
Learning Policies for Efficiently Identifying Objects of Many Classes

Ramana Isukapalli
Lucent Technologies, Bell Labs Innovations

Whippany, NJ 07981, USA
risukapalli@lucent.com

Ahmed Elgammal
Rutgers University

New Brunswick, NJ 08854, USA
elgammal@cs.rutgers.edu

Russell Greiner
University of Alberta, Edmonton, CA T6G 2E8

greiner@cs.ualberta.ca

Abstract

Viola and Jones (VJ) cascade classification methods have
proven to be very successful in detecting objects belonging to a
single class — e.g., faces. This paper addresses the more chal-
lenging “many class detection” problem: detecting and identify-
ing objects that belong to any of a set of classes. We use a set
of learned weights (corresponding to the parameters of a set of
binary linear separators) to identify these objects. We show that
objects within many real-world classes tend to form clusters in this
induced “classifier space”. As the result of a sequence of classi-
fiers can suggest a possible label for each object, we formulate
this task as a Markov Decision Process. Our system first uses
a “decision tree classifier” (i.e., a policy produced using dynamic
programming) to specify when to apply which classifier to produce
a possible class label for each sub-image W of a test image. This
corresponds to a leaf of the decision tree. It then uses a cascade
of classifiers, specific to this leaf to confirm that W is an instance
of the proposed class. We present empirical evidence to verify that
our ideas work effectively: showing that our system is essentially
as accurate as running a set of cascade classifiers (one for each
class of objects), but is much faster than that approach.

1. Introduction
The pioneering work of Viola and Jones [9] has led to

a successful face detection method based on “cascade clas-
sifiers”, where each classifier is a binary classifier that is
learned by applying Adaboost [3] to a database of training
images of faces and non-faces. The VJ learning algorithm
takes as input several thousands of images correctly labeled
as faces versus non-faces and produces a cascade of boosted
classifiers. Every classifier consists of several “linear sepa-
rators”, each built using features on a rectangular subregion
(which VJ call “rectangle features”) of the training image.
The learning algorithm selects the rectangle features that
can best separate faces in training data from non-faces (like

the region across the mouth and nose, see the human face
in Figure 1(a)) from these thousands of possible candidates,
and uses them to build classifiers.

Let Cj ≈ {ci
j}i=1..k be a classifier based on k linear sep-

arators. Here, Cj classifies any sub-image W of a test image
as a face if V (Cj , W) =

∑k
i=1

αi
j · ci

j(W) ≥ 1

2

∑k
i=1

αi
j

for some set of weights αj = {αi
j} ∈ <k learned during

training, where ci
j(W) is the boolean classification result of

ci on W as a face or non-face (see [9] for details). We re-
fer to this V (Cj , W) as the SCO-value (“sum of classifier
output values”) of Cj on W .

This approach can be used to detect objects that belong
many other single classes (like cars, motorbikes, etc.) as
well as just faces. “Many Class Detection”, which tries to
detect and identify (i.e., assign a class label to) objects that
belong to any of a set of different classes, is more challeng-
ing. One possible approach to solve this problem is to build
one “single class Viola-Jones” (SC-VJ) cascade for each of
the M class during training and run them all M during per-
formance to identify objects of multiple classes. (We refer
to this as the “M-SC-VJ” approach.) However, this does not
scale up well; it requires running one cascade for each class
of objects and is therefore M times more expensive. More-
over, it can be ambiguous if more than one classifier cas-
cade labels an instance as positive. Another approach is to
build one cascade of classifiers and use it to detect objects of
multiple classes. That is, let T = T + ∪T− be a training set
images of positive examples (T +) and negative examples
(T−), such that T + = ∪M

i=1Ti where Ti has images of class
i and T− does not have any images of any of the M classes.
We can run the VJ algorithm on this set to produce a clas-
sifier cascade, such that each classifier can detect objects of
any of the M classes (with a certain false positive rate). This
approach has two problems: (1) since this classifier return
a single bit at performance time it just labels any detected
object as a positive instance, but cannot identify this object

as belonging to a specific one of the classes. (2) A single
classifier, built using objects of different classes as positive
examples, can have a high false positive rate. This is not
surprising: Many of these individual classes will naturally
correspond to disjoint clusters (see below), and this classi-
fier corresponds to their union. Any algorithm that attempts
to form a convex hull around such disjoint clusters is likely
to include many extraneous instances.

Our approach begins by using the VJ learning algorithm
to build N classifiers that each attempt to distinguish the
positives (here the union of M different classes, T + =
∪M

i=1Ti) from the negatives T−. We define its “classifier
space” as the N -dimensional space formed by using the
SCO-value of each of N classifiers as a dimension. That
is, the N classifiers collectively map each input image to a
point in the N -dimensional classifier space. We anticipate
that the SCO-values of objects in a single class should be
similar, and that objects from different classes should have
different SCO-values. Our results show that this holds —
in that many individual classes will form “clusters” in the
classifier space; see Figure 1(b). If we can place a new im-
age within a cluster, we can then assign that image the class
label ` associated with that cluster; see Section 3.1.

Figure 1(b) shows clusters of four classes of objects
(cars, leaves, motorbikes and faces), plotted using the SCO-
values of 2 of the classifiers, on training images of these
four classes of objects. Of course, the SCO-values of ev-
ery pair of classifiers will not necessarily form clusters. It
is possible that only one subset of classes form clusters wrt
one subset of classifiers, while some other subset of classes
may form clusters wrt another subset of classifiers. Further,
there may be no unique set of classifiers that yields these
clusters. We therefore use a dynamic process, that sequen-
tially decides which classifier to apply next when dealing
with an input image, based on the values observed from the
classifiers previously executed on this instance. The chal-
lenge is to learn the dynamic sequence of classifiers that
can effectively distinguish the clusters of different classes.

We formulate this task as a Markov Decision Process
(MDP), and use dynamic programming to find an optimal
policy — i.e., sequence of classifiers to use to partition the
training images into clusters. At run time, we dynamically
select which classifier to apply, based on the responses of
previous classifiers. Hence, the detector is in the form of
a decision tree (see Figure 2) that is built using the SCO-
values of the learned classifiers as features. We apply this
tree to each sub-image W of a given test image. If all the
classifiers on the path from the root to the leaf label this W
positively, we tentatively assign to W the class label ` of
the corresponding leaf. We then apply a cascade specific to
this leaf, to W , to confirm that W is an instance of class
`. If any of the classifiers in the decision tree or the class
specific cascade label W negatively, we stop processing W

(a) Features of different classes on a rectangular region

SC
O

-v
al

ue
 o

f C
2

SCO-value of C1

Faces
Motorbikes

Leaves

SC
O

-v
al

ue
 o

f C
4

SCO-value of C3

Faces
Cars

SC
O

-v
al

ue
 o

f C
6

SCO-value of C5

Faces
Leaves

SC
O

-v
al

ue
 o

f C
8

SCO-value of C7

Motorbikes
Leaves

Figure 1. (b) Clusters of objects of the same
class in classifier space

and proceed to the next sub-image.
To identify objects belonging to any of M classes, we

can use the M-SC-VJ approach: compute M class specific
cascades, each having around N classifiers, for a total of
M × N classifiers. Using our detection method, however,
by choosing classifiers carefully in the first stage, we can
assign a tentative class label using M1 ≤ M classifiers (re-
call clusters in Figure 1(b)), then run one cascade of length
N1 ≤ N , for a total of M1 + N1 ≤ M + N classifiers; this
is significantly faster than the M-SC-VJ approach.

Using four classes of objects, we show that our detection
method has a detection rate comparable to a class specific
Viola-Jones cascade. We also show that the performance
time of our algorithm is much better than running M class
specific cascades. After Section 2 provides the framework,
Section 3 overviews how we address this “many class de-
tection” task and Section 4 gives the results. Section 5 sum-
marizes related work.

2. Framework
A Markov Decision Process can be described as a 4-

tuple 〈S, A, M, R〉 where S = {s1, s2, . . . , sn} is a finite
set of states, A = {a1, a2, . . . , am} is a finite set of actions,
M : S × A × S → [0, 1] is the state transition probability
function (Ma

s,s′ = P (s′ | s, a) is the probability that taking
action a in state s leads to state s′) and R : S × A → <
is the reward an agent gets for taking an action a ∈ A in
state s ∈ S. A policy π : S → A is a mapping from states
to actions. [7] presents a good description of MDPs and
the different ways to solve them. In this section, we explain
how we formulate many class detection as an MDP.

States: We identify each node in a DTC with a state

...

0

1

2

d

leaves

 (clusters)

.

.

depth

S
0
,
C
1

S
1
,
C
2
 S
2
,
C
3

S
3
,
C
3
 S
4
,
C
4

S
6

(face)

[
V
1
 - V
2
]
 [
V
3
 - V
4
]

[
V
7
- V
8
]

[
V
9
 - V
10
]

[
V
5
- V
6
]

S
5

(car)

.

.

.

.

Apply cars

cascade

[
V
11
 - V
12
]

Apply faces

cascade

Figure 2. Decision Tree Classifier (DTC)
s = 〈~P , C1 : [Vmin,1, Vmax,1] . . . Ck : [Vmin,k , Vmax,k]〉
that specifies the range of SCO-values of the classi-
fiers 〈C1, . . . , Ck〉 already applied to reach this node,
and a posterior probability distribution over the class
labels, ~P = 〈P`〉, where P` = P (class(W) =
` | 〈V (C1, W), . . . , V (Ck , W)〉) is the probability that
` will be the label of an instance W that reached
this node s, based on the evidence, {V (Ci, W) ∈
[Vmin,i, Vmax,i]}i=1..k here. We are seeking a policy π :
S 7→ A that specifies which classifier to apply in each state
s, with the aim of reaching a leaf whose instances all belong
to the same class. Figure 2 shows a simple DTC. The SCO-
value of the classifier determines which branch to take.
Actions: The set of actions correspond to the classi-
fiers that can detect objects of many classes; i.e., A =
{C1, C2, . . . , CN}.
Reward: We assign a high reward to states that group ob-
jects of the same class together. We use the reward function

R(s, Ci) =

{

max` {P (class(s) = `)} if depth = d

−α · FN(Ci, s) otherwise
(1)

We assign the probability of the most likely class ` if depth
= d, otherwise we penalize by α × FN(Ci, s) where α is
a constant (we set it to 0.1), and FN(Ci, s) is the fraction
of false negatives of Ci on the training images that would
arrive in state s.
Transition Model: The transition model Ma

s,s′ is
the probability that taking action (i.e., applying
some classifier) a in state s leads to s′. Let s =
〈~P , C1 : [Vmin,1, Vmax,1] . . . Ck : [Vmin,k−1, Vmax,k−1]〉,
and s′ = 〈~P , C1 : [Vmin,1, Vmax,1] . . . Ck : [Vmin,k , Vmax,k]〉.
Consider attempting to classify a test subimage
W . To reach s, we must have applied the se-
quence of classifiers 〈C1, C2 . . . , Ck−1〉 and found
V (Ci, W) ∈ [Vmin,i, Vmax,i] where “[Vmin,i, Vmax,i]”
labels the associated arc for 1 ≤ i ≤ (k − 1). Note
P (W ∈ s′ |W ∈ s, V (a, W) = o) = 0 for all actions
a 6= Ck, since we can reach state s′ from s only by ap-
plying Ck. During training, in any state s1, after applying

any classifier C, we partition all the images of s1 that
C classifies as positives into two equal halves based on
V (C, s1). This results in two other states, s′1 and s′′1 (see
Section 3 and also [11] for details). As both s′1 and s′′1 are
equally likely, we have the transition probability P (W ∈
s′1 |W ∈ s1, Ck) ≈ P (W ∈ s′′1 |W ∈ s1, Ck) = 0.5

3. Many Class Detection and Identification
This section briefly describes how to learn a DTC and

explains how to use it to detect objects of multiple classes.
Please see [11] for details.

3.1. Learning DTC classifier

We use VJ to build N classifiers C = {C1, C2 . . . CN}
using the images of the training set T = T + ∪ T−.

Exploring sequences of classifiers: We explore every pos-
sible sequence of d classifiers on T + to find the sequence
that yields the best clusters. That is, we first apply some
classifier C1 on each image t ∈ T +. We remove all
the images that C1 labels as negatives. We sort the re-
maining images based on their SCO-values, V (C1, t), on
these images, i.e., 〈t1, . . . , tm/2, tm/2+1, . . . , tm〉, where
V (C1, tj) ≥ V (C1, tk) when j > k. We split them into
two equal halves 〈T L

1 〉 and 〈T R
1 〉 (denoting the left and

right branches), such that 〈T L
1 〉 contains {t1, . . . , tm/2} and

〈T R
1 〉 contains {tm/2+1, . . . , tm}. We then apply a classi-

fier C2 6= C1 on 〈T L
1 〉 resulting in 〈T L

1 , T L
2 〉 and 〈T L

1 , T R
2 〉

that each represents one half of the images of 〈T L
1 〉 that

C2 labeled as positives. Similarly, we apply any classifier
C3 6= C1 on 〈T R

1 〉 resulting in 〈T R
1 , T L

3 〉 and 〈T R
1 , T R

3 〉.
We repeat the process for d steps, applying a sequence of

d classifiers, 〈C1, . . . , Cd〉. For each sequence, the resulting
2d leaves are clusters. Note that this is for one (random)
sequence of d classifiers. When we consider the P N

d =
N !/(N − d)! different sequences of d classifiers, it leads to
a total of P N

d × 2d clusters. Note that many clusters can
have the same class label.

Assigning utility to states: Each state sd resulting after ap-
plying any random sequence of d classifiers, 〈C1 . . . Cd〉,
represents a cluster. We want to determine the best de-
cision tree within this tableau, using those clusters that
group images of only one class together. While exploring
N !/(N − d)! sequences of classifiers, let si be the state re-
sulting after applying i classifiers, for 1 ≤ i ≤ d. We use
Equation 1 to compute U(sd), i.e., we set

U(sd) = maxl {P (class(sd) = `)} − α ·

d
∑

i=1

FN(Ci, si)

where α = 0.1. Note that FN(Ci, si) = m
n where n is the

total number of images in s and m is the number that Ci

misclassified as negatives. (see the example given later).

We use a dynamic programming approach to assign util-
ities. That is, we first compute U(sd), use those values to
compute U(sd−1) and so on. Using the U(sd) . . . U(si+1)
values, we set the utility U(si) of any state si resulting after
applying i classifiers. Let there be k possible classifiers that
can be applied in si, i.e., none of these k classifiers were
applied to reach si. We apply any classifier, Cj in si re-
sulting in two states, si,jL and si,jR. We compute U(si) =
{P (Cj = L|si) × U(si,jL) + P (Cj = R|si) × U(si,jR)} =
0.5 × {U(si,jL) + U(si,jR)}.1. Here L and R denote the
left and right transitions to si,jL and si,jR, respectively.
We compute U(si) after applying each of the k classifiers
and set U(si) to the maximum of those values. Similarly,
we compute U(si−1), . . . , U(s0).

Building DTC: We collect the 〈si, C
∗
i 〉 pairs and also the

corresponding utilities for various states. Here si denotes
the state resulting after applying i classifiers, C∗

i denotes
the classifier that, when applied to si, transitions it to an-
other state s∗i+1, with the maximum utility among the states
resulting after applying one additional classifier to this se-
quence. Note that the various 〈si, C

∗
i 〉 pairs tell us precisely

the i classifiers applied so far, their individual SCO-values
and the best classifier C∗

i to apply in si. This corresponds
precisely to the DTC.

Example: We illustrate the learning algorithm with the
help of a simple example. Let T + = ∪M

i=1Ti be the set
of positive examples such that Tf = {t1 . . . t10}, Tl =
{t11 . . . t20}, Tm = {t21 . . . t30}, Tc = {t31 . . . t40} be im-
ages of faces, leaves, motorbikes and cars, respectively. Let
C1, C2 and C3 be three classifiers that can identify objects
of all these classes. Further, let d = 2, i.e., we build a
DTC to depth 2. We explore every possible sequence of two
classifiers, on T + to build DTC. Let us consider one se-
quence 〈C1, C2〉. Let s∅ be the initial state with all the 40
images of T+; P (class(s∅) = `) = 1

4
for each of the

four classes, `. As no classifier is applied to reach the ini-
tial state s0, we set s∅ = 〈〈0.25, 0.25, 0.25, 0.25〉; []〉. We
first apply C1 to each image in T +, and assume it classi-
fies {t1, ..., t38} correctly, but misclassifies t39 and t40 as
negatives; here FN(C1, s∅) = 2

40
= 0.05. We use SCO-

value V (C1, t) to sort the remaining 38 images {t}. As-
sume that V (C1, ti) ≤ V (C1, tj) for i < j. We split
them into two halves 〈T L

1 〉 = {t1 . . . t19} with a SCO-
value range of [100, 130] and 〈T R

1 〉 = {t20 . . . t38} with
a SCO-value range of [131, 200]. Notice 〈T L

1 〉 has 10 im-
ages of faces and 9 of leaves and no images of any other
class, which means ~P1 = 〈10/17, 9/17, 0, 0〉 denoting
the probability of class label for each of faces, leaves, mo-
torbikes and cars, respectively. Hence the state represen-
tation for 〈T L

1 〉 is s1L = 〈~P1, [C1 : 100, 130]〉. As 〈T R
1 〉

1We use a slightly different approach, we set U(si) as the maximum
of U(si,jL) and U(si,jL), see [11] for updated results

contains 1 leaf, 10 motorbikes and 8 cars, 〈T R
1 〉 will be

s1R = 〈〈0, 1/19, 10/19, 8/19〉, [C1 : 131, 200]〉.
We then apply C2 from the sequence 〈C1, C2〉 to 〈T L

1 〉,
and assume it classifies all the images, except t19, pos-
itively, i.e., FN(C2, s1L) = 1

19
= 0.11. Now as-

sume that V (C2, ·) is also monotonic in 〈t1, . . . , t18〉 (i.e.,
V (C2, ti) ≤ V (C2, tj) for 1 ≤ i < j ≤ 18). Once split
into two halves, 〈T L

1 , T L
2 〉 = {t1, . . . , t9} and 〈T L

1 , T R
2 〉 =

{t10, . . . , t18} with SCO-value ranges of [10, 60] and
[61, 90], we have the state representation for 〈T L

1 , T L
2 〉

is s1L,2L = 〈〈1.0, 0, 0, 0〉, [C1 : 100, 130][C2 : 10, 60]〉.
States s1R,2L and s1R,2R are clusters (since d = 2 clas-
sifiers are applied), with class labels “face” and “leaf”, re-
spectively. We can compute their utilities using Equation 1:
U(s1R,2L) = 1.0 − 0.1 × (0.05 + 0.11) = 0.984 and
U(s1R,2R) = 0.89− 0.1× (0.05 + 0.11) = 0.874.

We also consider 〈C1, C3〉. Here, this means applying
C3 to 〈T L

1 〉, resulting in two clusters, s1L,3L and s1L,3R,
with utilities of say U(s1L,3L) = 0.6 and U(s1L,3R) = 0.7.
In s1L, we can apply one of C2 or C3. So, U(s1L) is the
maximum of the utilities that can be achieved by apply-
ing either of these classifiers. That is, U(s1L) = 0.5 ×
(0.984 + 0.874) = 0.929, if C2 is applied in s1L. We can
similarly compute U(s1L) = 0.65, if C3 is applied. As
C2 results in the maximum utility, it is the best classifier
to apply in s1L, i.e., π(s1L) = C2. We similarly compute
U(s1R,2L), U(s1R,2R), U(s1R,3R) and U(s1R,3R); and use
those values to compute π(s1R) = C3.

We also compute the utilities for sequences starting with
C2 and determine policies for other states, like, π(s2L) =
C1, π(s2R) = C3 and then for sequences starting with C3,
π(s3L) = π(s3R) = C2. Finally, we would then compute
the optimal action at s∅ is π(s∅) = C1. All these policies
result in the DTC similar to the one shown in Figure 2.

3.2. Detection

Our “many class detection algorithm” (MCDA) examines
each 24×24 pixel window of a test image It; it then rescales
by a factor 0.8 (i.e., resizes the current height and width of
It by a factor of 0.8) and repeats. For each window W ,
MCDA first applies the classifier C1 associated with the root
of DTC (see Figure 2). This might label W as a negative
instance; if so MCDA continues with the next window. Oth-
erwise, MCDA computes V (C1, W) and uses this value to
find the resulting state s′. It then applies C2 associated with
s′, on W . Again this could reject W , if not, V (C2, W) iden-
tifies the next state s′′ and classifier C3 to apply on W . This
continues for d steps, until W reaches a cluster. If all the
d classifiers label W as a positive instance, MCDA finds the
class label ` associated with the cluster. It then runs a SC-VJ
cascade 〈C`

1, C
`
2, . . . C

`
P 〉 associated with this leaf node and

declares W to be an object of class ` if it passes all these
classifiers. Otherwise, it rejects W as a negative instance.

4. Experimental Results
4.1. Experimental setup

Data Used: We used four classes of objects, cars (rear
view), leaves, motorbikes and faces in our experiments. The
training set of faces TF contained 1600 images of faces
(taken from popular face databases) and for test images
used the MIT-CMU database of faces, which has a total of
178 images with 532 faces. We used images from Caltech
image database [1] for the other three classes. Our training
sets for cars, leaves and motorbikes — TC , TL and TM have
476, 156 and 776 images, while our test sets have 50, 50 and
67 images, respectively, with a total of 67 cars, 50 motor-
bikes and 67 leaves. Our training set for the negative ex-
amples T− contains 2320 images, none of which has any
pictures of faces or cars or leaves or motorbikes.
Building Classifiers: We used TC , TL, TM , TF and T−

to build 4 SC-VJ cascade classifiers2 (one for each class),
that involved 18, 17, 17 and 21 classifiers. We also built
N = 10 classifiers that can detect objects of any of the four
classes. Since we have four different classes, and with the
application of each classifier (carefully, using DTC) we can
distinguish between two classes, we set d = 3. That is, we
built a DTC upto a depth of 3 using our learning algorithm.
Training time: Our system required about 3 hours to build
each of the 4 class specific cascades and another 1 hour to
build the classifiers3. It then required about 5 minutes to
build DTC, so the total training time was about 18 hours.
Results: We compared MCDA to the standard set of M = 4
SC-VJ cascades, with respect to accuracy, ROC curves and
efficiency. Note that MCDA applies d classifiers (within
DTC) to determine which class label to consider for each
test sub-image, and then applies a cascade specific to that
class. Each of the four SC-VJ detection algorithms has an
easier task, as we explicitly identify which single class of
objects it should seek for each image. This is why we do
not expect the performance of MCDA to be better than SC-
VJ, in terms of either efficiency or accuracy. However, our
results indicate that MCDA does quite well in detecting ob-
jects as well as assigning class labels. In fact, our algorithm
runs at least twice as fast as running M SC-VJ cascades to
detect M = 4 classes of objects; see Section 4.4.

4.2. Accuracy and Execution Time

Figure 3 shows some test images in which MCDA could
successfully detect cars, leaves, motorbikes and faces. Ta-
ble 1 compares MCDA with the SC-VJ and M-SC-VJ algo-
rithms in terms of accuracy and efficiency. The peak ac-
curacy, as we vary the number of cascade classifiers at the

2We use the Wu and Rehg [10] implementation of SC-VJ.
3All results presented here were run on a 1 GHz. Intel Pentium proces-

sor with 256 Mbytes of memory running Windows-2000.

Figure 3. Performance on various test images

leafs,4 are given in Table 1. These values are statistically
indistinguishable at p < 0.05. MCDA is slower than SC-VJ,
by 63%, 83.7%, 67.7% and 22.26%. we attribute this to:
(1) the time needed to run the extra d = 3 classifiers using
DTC and (2) the overhead involved in assigning a class label
to each sub-image of any test image. Note that this is much
better than the obvious M-SC-VJ alternative.

4.3. ROC curves

Figure 4 compares the ROC curves of MCDA with that
of the SC-VJ detection algorithm. In the graph, we plotted
accuracy against the number of false positives per window
processed. Figure 4 shows that the SC-VJ detection method
has a slightly better performance than the many class de-
tection method, while the overall detection for many class
detection is comparable to SC-VJ.

4.4. Comparison to M-SC-VJ

On the test set of each class, we ran each of the four cas-
cade classifiers (i.e., M-SC-VJ). As expected, the execution
time of this algorithm (Table 1) is linear in the number of
classes, which means it will not scale up well. As MCDA
does not need to run multiple cascades, it will scale up well.

5. Related Work
There has been a lot of recent interest in many class de-

tection. Torralba et al. present a many class boosting proce-
dure that shares features across different classes [8]. They
train binary classifiers “jointly” (for several classes) and use
the common features to detect objects of multiple classes.

4We define “peak accuracy” as the accuracy value with negligible rate
of increase with increasing values false positives. We found it manually.

Class TestData #Windows Peak Accuracy Av.Detcn.Time(sec)
#Images #Objects Av.Image Size SC-VJ MCDA SC-VJ MCDA M-SC-VJ

Cars 50 65 265× 360 10,114,613 87.69% 86.15% 0.495 0.806 1.787
Leaves 67 67 318× 436 20,607,663 97.01% 95.52% 0.454 0.834 2.006

Motorbikes 50 50 279× 297 8,680,218 97.0% 92.0% 0.574 0.963 1.912
Faces 169 532 403× 402 76,957,710 92.11% 92.0% 1.541 1.883 4.558

Table 1. Comparison of test results for SC-VJ cascade and MCDA algorithm

50

60

70

80

90

0 2e-05 4e-05 6e-05

A
cc

ur
ac

y

FP-ratio

’SC-VJ’
’MCDA’

 60

 70

 80

 90

 100

 0 2e-006 4e-006 6e-006 8e-006

A
cc

ur
ac

y

FP-ratio

’SC-VJ’
’MCDA’

 40

 50

 60

 70

 80

 90

 100

 0 1e-005 2e-005 3e-005 4e-005

A
cc

ur
ac

y

FP-ratio

SC-VJ
MCDA

 70

 80

 90

 100

 0 1e-005 2e-005 3e-005

A
cc

ur
ac

y

FP-ratio

SC-VJ
MCDA

Figure 4. ROC curves for SC-VJ cascades and MCDA for (a) Cars (b) Leaves (c) Motorbikes (d) Faces.

We have implicit feature sharing because we use rectangular
features of many classes to build classifiers. But our work is
significantly different, feature sharing is not our main focus.
Fan [2] presents an algorithm that learns a hierarchical par-
titioning of the hypothesis space. They test their algorithm
to detect handwritten digits. Li et al. [6] use a generative
probabilistic model to represent the shape and appearance
of a constellation of features of an object. They learn the pa-
rameters of the model incrementally in a Bayesian manner.
They test it on 101 different object categories. Our work is
significantly different from the two approaches given above.
We used similar techniques to identify the facial expression
of a face during face detection, by formulating the prob-
lem as MDP and use dynamic programming to solve it [5].
We also addressed related issues in a feature-based face-
recognition system by posing the task as MDP [4]. Our
current work is similar to these two methods, but here, we
find the best sequence of classifiers to assign class labels for
each sub-image, by matching them to clusters.

6. Conclusions
This work provides a method of using binary classifiers

to detect and identify objects of many classes. We show
that images of the same class form clusters in the classi-
fier space of classifiers, then present examples of clusters
using four classes of objects. We motivate the need to se-
lect the classifiers dynamically and formulate the problem
as an MDP. We use dynamic programming to find a good
policy, represented as a decision tree classifier, DTC. Our
detection algorithm (MCDA) uses DTC and tentatively as-
signs a class label ` to each subimage W that DTC labels as
a positive instance. It then applies a class-specific cascade
to confirm that W as an instance of `. We present empiri-
cal results that demonstrate that our ideas work effectively:
showing that our results are comparable to the SC-VJ algo-

rithm in terms of accuracy, efficiency and ROC-curves, but
much faster than running M different SC-VJ classifiers.

References
[1] R. Fergus, P. Perona and A. Zisserman. Object class recogni-

tion by unsupervised scale-invariant learning, CVPR, 2003

[2] X. Fan. Efficient multiclass object detection by a hierarchy of
classifiers, CVPR 2003

[3] Y. Freund and R.E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting, Com-
putational Learning Theory: Eurocolt, 1995.

[4] R. Isukapalli and R. Greiner. Use of Off-line Dynamic Pro-
gramming for Efficient Image Interpretation, IJCAI, 2003

[5] R. Isukapalli, A.Elgammal and R. Greiner. Learning to Iden-
tify Facial Expression During Detection Using Markov De-
cision Process, Face and Gesture Recognition Conference,
2006

[6] F.F. Li, R.Fergus and P. Perona. Learning generative visual
models from few training examples: An incremental Bayesian
approach tested on 101 object categories, Proceedings of the
Workshop on Generative Model Based Vision, 2004

[7] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction, MIT Press, Cambridge, 1998.

[8] A. Torralba, K. Murphy and W.T. Freeman. Sharing features:
efficient boosting procedures for multiclass object detection,
CVPR, 2004.

[9] P. Viola and M. Jones. Robust real-time face detection, IJCV
2004

[10] J. Wu, J.M. Rehg and M.D. Mullin. Learning a rare event
detection cascade by direct feature selection, NIPS 2003.

[11] http://www.cs.ualberta.ca/∼greiner/Research/ManyClassesIdentifier

