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Reinforcement learning (RL) concerns the problem of a learning agent inter-
acting with its environment to achieve a goal. Instead of being given examples
of desired behavior, the learning agent must discover by trial and error how to
behave in order to get the most reward. The environment is a Markov decision
process (MDP) with state set, S, and action set, A. The agent and the environ-
ment interact in a sequence of discrete steps, t = 0,1,2, ... The state and action
at one time step, s; € S and a; € A, determine the probability distribution for
the state at the next time step, s;+1 € S, and, jointly, the distribution for the
next reward, 7.1 € R. The agent’s objective is to chose each a; to maximize the
subsequent return:
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where the discount rate, 0 < v < 1, determines the relative weighting of im-
mediate and delayed rewards. In some environments, the interaction consists of
a sequence of episodes, each starting in a given state and ending upon arrival
in a terminal state, terminating the series above. In other cases the interaction
is continual, without interruption, and the sum may have an infinite number of
terms (in which case we usually assume v < 1). Infinite horizon cases with v = 1
are also possible though less common (e.g., see Mahadevan, 1996).

The agent’s action choices are a stochastic function of the state, called a
policy, m : § — Pr(A). The value of a state given a policy is the expected return
starting from that state following the policy:

V7(s) = E{Rq | s; = s, 7},
and the best that can be done in a state is its optimal value:

V*(s) = max V7 (s).

There is always at least one optimal policy, 7*, that achieves this maximum
at all states s € S. Paralleling the two state-value functions defined above are
two action-value functions, Q7 (s,a) = E{R; | s; = s,a; = a, 7} and Q*(s,a) =
max,; Q™(s,a). From Q* one can determine an optimal deterministic policy,
m*(s) = arg max, Q*(s, a). For this reason, many RL algorithms focus on approx-
imating Q*. For example, one-step tabular Q-learning (Watkins, 1989) maintains
a table of estimates (s, a) for each pair of state and action. Whenever a is taken



in s, Q(s,a) is updated based on the resulting next state s’, and reward r:
Q(Sa a) « (1 - asa)Q(sa a) + asa['r + mz}xQ(s', al)]7 (1)
a

where ag, > 0 is a time-dependent step-size parameter. Under minimal technical
conditions, () converges asymptotically to @*, from which an optimal policy can
be determined as described above (Watkins and Dayan, 1992).

Modern RL encompasses a wide range of problems and algorithms, of which
the above is only the simplest case. For example, all the large applications of RL
use not tables but parameterized function approximators such as neural networks
(e.g., Tesauro, 1995; Crites and Barto, 1996; Singh and Bertsekas, 1997). It is
also commonplace to consider planning—the computation of an optimal policy
given a model of the environment—as well as learning (e.g., Moore and Atkeson,
1993; Singh, 1993). RL can also be used when the state is not completely ob-
servable (e.g., Loch and Singh, 1998). The methods that are effectively used in
practice go far beyond what can be proven reliable or efficient. In this sense, the
open theoretical questions in RL are legion. Here I highlight four that seem par-
ticularly important, pressing, or opportune. The first three are basic questions
in RL that have remained open despite some attention by skilled mathemati-
cians. Solving these is probably not just a simple matter of applying existing
results; some new mathematics may be needed. The fourth open question con-
cerns recent progress in extending the theory of uniform convergence and VC
dimension to RL. For additional general background on RL, I recommend our
recent textbook (Sutton and Barto, 1998).

1 Control with Function Approximation

An important subproblem within many RL algorithms is that of approximating
Q™ or V7 for the policy 7 used to generate the training experience. This is called
the prediction problem to distinguish it from the control problem of RL as a
whole (finding @Q* or «*). For the prediction problem, the use of generalizing
function approximators such as neural networks is relatively well understood.
In the strongest result in this area, the TD(A) algorithm with linear function
approximation has been proven asymptotically convergent to within a bounded
expansion of the minimum possible error (Tsitsiklis and Van Roy, 1997). In
contrast, the extension of Q-learning to linear function approximation has been
shown to be unstable (divergent) in the prediction case (Baird, 1995). This pair
of results has focused attention on Sarsa()), the extension of TD()) to form a
control algorithm.

Empirically, linear Sarsa(\) seems to perform well despite (in many cases)
never converging in the conventional sense. The parameters of the linear function
can be shown to have no fixed point in expected value. Yet neither do they
diverge; they seem to “chatter” in the neighborhood of a good policy (Bertsekas
and Tsitsiklis, 1996). This kind of solution can be completely satisfactory in
practice, but can it be characterized theoretically? What can be assured about



the quality of the chattering solution? New mathematical tools seem necessary.
Linear Sarsa(A) is thus both critical to the success of the RL enterprise and
greatly in need of new learning theory.

2 Monte Carlo Control

An important dimension along which RL methods differ is their degree of boot-
strapping. For example, one-step Q-learning bootstraps its estimate for Q(s, a)
upon its estimates for Q(s',a’) (see Eq. 1), that is, it builds its estimates upon
themselves. Non-bootstrapping methods, also known as Monte Carlo methods,
use only actual returns—mno estimates—as their basis for updating other es-
timates. The X\ in methods such as TD(A), Q(X), and Sarsa(\) refers to this
dimension, with A = 0 (as in TD(0)) representing the most extreme form of
bootstrapping, and A = 1 representing no bootstrapping (Monte Carlo meth-
ods).

In most respects, the theory of Monte Carlo methods is better developed
than that of bootstrapping methods. Without the self reference of bootstrap-
ping, Monte Carlo methods are easier to analyze and closer to classical methods.
In linear prediction, for example, Monte Carlo methods have the best asymp-
totic convergence guarantees. For the control case, however, results exist only
for extreme bootstrapping methods, notably tabular Q(0) and tabular Sarsa(0).
For any value of A > 0 there are no convergence results for the control case.
This lacunae is particularly glaring and galling for the simplest Monte Carlo al-
gorithm, Monte Carlo ES (Sutton and Barto, 1998). This tabular method main-
tains (s,a) as the average of all completed returns (we assume an episodic
interaction) that started with taking action a in state s. Actions are selected
greedily, 7(s) = argmax, Q(s, a), while exploration is assured by assuming ez-
ploring starts (ES)—that is, that episodes start in randomly selected state—
action pairs with all pairs having a positive probability of being selected. It is
hard to imagine any RL method simpler or more likely to converge than this,
yet there remain no proof of asymptotic convergence to Q*. While this simplest
case remains open we are unlikely to make progress on any control method for
A>0.

3 Efficiency of Bootstrapping

Perhaps the single most important new idea in the field of RL is that of temporal-
difference (TD) learning with bootstrapping. Bootstrapping TD methods have
been shown empirically to learn substantially more efficiently than Monte Carlo
methods. For example, Figure 1 presents a collection of empirical results in which
A was varied from 0 (pure bootstrapping) to 1 (no bootstrapping, Monte Carlo).
In all cases, performance at 0 was better than performance at 1, and the best
performance was at an intermediate value of A. Similar results have been shown
analytically (Singh and Dayan, 1998), but again only for particular tasks and
initial settings. Thus, we have a range of results that suggest that bootstrapping



TD methods are generally more efficient than Monte Carlo methods, but no
definitive proof. While it remains unclear exactly what should or could be proved
here, it is clear that this is a key open question at the heart of current and future

RL.
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Fig. 1. The effect of A on RL performance. In all cases, the better the performance,
the lower the curve. The two left panels are applications to simple continuous-state
control tasks using the Sarsa(\) algorithm and tile coding, with either replacing or
accumulating traces (Sutton, 1996). The upper-right panel is for policy evaluation on
a random walk task using TD(A) (Singh and Sutton, 1996). The lower right panel is
unpublished data for a pole-balancing task from an earlier study (Sutton, 1984).

4 A VC Dimension for RL

So far we have discussed open theoretical questions at the heart of RL that are
distant from those usually considered in computational learning theory (COLT).
This should not be surprising; new problems are likely to call for new theory. But
it is also worthwhile to try to apply existing theoretical ideas to new problems.



Recently, some progress has been made in this direction by Kearns, Mansour
and Ng (in prep.) that seems to open up a whole range of new possibilities for
applying COLT ideas to RL.

Recall the classic COLT problem defined by a hypothesis space H of functions
from X to Y together with a probability distribution P on X'x Y. Given a training
set of x,y pairs chosen according to P, the objective is to find a function h € ‘H
that minimizes the generalization error. A basic result establishes the number
of examples (on the order of the VC dimension of ) necessary to assure with
high probability that the generalization error is approximately the same as the
training error.

Kearns, Mansour and Ng consider a closely related planning problem in RL.
Corresponding to the set of possible functions H, they consider a set of pos-
sible policies IT. For example, IT could be all the greedy policies formed by
approximating an action-value function with a neural network of a certain size.
Corresponding to the probability distribution P on X x ), Kearns et al. use a
generative or sample model of the MDP. Given any state s and action a, the
model generates samples of the next state s’ and the expected value of the next
reward r, given s and a. They also allow the possibility that the environment is a
partially observable (PO) MDP, in which case the model also generates a sample
observation o, which alone is used by policies to select actions. Corresponding to
the classical objective of finding an h € H that minimizes generalization error,
they seek a policy # € I that maximizes performance on the (PO)MDP. Per-
formance here is defined as the value, V7 (sq), of some designated state state, so
(or, equivalently, on a designated distribution of starting states).

But what corresponds in the RL case to the training set of example z, y pairs?
A key property of the conventional training set is that one such set can be reused
to evaluate the accuracy of any hypothesis. But in the RL case different policies
give rise to different action choices and thus to different parts of the state space
being encountered. How can we construct a training set with a reuse property
comparable to the supervised case? Kearns et al.’s answer is the trajectory tree,
a tree of sample transitions starting at the start state and branching down along
all possible action choices. For each action they obtain one sample next state
and the expected reward from the generative model. They then recurse from
these states, considering for each all possible actions and one sample outcome.
They continue in this way for a sufficient depth, or horizon, H, such that v is
sufficiently small with respect to the target regret, e. If there are two possible
actions, then one such tree is of size 2%, which is independent of the number
of states in the (PO)MDP. The reuse property comes about because a single
tree specifies a length H sample trajectory for any policy by working down the
tree following the actions taken by that policy. A tree corresponds to a single
example in the classic supervised problem, and a set of trees corresponds to s
training set of examples.

With the trajectory tree construction, Kearns et al. are able to extend basic
results of uniform convergence. The conventional definition of VC dimension
cannot be directly applied to policy sets II, but by going back to the original



definitions they establish a natural extension of it. They prove that with (on
order of) this number of trajectory trees, with probability ¢, one can be assured
of finding a policy whose value is within € of the best policy in IT.

Kearns, Mansour and Ng’s work breaks fertile new ground in the theory
of RL, but it is far from finishing the story. Their work could be extended in
many different directions just as uniform convergence theory for the supervised
case has been elaborated. For example, one could establish the VC dimension
on some policy classes of practical import, or extend boosting ideas to the RL
case. Alternatively, one could propose replacements for the supervised training
examples other than trajectory trees. Kearns et al. consider how trajectories
from random policies can be used for this purpose, and there are doubtless other
possibilities as well.
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