are
φ -equivalent if φ x() = φ ′x() . For any node (edge) y in G2 , the φ -

equivalence class of y , φ −1 y() , that is the set x1, x2 ,L{ } of all nodes

(edges) in G1 such that φ xi() = y , is called the pre-image of y . The pair
of equivalence relations determines a new graph whose nodes are the
pre-images of nodes of G2 , and whose edges are the pre-images of edges
of G2 . This new graph is said to be a quotient of G1. Our abstraction
algorithms work by constructing such quotients. The definition of
homomorphism is exactly what is needed to make the notion of quotient
well defined.

The notion of homomorphism exactly captures the intuitive essence of
"abstraction" as a mapping that ignores some features in the original
space (e.g. the fact that n1 and n2 are distinct can be ignored by mapping
them to the same abstract node) while preserving other features (e.g.
connectivity). In the remainder of the paper, when we speak of a graph
G2 which is a homomorphic image of another, G1, we are assuming that
G2 is a quotient of G1. There are a very large number of
homomorphisms of any given graph: every different way of partitioning
the nodes is a different homomorphism. Any of these can be used as an
abstraction. Not all will speed up search; indeed, identifying which
homomorphisms are "good" abstractions (in the sense of speeding up
search) is a central research issue, and is the subject of sections 5 and 6.

3.2 A Graph Oriented View of Refinement

Consider the refinement of the abstract solution
)
f1

)
f 2L

)
f n for the

problem start,goal . Following the standard definition, a solution is
taken to be an operator sequence: in graph oriented terms, a solution is

an edge-path. Each
)
f i is therefore an edge in the abstract graph;

φe

−1
)
f i()

is the set of edges that are mapped to
)
f i by the abstraction mapping φe .

Refinement proceeds from the start state, s1, and searches for a sequence
of edges, f1

∗ , leading from s1 to any state, ′s1 , that is the source node of

an edge, f1, in

φe

−1
)
f1(). If s1 is itself the source of an edge in

φe

−1
)
f1()

then f1
∗ is the empty sequence and ′s1 = s1 . The node s2 is the destination

node of f1. This process repeats until a sequence f1
∗ f1 f 2

∗ f 2L f n
∗ f n has

been constructed. This sequence of edges leads from s1 to some state

Holte, Mkadmi, Zimmer, MacDonald 17 AI Journal (Revised)

sn+1 that is guaranteed to be equivalent to the goal state under the
abstraction mapping. If sn+1 is not equal to the goal state, the final

refinement step is to find a sequence of edges f n+1
∗ leading from sn+1 to

the goal state. The final solution, an edge-path from start to goal, is

 f1
∗ f1 f 2

∗ f 2L f n
∗ f n f n+1

∗ .
Recall that in monotonic refinement the operators added in refining

the abstract solution must not change the abstract solution. To force
refinement to be monotonic, one simply restricts the search that
constructs f i

∗ to expand only those nodes that are equivalent to si , i.e. to

those states that are in φn
−1)si() , the pre-image of

)si .

4. New Refinement Methods

4.1 Minor Variations

Figure 5 shows a typical intermediate situation during refinement in
which the search constructing f i

∗ has reached a state, s , in class
)si . In

the figure (and in all subsequent figures), the abstract classes are shaded.
The bold arrows indicate the abstract solution.

)
f i

)
s i

)
s i+1

)
s i+ j

)
s i- k

n3

n2

s

n4

n5

n6

n1

......
fi

f º fi

Fig. 5. Different possibilities for the successors of a state.

The six successors of s illustrate the different possibilities for the
successors of a state.

Holte, Mkadmi, Zimmer, MacDonald 18 AI Journal (Revised)

n1: is not in a class in the abstract solution.

n2 : is in the same class as s .

n3 : is in a class preceding
)si in the abstract solution.

n4: is in the abstract class that immediately succeeds
)si in the

abstract solution and is the destination of an edge labelled f i .

n5 : is in the abstract class that immediately succeeds
)si in the

abstract solution and is the destination of an edge whose label
is not f i .

n6 : is in an abstract class that is after
)si in the abstract solution

but is not its immediate successor.

Ignoring nodes like n1 is the essence of refinement. This precludes
finding short paths from start to goal that involve even a single node that
is not in a class in the abstract solution. Consequently, only rarely will
refinement find the shortest solution to a problem. However, because
search is focused on a small subset of the state space, refinement will be
much more efficient than unconstrained search unless the solution it
finds is much longer than the optimal solution.

A list of open nodes is maintained in the search process. These are
nodes which have been reached, but whose successors have not yet been
computed. Search proceeds by removing one node from this list and
computing its successors. The order in which nodes are removed from
this list defines the search strategy. Our current implementation uses
breadth first search, which orders the open list in a first-in-first-out
manner.

A node like n2 is added to the open list to record the fact that it has
been reached but its successors have not yet been computed.

The refinement algorithm defined in the preceding section processes
the remaining nodes as follows. Nodes like n3 are ignored: search never
returns to an earlier class. This (together with the fact that n1 is ignored)
is what makes the search monotonic. In non-monotonic refinement,
nodes like n3 are processed like nodes of type n2 . A node like n4 signals

the completion of the construction of f i
* : it is called the terminator of

the search in
)si . It also serves as si+1, the starting node of the search to

construct f i+1
* . This search begins afresh, its open list is initialized with

Holte, Mkadmi, Zimmer, MacDonald 19 AI Journal (Revised)

n4. Nodes of type n5 are ignored. Although n5 is in the correct abstract

class (
)si+1), the edge leading to it from s is not in the pre-image of

)
f i

and therefore is not acceptable in a refinement of the abstract edge-path.
A node of type n6 is ignored: the refinement algorithm proceeds from
one abstract class to the next, never jumping ahead in the sequence.

Other ways of processing nodes n3- n6 are possible and give rise to
variations on the refinement algorithm described above.

In node-path refinement, a solution is defined to be a node-path, not
an edge-path. This means that the edge labels are no longer significant
and hence nodes like n5 are not distinguished from those like n4.
Consider figure 6 below, illustrating the edge-path refinement of the
abstract path

)
f1

)
f 2

)
f 3. Nodes s1, s2 , and s3 are terminators of the searches

in the abstract classes fn s(), fn s1() , and fn s2() respectively. The dashed
lines in the figure indicate edges at the frontier of the search: The search
does not actually traverse these edges, but it does look at them to
determine if their labels are in the pre-images of the corresponding
abstract edges.

s

f1

f2

f3s1

s2

s3

Fig. 6. Edge path refinement.

In the worst case, node-path refinement will behave identically to
edge-path refinement. This occurs if refinement always happens to find
nodes of type n4 before finding nodes of type n5 . This is illustrated in
figure 7.

s

f1 s1

f2

s2

f3 s3

Fig. 7. Node-path refinement is never worse than edge-path refinement.

Holte, Mkadmi, Zimmer, MacDonald 20 AI Journal (Revised)

Edge-path refinement and worst case node-path refinement require
essentially the same search: the only difference is that, in node-path
refinement, the edges at the frontier of the search are actually traversed
whereas, in edge-path refinement they are only examined to determine
their labels.

In some cases, node-path refinement can do substantially less search
than edge-path refinement and, at the same time, produce shorter
solutions. This will happen if, in node-path refinement, nodes of type n5

are encountered before nodes of type n4. A situation of this sort is
depicted in figure 8. Edge-path refinement would search the entire tree
shown to find edge f1. It would ignore the edge labelled f since this is

not in the pre-image of
)
f1. Node-path refinement, on the other hand, will

find nodes like ¢s1 irrespective of the labelling of the edges leading to
them.

s
f1 s1

¢ s 1
f º f1

Fig. 8. Node-path refinement can be better than edge-path refinement.

In opportunistic refinement nodes like n6 are treated like those of type
n4, thereby permitting parts of the abstract solution to be skipped.
"Opportunities" to skip ahead certainly do arise, although they are much
more common with some variations of refinement than with others. As
figure 5 suggests, opportunistic refinement can do less search and
produce shorter solutions than non-opportunistic refinement.

In the original refinement algorithm Ð monotonic, non-opportunistic,
edge-path refinement Ð a node s could have at most one successor that
was a terminator. However, in all the variations of refinement we have
defined, s might have several successors that are terminators. Various
policies for handling this situation are possible. With the first successor
policy, construction of f i

* terminates as soon as the first terminator is
generated, and that node is used as the starting node of the search to
construct f i+1

* . An alternative is the all successors policy, in which the

search to construct f i+1
* uses as starting nodes all the successors of s that

are terminators (in opportunistic refinement, only the terminators in the
farthest abstract class are used).

Holte, Mkadmi, Zimmer, MacDonald 21 AI Journal (Revised)

Monotonic node-path refinement with the first successor policy will
be referred to as classical refinement. It will be used in all our
experiments to represent the standard refinement techniques found in the
literature. It should be kept in mind that it is an improvement over all
previously reported refinement algorithms in that it does node-path
refinement, not edge-path refinement5.

The performance of three of these variations is summarized in Table
1. Compared to classical refinement (CR) the all successors policy
(CRall) reduces solution length by about 5% and increases work (edges
traversed) by about 5%. Opportunism (CRopp) gives little advantage,
although the fact that it differs from CR shows that some opportunities
are arising that CR is missing. In the search spaces used in this
experiment in can be shown that no opportunities can possibly arise
when the all successors policy is used, so the table does not include an
entry for this policy in combination with opportunism.

Table 1
Variations of Classical Refinement6.

Search Work Solution Length

Space CR CRall CRopp CR CRall CRopp

5-puzzle 139 151 139 30.2 29.5 30.0

Bitnet 305 305 305 7.5 7.1 7.5

Blocks-6 302 318 302 14.9 14.3 14.9

KL-2000 1642 1655 1644 8.9 8.3 8.8

Permute-7 242 267 242 11.5 11.3 11.5

TOH-7 502 525 484 93.5 86.2 90.0

Words 530 527 519 13.7 12.6 13.5

4.2 Optimal Refinement

Monotonic refinement is not guaranteed to find the shortest
refinement of a given abstract solution. For example, in figure 9 the
shortest refinement is the path start x1x2x3x4 goal . To find this
refinement it is necessary, in order to reach x1 , to continue searching in

)s1 after having reached a node, y , in

)s2 . It is also necessary, in order to

5ALPINE is described as doing node-path refinement in [Knoblock, 1991], but is
also included as an example of the general algorithm in [Knoblock et al., 1991b] which
uses edge-path refinement.

6Results are averages over 100 problems. Work is measured in "edges traversed".
Abstractions were created by the STAR algorithm using Max-Degree with radius 2 and
No-Singletons (see section 5.3).

Holte, Mkadmi, Zimmer, MacDonald 22 AI Journal (Revised)

construct the segment x2x3, to return to
)s1 from

)s2 . Monotonic
refinement does neither: it discontinues search in

)s1 as soon as it reaches
a node in

)s2 , and it will not return to
)s1. The path it would find is

 start yLx4 goal , which could be arbitrarily longer than the optimal path.

goal

start

x1

x2

x3 x4

y

)
s 1

)
s 2

)
s 3

Fig. 9. Monotonic refinement can produce arbitrarily long solution paths.

An experiment was run to determine how poorly monotonic
refinement performs in practice. In Table 2, the length of the solutions
produced by classical refinement (CR) are reported beside the optimal
solution length, computed by solving each problem using breadth first
search in the original space. This is the first time that the solution lengths
produced by classical refinement techniques have been compared to
optimal solutions: previously in the literature the solutions produced by
refinement have been compared with solutions produced by heuristic
search methods (often the solutions produced by refinement are shorter
than those produced by heuristic search). As can be seen, the solutions
produced by classical refinement are often very poor. On average, they
are 40% longer than optimal.

Holte, Mkadmi, Zimmer, MacDonald 23 AI Journal (Revised)

Table 2
New refinement methods7.

Search Work Solution Length

Space CR OptR AltO Optimal CR OptR AltO

5-puzzle 139 186 136 21.2 30.2 26.1 25.5

Bitnet 305 687 305 6.5 7.5 6.5 7.1

Blocks-6 302 593 293 10.2 14.9 13.3 11.8

KL-2000 1642 1999 1447 6.6 8.9 8.0 8.1

Permute-7 242 553 265 6.1 11.5 10.4 7.8

TOH-7 502 585 504 64.4 93.5 76.2 80.7

Words 530 848 524 9.1 13.7 11.9 11.2

The optimal refinement of a given abstract solution can be found by
using a standard shortest path algorithm (we use breadth first search) but
having it ignore nodes of type n1. In our experiment, optimal refinement
(OptR) produced solutions that are about 13% shorter than CR's. The
price paid for these shorter paths is increased work: optimal refinement
does 60% more work than classical refinement. Because no technique for
refining an abstract path can produce shorter solutions than optimal
refinement, the 27% difference between the length of the optimal
refinement and the optimal solution is a penalty incurred by all path
refinement algorithms. In order to produce shorter solutions, we have
developed an extension of path refinement which uses the abstract search
tree, not just the solution path.

4.3 Alternating Search Direction

If search at the abstract level begins at the abstract start state, it
creates a search tree rooted at the abstract start state; the abstract solution
is the unique path in this tree that ends at the abstract goal state. For the
classes in the abstract solution, the distance to the goal is known; this
information is not known for any other class in the abstract search tree. It
is precisely this information that is needed by any refinement algorithm.
In order to decide how to process a node its type must be known, and to
determine its type one must know the distance from its abstract class to
the abstract goal. Because this information is known only for the classes
in the abstract solution, refinement must confine its search to these

7Results are averages over 100 problems. Work is measured in "edges traversed".
Abstractions were created by the STAR algorithm using max-degree with radius 2 and
no-singletons (see section 5.3).

Holte, Mkadmi, Zimmer, MacDonald 24 AI Journal (Revised)

classes. Nodes in the other classes in the abstract search tree are
considered to be of type n1 and are ignored.

However, if search at the abstract level is conducted in the opposite
direction, the search tree it creates will be rooted at the abstract goal state
and the information needed by the refinement algorithms will be
available for all the classes in abstract search tree. In figure 10 the solid
edges show the abstract search tree rooted at the goal node, the bold
edges indicate the solution, and the numbers in the classes indicate the
distance to the goal.

0

1

2 2 2 2

3 3 3 3

4 4 4

1

goal

s

n3

n2

n4
n5

n6

start

Fig. 10. The 6 nodes types in alternating search direction.

Refinement proceeds as usual, forward from the start state. The
definitions of the six types of successor nodes are generalized to include
nodes in every class in the abstract search tree. A node is type n1 only if
its abstract class is not in the search tree. A node is type n2 if the
distance from its class to the goal is the same as the current node (s in
figure 10). A node is type n3 if the distance from its class to the goal is
greater than that of the current node. Types n4, n5 , and n6 are defined
similarly. Using these definitions there are at least as many nodes of each
of types n2- n6 as with the original definitions. For each type, figure 10
shows a typical node that is covered by the new definitions but not by
the original definition.

Holte, Mkadmi, Zimmer, MacDonald 25 AI Journal (Revised)

The number of additional nodes of each type covered by the
generalized definitions will, of course, depend on the particular graph
and abstraction. It can happen that there are no additional nodes of any
type: in this case alternating search direction reduces to ordinary
refinement. Additional nodes of type n3 have no effect on monotonic
refinement, since they are treated the same as n1 nodes. Additional nodes
of type n2 broaden search. This increases the search effort, but these
additional nodes also influence subsequent search and the net result
might be that shorter solutions are found and/or that less search is done
in total. Additional nodes of types n4, n5 , and n6 will usually reduce the
solution length and the amount of search required for monotonic
refinement.

The net effect of alternating search direction on solution length and
search effort is therefore not certain a priori. It can potentially produce
shorter paths than optimal refinement and do less work than classical
refinement. But improvement of either kind is not guaranteed. Because it
is monotonic, alternating search direction, like classical refinement, is
not guaranteed to find the optimal refinement. Consequently, the
solutions it finds might be longer than those found by optimal
refinement. Its broader search, although capable of producing shorter
solutions more quickly than classical refinement is equally capable of
leading search astray, increasing both the amount of search and the
solution length.

Table 2 includes the results of opportunistic alternating search
direction (AltO). OptR's solutions are shorter than AltO's in three of the
spaces, and AltO's are shorter in the other four. On average, OptR's
solutions are about 5% longer than AltO's. AltO is clearly the best of
these refinement algorithms. It produces the shortest solutions (only 20%
longer than the optimal solutions, on average) and does the least work
(the same as is done by classical refinement). An additional advantage of
AltO, which is evident in the experimental results in section 6, is that it
is less sensitive than the other refinement algorithms to the abstraction
hierarchy to which it is applied. This is because the performance of the
other algorithms depends on exactly which abstract solution is found:
This can change radically with even small changes in the abstraction
hierarchy or search method, whereas AltO's performance depends on the
abstract search tree, which is relatively insensitive to small changes in
the abstraction hierarchy and search technique.

The alternating search direction technique has been described so far in
terms of just two levels in the abstraction hierarchy: the original level
and the abstract level immediately above it. In an abstraction hierarchy
with several levels, search direction should alternate from one level to
the next. Note that alternating search direction between levels is entirely
different from bi-directional search (e.g. [Pohl, 1971; Dillenburg and

Holte, Mkadmi, Zimmer, MacDonald 26 AI Journal (Revised)

Nelson, 1994]). In bi-directional search the search direction within a
single level changes from time to time, but in alternating search direction
between levels, the search direction in any particular level is fixed.

 4.4 Summary

Figure 5 succinctly summarizes the set of decisions one faces in
designing a refinement algorithm: how shall each type of node be
processed? These choices have not been previously discussed and at
least one of the new variations, node-path refinement, is guaranteed to
outperform the variation (edge-path refinement) used in existing
systems.

Optimal refinement is useful for two purposes. The first is scientific:
it provides a lower bound on the solution lengths that can be produced by
any path refinement technique. When compared to an existing technique,
such as classical refinement, this indicates how close the technique is to
producing the best possible solutions. When compared to the optimal
solution length, it summarizes the potential of the entire family of path-
refinement techniques.

Optimal refinement is also a practical refinement technique, offering a
balance between speed and solution length that is different from classical
refinement. Classical refinement is faster, but produces longer solutions
than optimal refinement. Intermediate positions are certainly possible:
the all successors policy being just one example.

By alternating search direction between levels of abstraction, search is
broadened to encompass all classes in the abstract search tree, not just
those on the solution path. While this broadening introduces the risk of
increasing search effort it also introduces opportunities for finding
shorter solutions than optimal refinement and the concomitant reduction
in search effort. Experimentally, the benefits have been found to
outweigh the costs. Alternating search direction, in conjunction with
opportunism, produces solutions slightly shorter than optimal refinement
while doing about the same amount of search as classical refinement.

The graph oriented approach has been invaluable in developing these
techniques. However, all of the new refinement techniques work equally
well on explicitly or implicitly represented graphs. For example, node-
path refinement simply requires that the solutions be represented as a list
of nodes instead of as a list of operators and bindings. Alternating search
direction requires the search tree to be recorded. If the entire tree is too
large to fit in memory, the algorithm will work with whatever fragment
of the tree is recorded. Optimal refinement can be based on any shortest
path algorithm, including any of the memory efficient versions of A*

(e.g. IDA* [Korf, 1985b]).

Holte, Mkadmi, Zimmer, MacDonald 27 AI Journal (Revised)

5. New Abstraction Techniques

5.1 Algebraic Abstraction

When describing a problem space, one normally chooses operator
names that are meaningful and which specify enough detail to
completely define the effect of each operation on any particular state. For
example, in defining the Towers of Hanoi puzzle one might name one of
the operations as "move the top disk on peg1 onto peg2". Although this
name does not explicitly state which disk to move, it does uniquely
determine the disk to move in any given state, and, in fact, it completely
specifies the effect of this operation.

As defined in section 3.1, an abstraction (graph homomorphism) is
not required to preserve either the determinism or the operator names
(edge labels) of the initial graph. A graph homomorphism is free to label
the abstract edges in any manner whatsoever. However, it does seem
desirable to preserve determinism and edge labels, and there is no
immediately obvious reason why these useful properties should not be
preserved. Formally, a graph homomorphism, f , of a deterministic
graph G preserves edge labels and determinism if:

¥ fe maps edge s1,s2 ,l to fn s1(),fn s2(),l , and

¥ f G() is deterministic.

Such a homomorphism is called an algebraic abstraction. Innocuous
as the above two properties may seem, they interact with each other, and
with the definition of homomorphism, so as to have far reaching
implications. To see this, consider the situation depicted in figure 11.

f

f

s1

s2

¢ s 1

¢ s 2

)
s

Fig. 11. Consequences of asserting that two nodes are in the same abstract class.

The states s1 and s2 are two states in the original, deterministic graph,
and operator f is applicable to both, mapping s1 to ¢s1 and s2 to ¢s2 .

The shaded ellipse enclosing s1 and s2 indicates that, under fn , these
two states are in the pre-image of the same abstract state

)s . If fe

Holte, Mkadmi, Zimmer, MacDonald 28 AI Journal (Revised)

preserves edge labels then the two edges labelled f in the original space
will also be labelled f in the abstract space. If, in addition, f preserves
determinism, there can only be one edge labelled f emanating from

)s ,
and therefore s1 and s2 must be mapped by fn to the same abstract class.
Formally, if f is an algebraic abstraction, then from s1 º s2 it necessarily
follows that f s1() º f s2() for every operator f that is applicable to both
s1 and s2 . Because of this, a single assertion, s1 º s2 , may have
immediate consequences which, in turn may have further consequences,
and so on.

The set of consequences of a single assertion, s1 º s2 , can be small
(even empty) or extremely large. This depends largely on the set of
operators used to represent the space. For example, imagine a space
having a prime number, p , of states arranged in a circle, with each state
connected to its immediate neighbour on either side. The space could be
represented with the p operators "Go To D" (where D identifies the
destination state), or it could be represented with just two operators,
"clockwise" and "anticlockwise". With the first representation, the
assertion s1 º s2 has no nontrivial consequences, but with the second
representation, any assertion s1 º s2 has as consequences all possible
assertions: s º t, for all states s and t{ }8.

The situation in which all possible assertions are forced is called total
collapse because it means that in the abstract space there is only one
state. In practical terms, total or "near" total collapse produces an
abstract space that is useless, i.e. unable to speed up search.

Our initial abstraction algorithms created algebraic abstractions, using
a variety of heuristics to choose the assertions s1 º s2 on which to base
the abstraction. In working with these algorithms, we observed that they
were all extremely "representation dependent", in the sense that the
quality of the abstractions they created depended critically upon the
exact details of the representation they were given for a state space.

The practical significance of being highly representation dependent
hinges on the prevalence of "natural" representations that cause near total
collapse. If only highly contrived representations have this effect,
representation dependency is an irrelevant concern. On the other hand, if
a large fraction of "natural" representations cause near total collapse,
then we will be forced to abandon algebraic abstraction in favour of
some other, less representation dependent method of abstraction. To

8In a cyclic space the number of consequences of s1 º s2 depends on the greatest
common divisor (gcd) of the number of states (P) and the distance between s1 and s2 ;
all possible assertions are consequences when the gcd is 1. The gcd is 1 in this example
because P is prime.

Holte, Mkadmi, Zimmer, MacDonald 29 AI Journal (Revised)

determine if "natural" representations could cause near total collapse we
ran the following experiment.

Experiment Design
A system was implemented that computes the minimum set of

consequences of a single assertion s1 º s2 . Being the minimum set, the
results produced by this system give a lower bound on the representation
dependency of any algebraic abstraction technique. Determining the
minimum set of consequences of a set of assertions is a straightforward
transitive closure operation. One forms an initial set of consequences: the
assertions themselves. Then an assertion is removed from this set and its
immediate consequences are determined and added to the set. This is
repeated until the set of consequences is empty.

Four different "natural" representations were devised for two different
puzzles, the 5-disk Towers of Hanoi puzzle and the 5-puzzle. The system
was applied to each representation for many different choices of the
assertion s1 º s2 (every state in the space was guaranteed to appear in at
least one of the assertions).

Each trial consisted of one run of the system with one representation
and one assertion of the form s1 º s2 . On each trial we measured how
many states were involved in the consequences of s1 º s2 (such a state is
said to be affected by s1 º s2), and how many abstract states were
created. Total collapse corresponds to all the states being affected and
one abstract state being created; "near" total collapse corresponds to
"most" states being involved and "few" abstract classes being created.

The different representations for each of the puzzles are described
below. We emphasize that the graphs defined by the different
representations for a puzzle are identical except for labels on the edges,
which are based on the operators' names and the values to which its
parameters are instantiated.

Representations of the 5-disk Towers of Hanoi

TOH-1: move x,d() moves disk x in direction d . For example,
move 1,clockwise() moves the smallest disk clockwise.

TOH-2: move p,d() moves the top disk on peg p in direction d .
For example, move 1,clockwise() moves the top disk on peg 1
onto peg 2.

TOH-3: move x, y() moves a disk between the two pegs x and y , in
whichever direction is permissible.

Holte, Mkadmi, Zimmer, MacDonald 30 AI Journal (Revised)

TOH-4: There are three operators: (a) move the smallest disk
clockwise; (b) move the smallest disk anticlockwise; and (c)
move a disk other than the smallest (there is at most one such
move permissible in any state).

Representations of the 5-puzzle

5PUZ-1: There is a single operator, move d(). This moves the blank
in direction d . The possible directions are left , right , up ,
and down .

5PUZ-2: This is the same as 5PUZ-1 except that the possible
directions are clockwise, anticlockwise , and vertical
(vertical moves the blank down if it is in the upper row and
moves it up if it is in the lower row).

5PUZ-3: There are three operators: small , medium , large . The
operator small exchanges the blank with its smallest
neighbour, i.e. the tile with the smallest value of all the tiles
adjacent to the blank. The operator large exchanges the
blank with its largest neighbour. If there are three tiles
adjacent to the blank, medium exchanges the blank with the
one that is neither smallest nor largest.

5PUZ-4: go_ to row,col() moves the blank to the position specified.
e.g. go_ to 1,1() , if permitted, would move the blank into the
top left position.

Observations
As can be seen from table 3, TOH-1 and TOH-2 produce very similar

results. On only about 10% of the trials are more than 10% of the states
affected, and in virtually all trials there are just two states per abstract
state. Thus, these representations are ideal for algebraic abstraction.

The results for TOH-3 and TOH-4 are similar to one another, and
quite the opposite of the results for TOH-1 and TOH-2. In all but two
trials, all states were affected, and, although total collapse never
occurred, in many trials very few abstract states were created.
Consequently, algebraic abstraction would fare poorly if given one of
these representations for the Towers of Hanoi puzzle.

On one sixth of the trials with 5PUZ-1 every state was affected, but
many abstract states were created with very few states in each. On the
other five sixths of the trials very few states were affected and there were

Holte, Mkadmi, Zimmer, MacDonald 31 AI Journal (Revised)

always two per abstract state. Algebraic abstraction would work well
with this representation.

By contrast, algebraic abstraction would frequently fail if given the
5PUZ-2 representation of the 5-puzzle. With 5PUZ-2 all states are
affected on every trial. Total collapse occurs on one third of the trials,
and on another third of the trials all the states are mapped to two abstract
classes.

Table 3
Effect of different representations9.

Representation Number of abstract
states created

Number of states
affected

Number of states per
abstract state

TOH-1 8.04 17.08 2.04

TOH-2 5.78 11.58 2.00

TOH-3 7.43 242.33 80.0

TOH-4 13.56 242.33 39.47

5PUZ-1 22.32 65.8 2.26

5PUZ-2 33.79 360.0 182.18

5PUZ-3 3.0 360.0 267.76

5PUZ-4 41.82 179.5 10.1

The 5 disk Towers of Hanoi graph has 243 states.
The version of the 5-puzzle graph used in this experiment has 360 states.

5PUZ-3 is even worse: algebraic abstraction would always fail on this
representation. All states are affected on every trial. There are three trials
in which each state is paired with one other state, but on all the others the
result is total collapse or near total collapse (2 abstract states).

5PUZ-4 gives mixed results. In half the trials, s1 º s2 has no
consequences whatsoever. In the rest, all states are affected but the
number of abstract states created varies from 5, which is almost total
collapse, to 180, which means each state is paired up with only one other
state.

Discussion
Two important points are established by this small experiment. The

first is that "natural" representations can render algebraic abstraction

9The rightmost column is not the ratio of the two to its left. This column is
computed by taking the ratio of states to abstract states on each trial and averaging
these over all the trials. This is the "average ratio", i.e. the average number of states per
abstract state on each trial. Taking the ratio of column 2 to column 1 gives a different
statistic, the ratio-of-averages, which can be quite different from the average ratio.

Holte, Mkadmi, Zimmer, MacDonald 32 AI Journal (Revised)

entirely useless. The clearest case of this is TOH-4, a representation
drawn from the literature [Hayes, 1977]. The second point is that
algebraic abstraction is very sensitive to the exact details of the
representation, in the sense that it can perform radically differently on
two representations that are, conceptually, very similar. This is
exemplified by 5PUZ-1 and 5PUZ-2.

We conclude that, however desirable it might be to preserve
determinism and edge labels, such a requirement renders an abstraction
system too representation dependent to be useful. The abstraction
techniques considered in the following sections will, in fact, ignore
labels altogether. Consequently, they are perfectly free to consider any
graph homomorphism whatsoever: all restrictions are removed. This
freedom permits us to explore the question, what sort of homomorphisms
are guaranteed to produce speedup in any graph, without any a priori
constraints on the nature of the homomorphism.

Algebraic abstraction is not the only form of abstraction that suffers
from representation dependency. Although it is a central concern for all
abstraction systems, this issue is rarely mentioned in the abstraction
literature. [Knoblock, 1994]'s "Limitations and future work" section (pp.
294-296) is the first clear statement of the issue. The main example there
involves three different representations of the Towers of Hanoi puzzle.
Two of these give rise to good abstraction hierarchies (having as many
levels as there are disks), but using the third representation, the
abstraction system, ALPINE, is unable to create a non-trivial abstraction.
As a second example, ALPINE is also unable to generate a non trivial
abstraction for the standard representation of the Blocks World (e.g. the
one in [Nilsson, 1980]).

5.2 Derivation of a New Abstraction Algorithm

In order to determine what sort of homomorphism will speed up
search, it is useful to undertake an analysis of the total "work" done in
constructing a solution by refining, through successive levels of
abstraction, an initial solution at the highest level of abstraction (which,
being a space with only one node, always has the trivial solution). We
shall number the levels of abstraction from 0 to a , with 0 being the
highest level of abstraction and level a being the original space.

Given a solution (node-path) of length l i at level i , refinement
replaces each individual node in this solution by a sequence of nodes in
level i + 1. If the "work" required to do one such replacement is w , then
the total work required to refine the solution from level i to level i + 1 is
wl i . We define c , the expansion factor, to be l i+1 l i . Thus

l i+1 = cl i = c i+1.

Holte, Mkadmi, Zimmer, MacDonald 33 AI Journal (Revised)

The exact values of w and c depend on the problem being solved,
the level of abstraction, and the abstract state that is being refined. In the
following w and c stand for the worst cases of these values over all
problems, levels, and states. Assuming that refinement at each level need
only be done once (i.e. that there is no backtracking across levels) the
total work done to refine an initial trivial solution (whose length is 1) to
a solution in the original space can be bounded above:

Total Work £ w c i

i=0

a -1

å .

It is useful to replace the variables c and a in this formula with
variables that can be directly measured or controlled at the time the
abstraction hierarchy is being created. There is no exact replacement for
c , but it is bounded above by d , the maximum diameter of any abstract
state. The diameter of an abstract state is the maximum distance (length
of the shortest path) between any two states in that abstract state. This
substitution produces:

Total Work £ w d i

i=0

a -1

å .

The sum can be replaced by the closed form formula da - 1() d - 1()
which, because d ³ 2 , can be replaced by a simple upper bound da .
Variable a can be replaced by logc n, which is equal to ln n() lnc() ,
where ln is natural logarithm, n is the number of states in the original
space and c is the number of states mapped to the same abstract state.
We assume c ³ 2 and that c is the same for all abstract states and all
levels. These substitutions produce:

Total Work £ w d ln n() ln c().

Since x ln y is a symmetric function, the value of the right hand side
does not change if d and n are exchanged, producing the final form of
the total work formula:

Total Work £ wn ln d() ln c() .

Ignoring the w term for a moment, total work is minimized by
minimizing d and maximizing c . Unfortunately these two variables are

Holte, Mkadmi, Zimmer, MacDonald 34 AI Journal (Revised)

not independent and reducing one tends to reduce the other, the opposite
of the effect needed to minimize total work. Nevertheless, a heuristic for
building good abstractions that follows from this analysis is to fix d at a
small value and, for this fixed value of d , try to maximize c .

An important feature of this formula is the fact that, if d < c , then the
term involving n will be sublinear (n raised to a power less than 1). This
is important because for a wide range of common circumstances and
definitions of "work" the total work required to solve a problem using a
blind search technique, such as breadth first search, without abstraction
is at least linear in n . Therefore, if an abstraction can be created such
that d < c and w is independent of n , problem solving with the
abstraction will be guaranteed, in such circumstances, to be faster than
blind search without abstraction.

Guaranteeing that d £ c is easy: any partitioning of a graph into
connected components has this property. This sort of partition has the
additional advantage that it is guaranteed to be monotonically refinable.
This is because two nodes that are mapped to the same abstract node are
in the same class of the partition and, by definition of "connected
component", there must exist a path wholly within that class of the
partition that connects the two nodes.

The diameter, d , will be equal to c in a connected component if and
only if the component is a single state or a linear chain of states. The
partitioning algorithm described in the next section has a provision for
avoiding single states but not linear chains, so it is not guaranteed to
produce abstractions in which d < c . But in many of the components it
produces d < c , and in the others d = c ; so searching using the
abstraction hierarchy is at worst linear in n .

Finally, consider the term, w , representing the work required to refine
a single node in an abstract solution. The analysis so far holds for any
definition of "work" and any refinement algorithm. If monotonic
refinability is guaranteed, as it is with the sort of partitions we are now
considering, there are at least two ways to make w independent of n .
The first is to build, at the time the abstraction hierarchy is being
constructed, a routing table storing the shortest paths between every pair
of nodes in the same class of the partition. With such a table, refinement
is simply table lookup, and w is the work involved in table lookup
which is, at worst, logarithmic in the size of the table. If c is a constant
(i.e. independent of n), then the extra space required for these tables (c2)
is also constant per node in the abstraction hierarchy. Consequently the
total space required to store the abstraction hierarchy is the same order
with or without the lookup tables.

A second way to make w independent of n , which is the one
implemented in our system, also requires c to be a constant (or at least

Holte, Mkadmi, Zimmer, MacDonald 35 AI Journal (Revised)

very much smaller than n). The nodes in the same class of the partition,
and the edges associated with them, are stored as a graph. Refinement of
a single abstract node involves blindly searching in just one of these
graphs. If monotonic refinability is guaranteed and one is careful to
separate the edges that lead to nodes outside this graph ("exit edges")
from edges that lead to nodes within the graph ("internal edges") then w
will be proportional to the number of internal edges10 and therefore
bounded above by c2 .

Intuitively, speedup is obtained by decomposing a large search
problem into a set of smaller sub problems that can be solved
independently. The analysis has provided specific definitions of
"smaller" (d < c and c is independent of n) and "independently" (no
backtracking across levels of abstraction and w is independent of n)
that guarantee "speedup" (total work is sublinear in n).

This analysis differs from the one in [Knoblock, 1990] in several
respects. Knoblock's k parameter is identical our c , and in both
analyses this parameter plays the key role of determining the length of
the solution at each abstract level. However, in Knoblock's analysis this
length is expressed as a fraction of the optimal solution length. This
forces Knoblock to make the unnecessary, and untenable, assumption
that refinement constructs the optimal solution. Our analysis makes no
assumption about the length of the solution constructed by refinement. A
second difference is that we defer making assumptions about how work
is measured until after the formal derivation has been finished, whereas a
specific work formula pervades Knoblock's analysis.

Perhaps the most important difference is the purpose served by the
two analyses. Knoblock's aim is theoretical: to derive a fairly exact
"work" formula in order to prove that, under certain conditions,
refinement is exponentially faster than blind search. The primary
purpose of our analysis is practical. It is intended to guide the design of
our abstraction algorithm by relating controllable properties of an
abstraction to the total work involved in using the abstraction. To be
useful, there must exist a broad class of graphs satisfying the main
assumptions of our analysis. The "no backtracking across levels"
assumption is satisfied by creating abstract classes that are connected
components. The other key assumption is that c (and therefore w) is
independent of n . To satisfy this, it must be possible to partition the
graph into connected components whose size does not depend on n . This
property holds for a very large set of commonly occurring graphs,
including all sparse undirected graphs.

10In fact, the current implementation does not make this distinction and is therefore
considerably less efficient than it might be. This improvement will be made in a future
implementation.

Holte, Mkadmi, Zimmer, MacDonald 36 AI Journal (Revised)

5.3 The STAR Abstraction Algorithm

The preceding analysis provides three specific recommendations
about how to partition the nodes in a graph so that the resulting
abstraction hierarchies will speed up search:

¥ The classes should be connected.

¥ The classes should have small diameter (d).

¥ The number of nodes in a class c should be larger than d but
much smaller than n .

A simple algorithm based upon these principles is the S T A R
algorithm, whose pseudo code is given in the box below. The algorithm
builds classes one at a time by picking a node to act as the "hub" of the
class and then gathering together all nodes that can reached from the hub
by a short path that does not pass through any other class. The maximum
distance from the hub, called the radius of abstraction, is specified by the
user. In graphs whose edges all have inverses, such as the ones in this
study, this method of construction guarantees the classes will be
connected and have small diameters.

A hierarchy of abstractions is built up by running the STAR algorithm
on the abstracted space to produce a further abstracted space. This space
is in turn abstracted and so-on, until the abstracted space contains only
one node.

Holte, Mkadmi, Zimmer, MacDonald 37 AI Journal (Revised)

Given: G , a graph,
r ³ 2 , an integer (the radius of abstraction),
noSingletonsAllowed , a boolean indicating if it is

unacceptable to have classes that contain only one
node.

Produce: P , a partition (i.e. a set of classes) of the nodes of G .

The STAR Algorithm

0. Initially, P = { }, and nodes is the set of all nodes in G .

1. Repeat until nodes is empty:
(a) Select a node, hub , in nodes ,
(b) NewClass ¬ the set of nodes n such that n Înodes and

n = hub or is connected to hub by a path of length r or
less wholly within nodes ,

(c) nodes ¬ nodes - newClass ,
(d) Add newClass to P .

2. If noSingletonsAllowed then:
Repeat until P contains no classes containing just one node:

(a) Select a class, singleton , in P that contains just one node
n1,

(b) Remove singleton from P ,
(c) Choose a neighbour n2 of n1, and add n1 to the class in P

containing n2 .

With this algorithm, there is no guarantee concerning the number of
nodes in each class. It is not unusual to create singleton classes
(containing just one node). At the opposite extreme, on rare occasions a
very large class is created, containing almost all the nodes in the graph.

In the present implementation the only direct control over class size is
a post processing step (step 2) to eliminate singleton classes. As can be
seen in table 4, the difference in performance between allowing and
eliminating singletons is not large except in the Bitnet, Blocks-6, and
Words graphs, where eliminating singletons greatly reduces the work
required for problem solving.

Indirect control over class size is possible by the choice of radius and
by altering the criterion used to select the hub node in step 1(a). We have

Holte, Mkadmi, Zimmer, MacDonald 38 AI Journal (Revised)

explored two criteria for selecting hubs. The first is to choose the node
having the most neighbours in the set nodes (i.e. not already assigned to
a class). This is a greedy way of optimizing ln d() lnc() which,
providing the w term does not grow too large, will minimize the total
work for problem solving. Abstraction using this criterion is called max-
degree abstraction. One potential drawback of max-degree abstraction is
that it can create classes of very different sizes, with one class containing
a large percentage of the nodes. The second criterion is to select hubs at
random. Abstraction with this criterion is faster than max-degree
abstraction and less subject to the drawback just mentioned.

Table 4
Effect of allowing singleton classes11

Search Refinement Work Solution Length

Space Technique No Singletons Singletons No Singletons Singletons

5-puzzle CRall 179 151 29.5 27.9
AltO 136 160 25.5 24.4

Bitnet CRall 305 804 7.1 7.1
AltO 305 805 7.1 7.1

Blocks-6 CRall 318 445 14.3 14.0
AltO 293 443 11.8 11.9

KL-2000 CRall 1655 1549 8.3 8.4
AltO 1447 1305 8.1 7.4

Permute-7 CRall 267 305 11.3 10.8
AltO 265 282 7.8 8.1

TOH-7 CRall 525 569 86.2 90.1
AltO 504 517 80.7 79.3

Words CRall 527 915 12.6 12.3
AltO 524 916 11.2 10.7

Results are averages over 100 problems
Work is measured in "edges traversed"
CRall is classical refinement with the "all successors" policy
AltO is alternating search direction + opportunism.

The STAR algorithm exploits the fact that the graph is explicitly
represented to achieve two important advantages over existing
abstraction algorithms, which are all based on based on implicit graph

11Abstractions were created by the STAR algorithm using max-degree with radius 2
and no-singletons.

Holte, Mkadmi, Zimmer, MacDonald 39 AI Journal (Revised)

representations. First, our algorithm constructs abstract classes that are
strongly connected. This has several important consequences:

¥ All abstract solutions are monotonically refinable.

¥ Each step in an abstract solution is guaranteed to be refinable
without backtracking across levels of abstraction and without
backtracking to redo the refinements of earlier steps in the
solution.

¥ In sparse undirected graphs the total work involved in
refinement is virtually guaranteed to be sublinear (d < c
except in pathological cases) in the number of nodes in the
original graph and therefore less than the work done by blind
search.

Previous abstraction algorithms are not guaranteed to produce
abstractions with these properties. For example, [Knoblock, 1994]
illustrates the need for ALPINE to backtrack across levels of abstraction
with the "extended STRIPS domain". The graph underlying this domain
is, in fact, sparse and undirected so repeated applications of the STAR
algorithm would, without backtracking, create an abstraction hierarchy
in which all abstract solutions are monotonically refinable.

The second advantage of using an explicit representation is that it
gives the user great flexibility in the construction of abstractions. The
STAR algorithm gives the user direct control over the granularity
(radius) of the abstraction and the selection of hubs. Our implementation
also allows the user to specify the criteria used to decide which nodes to
include in each abstract class. The STAR algorithm corresponds to the
criterion we have found most successful to date, but several others have
been examined (e.g. pair each node with one of its neighbours, create
classes that are tree shaped or linear rather than star shaped) and many
others are possible.

Existing abstraction techniques give the user no direct control over
the granularity or any other aspect of the abstractions created. For
example, [Knoblock, 1994] presents ALPINE in a series of successively
more sophisticated versions. Each new version is motivated by observing
that the previous version creates abstraction hierarchies that are too
coarse grained (p. 258, p. 267, p. 270). Although the final version
produces good empirical results, improving and controlling the
granularity of its abstraction hierarchies is presented as the main
direction for future research (pp. 294-296).

Holte, Mkadmi, Zimmer, MacDonald 40 AI Journal (Revised)

6. Experimental Evaluation

Section 4 introduced three main refinement techniques. Classical
refinement (CR) is representative of refinement techniques reported
previously in the literature. Optimal refinement (OptR) provides a lower
bound on the length of solutions that will be produced by refinement
techniques that restrict search to a single abstract solution. Alternating
opportunistic refinement (AltO) relaxes that restriction: its search can
include classes in the abstract search tree that are not in the abstract
solution.

The experimental comparison of these techniques in section 4 was
based on abstractions built by the STAR algorithm with an abstraction
radius of 2 and using the max-degree criterion for selecting hubs. In this
section we compare these techniques on abstractions built using a range
of abstraction radii (2-7) and both criteria for selecting hubs (max-degree
and random). Singleton classes are not permitted in any of the
abstractions in this experiment.

An experiment of this kind simultaneously provides an evaluation of
the refinement techniques and the abstraction parameters. On one hand it
provides a comparison of the techniques and information about how each
technique's performance is affected by the abstraction parameters. On the
other hand, it provides a comparison of the different abstraction
parameters. For example, it addresses the question of how much
performance is affected by substituting the random-hub criterion for the
more expensive max-degree criterion.

As before, the two performance measures of interest are the length of
the solution found, and the amount of "work" required to find a solution.
As a baseline for comparison, we include the performance of breadth
first search in the original graph. "Work" is the sum of the number of
edges traversed and the number of "overhead" operations required to the
use the abstraction hierarchy during problem solving (for example, the
work involved in transmitting a solution from one level of abstraction to
the next). Roughly speaking, "overhead" accounts for about 30% of the
work reported.

The cost of creating the abstraction hierarchy is not included in the
"work" measure for two reasons. First, the cost of creating the
abstraction is the same for all the refinement techniques and therefore
does not affect the evaluation of the techniques. More importantly,
because the abstractions are problem independent, the cost of creating
them can be amortized over the whole set of problems that are solved.
For a sufficiently large number of problems, the cost of creating an
abstraction becomes negligible relative to the total problem solving cost.

Test problems were generated by choosing 500 pairs of nodes at
random. Each pair of nodes, s1,s2{ }, was used to define two problems of

Holte, Mkadmi, Zimmer, MacDonald 41 AI Journal (Revised)

the form start,goal , namely s1,s2 and s2 ,s1 . The same 1000
problems were used for every different combination of search technique
and abstraction parameter settings. All the results shown are averages
over these 1000 problems.

Tables 5 and 6 show the solution length and work results using max-
degree abstraction. These show that the conclusions in Section 4's
comparison of refinement techniques hold for all small radii. AltO and
CR do about the same of work, and OptR does more, sometimes much
more. CR's solutions are the longest, about 10% longer than OptR's
which, in turn, are the same length as AltO's on average (but about 10%
longer than AltO's when the radius is 2).

Table 5
Solution length using max-degree abstraction.

Radius of Abstraction

2 3 4 5 6 7

5-puzzle CR 29.2 25.9 23.7 24.4 24.6 24.9
OptR 25.1 23.5 22.6 23.9 23.9 24.2

(20.1) AltO 24.0 23.9 22.7 22.8 22.9 23.0

Bitnet CR 8.5 8.3 8.1 7.9 7.9 7.9
OptR 8.0 7.9 7.9 7.9 7.9 7.9

(7.9) AltO 8.1 8.1 7.9 7.9 7.9 7.9

Blocks-6 CR 22.3 17.2 17.2 16.2 16.3 15.3
OptR 19.5 16.2 16.6 14.8 14.7 13.6

(13.2) AltO 16.2 15.7 15.3 15.5 15.5 15.0

KL-2000 CR 15.2 14.2 13.1 12.7 12.4 11.9
OptR 13.4 12.3 12.1 11.7 11.3 10.9

(10.8) AltO 12.9 12.5 12.3 12.0 12.0 11.7

Permute-7 CR 12.7 11.0 11.0 9.8 8.7 7.5
OptR 11.6 10.8 10.2 8.5 7.4 6.9

(6.6) AltO 9.2 8.8 9.4 9.2 8.2 7.2

TOH-7 CR 97 89 83 83 83 82
OptR 76 78 76 73 71 73

(67) AltO 82 78 76 78 77 79

Words CR 14.3 12.7 11.8 11.3 10.6 10.2
OptR 12.4 11.1 10.8 10.3 9.8 9.4

(9.1) AltO 11.1 10.8 10.8 10.6 10.2 10.0

The optimal solution length is shown in brackets.

