
Journal of Artificial Intelligence Research 24 (2005) 581-621 Submitted 01/05; published 10/05

Macro-FF: Improving AI Planning with Automatically

Learned Macro-Operators

Adi Botea adib@cs.ualberta.ca

Markus Enzenberger emarkus@cs.ualberta.ca

Martin Müller mmueller@cs.ualberta.ca

Jonathan Schaeffer jonathan@cs.ualberta.ca

Department of Computing Science, University of Alberta

Edmonton, AB Canada T6G 2E8

Abstract

Despite recent progress in AI planning, many benchmarks remain challenging for cur-
rent planners. In many domains, the performance of a planner can greatly be improved by
discovering and exploiting information about the domain structure that is not explicitly
encoded in the initial PDDL formulation. In this paper we present and compare two auto-
mated methods that learn relevant information from previous experience in a domain and
use it to solve new problem instances. Our methods share a common four-step strategy.
First, a domain is analyzed and structural information is extracted, then macro-operators
are generated based on the previously discovered structure. A filtering and ranking pro-
cedure selects the most useful macro-operators. Finally, the selected macros are used to
speed up future searches.

We have successfully used such an approach in the fourth international planning com-
petition IPC-4. Our system, Macro-FF, extends Hoffmann’s state-of-the-art planner FF
2.3 with support for two kinds of macro-operators, and with engineering enhancements. We
demonstrate the effectiveness of our ideas on benchmarks from international planning com-
petitions. Our results indicate a large reduction in search effort in those complex domains
where structural information can be inferred.

1. Introduction

AI planning has recently made great advances. The evolution of the international planning
competition over its four editions (Bacchus, 2001; Hoffmann, Edelkamp, Englert, Liporace,
Thiébaux, & Trüg, 2004; Long & Fox, 2003; McDermott, 2000) accurately reflects this.
Successive editions introduced more and more complex and realistic benchmarks, or harder
problem instances in the same domain. The top performers could successfully solve a large
percentage of the problems each time. However, many hard domains, including benchmarks
used in IPC-4, still pose great challenges for current automated planning systems.

The main claim of this paper is that in many domains, the performance of a planner
can be improved by inferring and exploiting information about the domain structure that
is not explicitly encoded in the initial PDDL formulation. The implicit structural infor-
mation that a domain encodes is, arguably, proportional to how complex the domain is,
and how realistically this models the world. For example, consider driving a truck between
two locations. This operation is composed of many subtasks in the real world. To name
just a few, the truck should be fueled and have a driver assigned. In a detailed planning

c©2005 AI Access Foundation. All rights reserved.

Botea, Enzenberger, Müller, & Schaeffer

Figure 1: CA-ED – Integrating component abstraction and macro-operators into a standard
planning framework.

formulation, we would define several operators such as fuel, assign-driver, and drive.
This representation already contains implicit information about the domain structure. It is
quite obvious for a human that driving a truck between two remote locations would be a
macro-action where we first fuel the truck and assign a driver (with no ordering constraints
between these two actions) and next we apply the drive operator. In a simpler formulation,
we can remove the operators fuel and assign-driver and consider that, in our model, a
truck needs neither fuel nor a driver. Now driving a truck is modeled as a single action,
and the details described above are removed from the model.

In this article we present and evaluate two automated methods that learn such implicit
domain knowledge and use it to simplify planning for new problem instances. The learning
uses several training problems from a domain. Our methods share a common four-step
pattern:

1. Analysis – Extract new information about the domain structure.

2. Generation – Build macro-operators based on the previously acquired information.

3. Filtering – Select the most promising macro-operators.

4. Planning – Use the selected macro-operators to improve planning in future problems.

1.1 Component Abstraction – Enhanced Domain

The first method produces a small set of macro-operators from the PDDL formulations of a
domain and several training problems. The macro-operators are added to the initial domain
formulation, resulting in an enhanced domain expressed in the same description language.
The definitions of the enhanced domain and new problem instances can be given as input
to any planner, with no need to implement additional support for macro-operators (Botea,
Müller, & Schaeffer, 2004b). We call this approach CA-ED for Component Abstraction –
Enhanced Domain.

Figure 1 shows the general architecture of CA-ED. The box Abstraction in the figure
includes steps 1 – 3 above. Step 1 uses component abstraction, a technique that exploits
permanent relationships between low-level features of a problem. Low-level features (i.e.,
constant symbols) linked by static facts (i.e., facts that remain true during planning) form
a more complex unit called an abstract component.

582

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

Figure 2: The general architecture of SOL-EP. Enhanced Planner means a planner with
capabilities to handle macros.

At step 2, local analysis of abstract components builds macros that can speed up plan-
ning. CA-ED generates macros using a forward search process in the space of macro op-
erators. A macro operator is built as an ordered sequence of operators linked through a
mapping of the operators’ variables. Applying a macro operator is semantically equiva-
lent to applying all contained operators in the given order, respecting the macro’s variable
mapping and the interactions between preconditions and effects.

At step 3 (filtering), a set of heuristic rules is used to prune the search space and generate
only macros that are likely to be useful. Macros are further filtered dynamically, based on
their performance in solving training problems, and only the most effective ones are kept
for future use.

The best macro operators that this method generates are added as new operators to the
initial PDDL domain formulation, enhancing the initial set of operators. Hence, we need
complete macro-operator definitions, including precondition and effect formulas. Express-
ing these formulas starting from the contained operators is easy in STRIPS, but hard in
larger PDDL subsets such as ADL, where the preconditions and the effects of the contained
operators can interact in complex ways. See Section 3.1 for a detailed explanation. In
CA-ED no work is required to implement step 4, since the planner makes no distinction
between a macro operator and a normal operator. Once the enhanced domain formulation
is available in standard STRIPS, any planner can be used to solve problem instances.

The architecture of CA-ED has two main limitations. First, component abstraction can
currently be applied only to domains with static facts in their formulation. Second, adding
macros to the original domain definition is limited to STRIPS domains.

1.2 Solution – Enhanced Planner

The second abstraction method presented in this article does not suffer from the above
limitations, and is applicable to a larger class of problems. We call this approach SOL-EP,
which stands for Solution – Enhanced Planner. SOL-EP extracts macros from solutions
of training problems and uses them in a planner enhanced with capabilities to handle
macros. The general architecture of this approach is shown in Figure 2. As before, the
module Abstraction implements steps 1 – 3. Instead of using static facts and component

583

Botea, Enzenberger, Müller, & Schaeffer

abstraction as in CA-ED, step 1 in SOL-EP processes the solutions of training problems.
To extend applicability from STRIPS to ADL domains, a different macro representation is
used as compared to CA-ED. A SOL-EP macro is represented as a sequence of operators
and a mapping of the operators’ variables rather than a compilation into a single operator
with complete definition of its precondition and effects. As shown in Section 3.1, for ADL
domains, it is impractical to use macros with complete definition.

For this reason, SOL-EP macros cannot be added to the original domain formulation as
new operators anymore. They are distinct input data for the planner, and for step 4 the
planner is enhanced with code to handle macro operators. Since SOL-EP is more general,
we used this approach in the fourth planning competition IPC-4.

We implemented the ideas presented in this article in Macro-FF, an adaptive plan-
ning system developed on top of FF version 2.3 (Hoffmann & Nebel, 2001). FF 2.3 is a
state-of-the-art fully automatic planner that uses a heuristic search approach. The solving
mechanism of FF has two main phases: preprocessing and search. The preprocessing phase
builds data structures needed at search time. All operators are instantiated into ground
actions, and all predicates are instantiated into facts. For each action, pointers are stored
to all precondition facts, all add-effect facts, and all delete-effect facts. Similarly, for each
fact f , pointers are stored to all actions where f is a precondition, to all actions where f
is an add effect, and to all actions where f is a delete effect. This information is instantly
available at run-time, when states are evaluated with the relaxed graphplan heuristic.

Macro-FF adds the ability to automatically learn and use macro-actions, with the goal
of improving search. Macro-FF also includes engineering enhancements that can reduce
space and CPU time requirements that were performance bottlenecks in some of the test
problems. The engineering enhancements affect neither the number of expanded nodes nor
the quality of found plans.

The contributions of this article include a detailed presentation of Macro-FF. We
present and compare two methods that automatically create and use macro-operators in
domain-independent AI planning. Experimental evaluation is focused on several main di-
rections. First, the impact of the engineering enhancements is analyzed. Then we evaluate
how SOL-EP macros implemented in the competition system can improve planning. These
experiments use as testbeds domains used in IPC-4. Finally, we compare the two abstrac-
tion methods on test instances where both techniques are applicable, and evaluate them
against planning with no macros.

The rest of the paper is structured as follows: The next two sections describe CA-ED
and SOL-EP respectively. Section 4 summarizes the implementation enhancements that we
added to FF. We present experimental results and evaluate our methods in Section 5. In
Section 6 we briefly review related work and discuss the similarities and differences with
our work. The last section contains conclusions and ideas for future work.

2. Enhancing a Domain with Macros based on Component Abstraction

The first part of this section introduces component abstraction. The topic of the second
part is CA-ED macro-operators.

584

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

Figure 3: Static graph of a Rovers problem.

2.1 Component Abstraction

Component abstraction is a technique that groups related low-level constants of a planning
problem into more abstract entities called abstract components or, shorter, components. The
idea is similar to how humans can group features connected through static relationships into
one more abstract unit. For example, a robot that carries a hammer could be considered a
single component, which has mobility as well as maintenance skills. Such a component can
become a permanent object in the representation of the world, provided that no action can
invalidate the static relation between the robot and the hammer.

Component abstraction is a two-step procedure:

1. Build the problem’s static graph, which models permanent relationships between con-
stant symbols of a problem.

2. Build abstract components with a clustering procedure. Formally, an abstract com-
ponent is a connected subgraph of the static graph.

2.1.1 Building the Static Graph of a Problem

A static graph models static relationships between constant symbols of a problem. Nodes are
constant symbols, and edges correspond to static facts in the problem definition. Following
standard terminology, a fact is an instantiation of a domain predicate, i.e., a predicate
whose parameters have all been instantiated with constant symbols. A fact f is static for
a problem p if f is part of the initial state of p and no operator can delete it.

Each constant that is an argument of at least one static fact defines a node in the static
graph. All constants in a fact are linked pairwise. All edges in the graph are labeled with
the name of the corresponding predicate.

We use a Rovers problem as an example of how component abstraction works. In this
domain, rovers can be equipped with cameras and stores where rock and soil samples can
be collected and analyzed. Rovers have to gather pictures and data about rock and soil
samples, and report them to their base. For more information about the Rovers domain, see
the work of Long and Fox (2003). Figure 3 shows the static graph of the sample problem.
The nodes include two stores (store0 and store1), two rovers (rover0 and rover1),

585

Botea, Enzenberger, Müller, & Schaeffer

two photo cameras (cam0 and cam1), two objectives (obj0 and obj1), two camera modes
(colour and high-res), and four waypoints (point0,... point3). The edges correspond
to the static predicates (store-of ?s - store ?r - rover), (on-board ?c - camera ?r
- rover), (supports ?c - camera ?m - mode), (calibration-target ?c - camera
?o - objective), and (visible-from ?o - objective ?w - waypoint).

The two marked clusters in the left are examples of abstract components generated by
this method. Each component is a rover equipped with a camera and a store. A more
detailed and formal explanation is provided in the following paragraphs.

To identify static facts necessary to build the static graph, the set of domain operators
O is used to partition the predicate set P into two disjoint sets, P = PF ∪PS , corresponding
to fluent and static predicates. An operator o ∈ O is represented as a structure

o = (V (o), P (o), A(o), D(o)),

where V (o) is the variable set, P (o) is the precondition set, A(o) is the set of add effects,
and D(o) is the set of delete effects. A predicate p is fluent if p is part of an operator’s
effects (either positive or negative):

p ∈ PF ⇔ ∃o ∈ O : p ∈ A(o) ∪D(o).

Otherwise, p is static, denoted by p ∈ PS .
In a domain with hierarchical types, instances of the same predicate can be both static

and fluent. Consider the Depots domain, a combination of Logistics and Blocksworld, which
was used in the third international planning competition (Long & Fox, 2003). This domain
has such a type hierarchy. Type locatable has four atomic sub-types: pallet, hoist,
truck, and crate. Type place has two atomic sub-types: depot and distributor.
Predicate (at ?l - locatable ?p - place), which indicates that object ?l is located at
place ?p, corresponds to eight specialized predicates at the atomic type level. Predicate (at
?p - pallet ?d - depot) is static, since there is no operator that adds, deletes, or moves
a pallet. However, predicate (at ?c - crate ?d - depot) is fluent. For instance, the lift
operator deletes a fact of this type.

To address the issue of hierarchical types, we use a domain formulation where all types
are expressed at the lowest level in the hierarchy. We expand each predicate into a set
of low-level predicates whose arguments have low-level types. Similarly, low-level operators
have variable types from the lowest hierarchy level. Component abstraction and macro
generation are done at the lowest level. After building the macros, we restore the type
hierarchy of the domain. When possible, we replace a set of two or more macro operators
that have low-level types with one equivalent macro operator with hierarchical types. In
this way, macros respect the same definition style (with respect to hierarchical types) as
the rest of the domain operators. For planners that pre-instantiate all operators, such as
FF, the existence of hierarchical types is not relevant. Before searching for a solution, all
operators are instantiated into ground actions whose arguments have low-level types.

Facts corresponding to static predicates are called static facts. In our current imple-
mentation we ignore static predicates that are unary 1 or contain two or more variables of
the same type. The latter kind of facts are often used to model topological relationships,
and can lead to large components.

1. In fact, in many current domains, unary static facts have been replaced by types associated with variables.

586

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

Step Current Used. component0 component1
Predicate Pred. Consts Facts Consts Facts

1 cam0 cam1
2 (supports NO cam0 cam1

?c - camera
?m - mode)

3 (calibr-target NO cam0 cam1
?c - camera

?o - objective)
4 (on-board YES cam0 (on-board cam1 (on-board

?c - camera rover0 cam0 rover0) rover1 cam1 rover1)
?r - rover)

5 (store-of YES cam0 (on-board cam1 (on-board
?s - store rover0 cam0 rover0) rover1 cam1 rover1)
?r - rover) store0 (store-of store1 (store-of

store0 rover0) store1 rover1)

Table 1: Building abstract components for the Rovers example.

2.1.2 Building Abstract Components

Abstract components are built as connected subgraphs of the static graph of a problem.
Clustering starts with abstract components of size 1, containing one node each, that are
generated based on a domain type t, called the seed type. For each node with type t
in the static graph, a new abstract component is created. Abstract components are then
iteratively extended with a greedy approach.

Next we detail how the clustering procedure works on the example, and then provide
a more formal description, including pseudo-code. As said before, Figure 3 shows the two
abstract components built by this procedure. The steps of the clustering are summarized
in Table 1, and correspond to the following actions:

1. Choose a seed type (camera in this example), and create one abstract component
for each constant of type camera: component0 contains cam0, and component1
contains cam1. Next, iteratively extend the components created at this step. One
extension step uses a static predicate that has at least one variable type already
encoded into the components.

2. Choose the predicate (supports ?c - camera ?m - mode), which has a variable of
type camera. To avoid ending up with one large component containing the whole
graph, merging two existing components is not allowed. Hence a check is performed
whether the static facts based on this predicate keep the existing components sepa-
rated. These static facts are (supports cam0 colour), (supports cam0 high-
res), (supports cam1 colour), and (supports cam1 high-res). The test fails,
since constants colour and high-res would be part of both components. Therefore,
this predicate is not used for component extension (see the third column of Table 1).

3. Similarly, the predicate (calibration-target ?c - camera ?o - objective), which
would add the constant obj1 to both components, is not used for extension.

587

Botea, Enzenberger, Müller, & Schaeffer

4. The predicate (on-board ?c - camera ?r - rover) is tried. It merges no compo-
nents, so it is used for component extension. The components are expanded as shown
in Table 1, Step 4.

5. The predicate (store-of ?s - store ?r - rover), whose type rover has previ-
ously been encoded into the components, is considered. This predicate extends the
components as presented in Table 1, Step 5.

After Step 5 is completed, no further component extension can be performed. There are
no other static predicates using at least one of the component types to be tried for further
extension. At this moment the quality of the decomposition is evaluated. In this exam-
ple it is satisfactory (see discussion below), and the process terminates. Otherwise, the
decomposition process restarts with another domain type.

The quality of a decomposition is evaluated according to the size of the built components,
where size is defined as the number of low-level types in a component. In our experiments, we
limited size to values between 2 and 4. The lower limit is trivial, since an abstract component
should combine at least two low-level types. The upper limit was set heuristically, to prevent
the abstraction from building just one large component. These relatively small values are
also consistent with the goal of limiting the size and number of macro operators. We discuss
this issue in more detail in Section 2.2.

Figure 4 shows pseudo-code for component abstraction. Types(g) contains all types of
the constant symbols used as nodes in g. Given a type t, Preds(t) is the set of all static
predicates that have a parameter of type t. Given a static predicate p, Types(p) includes
the types of its parameters. Facts(p) are all facts instantiated from p.

Each iteration of the main loop tries to build components starting from a seed type
t ∈ Types(g). The sets Open, Closed, Tried, and AC are initialized to ∅. Each graph node
of type t becomes the seed of an abstract component (method createComponent). The com-
ponents are greedily extended by adding new facts and constants, such that no constant is
part of any two distinct components. The method predConnectsComponents(p, AC) verifies
if any fact f ∈ Facts(p) merges two distinct abstract components in AC.

Method extendComponents(p, AC) extends the existing components using all static facts
f ∈ Facts(p). For simplicity, assume that a fact f is binary and has constants c1 and c2 as
arguments. Given a component ac, let Nodes(ac) be its set of constants (subgraph nodes)
and Facts(ac) its set of static facts (subgraph edges). In the most general case, four possible
relationships can exist between the abstract components and elements f , c1, and c2:

1. Both c1 and c2 already belong to the same abstract component ac:

∃(ac ∈ AC) : c1 ∈ Nodes(ac) ∧ c2 ∈ Nodes(ac).

In this case, f is added to ac as a new edge.

2. Constant c1 is already part of an abstract component ac (i.e., c1 ∈ Nodes(ac)) and c2

is not assigned to a component yet. Now ac is extended with c2 as a new node and f
as a new edge between c1 and c2.

3. If neither c1 nor c2 are part of a previously built component, a new component con-
taining f , c1 and c2 is created and added to AC.

588

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

componentAbstraction(Graph g) {
for (each t ∈ Types(g) chosen in random order) {

resetAllStructures();
Open← t;
for (each ci ∈ Nodes(g) with type t)

AC ← createComponent(ci);
while (Open 6= ∅) {

t1 ← Open;
Closed← t1;
for (each p ∈ Preds(t1) \ Tried)

Tried← p;
if ¬(predConnectsComponents(p, AC)) {

extendComponents(p, AC);
for (each t2 ∈ Types(p))

if (t2 /∈ Open ∪ Closed)
Open← t2;

}
}
if (evaluateDecomposition() = OK)

return AC;
}
return ∅;

}

Figure 4: Component abstraction in pseudo-code.

4. Constants c1 and c2 belong to two distinct abstract components:

∃(ac1, ac2) : c1 ∈ Nodes(ac1) ∧ c2 ∈ Nodes(ac2) ∧ ac1 6= ac2.

While possible in general, this last alternative never occurs at the point where the
method extendComponents is called. This is ensured by the previous test with the
method predConnectsComponents.

Consider the case when a static graph has two disconnected (i.e., with no edge between
them) subgraphs sg1 and sg2 such that Types(sg1) ∩ Types(sg2) = ∅. In such a case, the
algorithm shown in Figure 4 finds abstract components only in the subgraph that contains
the seed type. To perform clustering on the whole graph, the algorithm has to be run on
each subgraph separately.

Following the standard of typed planning domains, abstract components are assigned
abstract types. Figure 5 shows the abstract type assigned to the components of our example.
As shown in this figure, the abstract type of an abstract component is a graph obtained
from the component graph by changing the node labels. The constant symbols used as node
labels have been replaced with their low-level types (e.g., constant cam0 has been replaced
by its type camera).

589

Botea, Enzenberger, Müller, & Schaeffer

Figure 5: Abstract type in Rovers.

Figure 6: Example of a macro in Depots.

Our example also shows that components with identical structure have the same abstract
type. Identical structure is a strong form of graph isomorphism, which preserves the edge
labels as well as the types of constants used as node labels. A fact f = f(c1, ..., ck) ∈
Facts(ac) is a predicate whose variables have been instantiated to constants ci ∈ Nodes(ac).

Two abstract components ac1 and ac2 have identical structure if:

1. |Nodes(ac1)| = |Nodes(ac2)|; and

2. |Facts(ac1)| = |Facts(ac2)|; and

3. there is a bijective mapping p : Nodes(ac1)→ Nodes(ac2) such that

• ∀c ∈ Nodes(ac1) : Type(c) = Type(p(c));

• ∀f(c1
1, ..., c

k
1) ∈ Facts(ac1) : f(p(c1

1), ..., p(ck
1)) ∈ Facts(ac2);

• ∀f(c1
2, ..., c

k
2) ∈ Facts(ac2) : f(p−1(c1

2), ..., p
−1(ck

2)) ∈ Facts(ac1);

2.2 Creating Macro-Operators

A macro-operator m in CA-ED is formally equivalent to a normal operator: it has a set of
variables V (m), a set of preconditions P (m), a set of add effects A(m), and a set of delete
effects D(m). Figure 6 shows an example of a macro in Depots. Figure 7 shows complete
STRIPS definitions for this macro and the operators that it contains.

Macro operators are obtained in two steps, which are presented in detail in the remain-
ing part of this section. First, an extended set of macros is built and next the macros are

590

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

(:action UNLOAD—DROP
:parameters

(?h - hoist ?c - crate ?t - truck ?p - place ?s - surface)
:precondition

(and (at ?h ?p) (in ?c ?t) (available ?h)
(at ?t ?p) (clear ?s) (at ?s ?p))

:effect
(and (not (in ?c ?t)) (not (clear ?s))

(at ?c ?p) (clear ?c) (on ?c ?s))
)
(:action UNLOAD

:parameters
(?x - hoist ?y - crate ?t - truck ?p - place)

:precondition
(and (in ?y ?t) (available ?x) (at ?t ?p) (at ?x ?p))

:effect
(and (not (in ?y ?t)) (not (available ?x)) (lifting ?x ?y))

)
(:action DROP

:parameters
(?x - hoist ?y - crate ?s - surface ?p - place)

:precondition
(and (lifting ?x ?y) (clear ?s) (at ?s ?p) (at ?x ?p))

:effect
(and (available ?x) (not (lifting ?x ?y)) (at ?y ?p)

(not (clear ?s)) (clear ?y) (on ?y ?s))
)

Figure 7: STRIPS definitions of macro unload—drop and the operators that it contains.

filtered in a quick training process. Since empirical evidence indicates that the extra in-
formation added to a domain definition should be quite small, the methods described next
tend to minimize the number of macros and their size, measured by the number of variables,
preconditions and effects. Static macro generation uses many constraints for pruning the
space of macro operators, and discards large macros. Finally, dynamic filtering keeps only
a few top performing macros for solving future problems.

2.2.1 Macro Generation

For an abstract type at, macros are generated by performing a forward search in the space of
macro operators. Macros perform local processing within a component of type at, according
to the locality rule detailed below.

The root state of the search represents an empty macro (i.e., empty sets of operators,
variables, preconditions, and effects). Each search step appends an operator to the current

591

Botea, Enzenberger, Müller, & Schaeffer

void addOperatorToMacro(operator o, macro m, variable-mapping vm) {
for (each precondition p ∈ P (o)) {

if (p /∈ A(m) ∪ P (m))
P (m) = P (m) ∪ {p};

}
for (each delete effect d ∈ D(o)) {

if (d ∈ A(m))
A(m) = A(m)− {d};

D(m) = D(m) ∪ {d};
}
for (each add effect a ∈ A(o)) {

if (a ∈ D(m))
D(m) = D(m)− {a};

A(m) = A(m) ∪ {a};
}

}

Figure 8: Adding operators to a macro.

macro, and fixes the variable mapping between the new operator and the macro. Adding
a new operator o to a macro m modifies P (m), A(m), and D(m) as shown in Figure 8.
Even if not explicitely shown in the figure, the variable mapping vm in the procedure is
used to check the identity between operator’s predicates and macro’s predicates (e.g., in
p /∈ A(m)∪P (m)). Two predicates are considered identical if they have the same name and
the same set of parameters. The variable mapping vm tells what variables (parameters) are
common in both the macro and the new operator.

The search is selective: it includes a set of rules for pruning the search tree and for
validating a built macro operator. Validated macros are goal states in this search space.
The search enumerates all valid macro operators. The following pruning rules are used for
static filtering:

• The negated precondition rule prunes operators with a precondition that matches one
of the current delete effects of the macro operator. This rule avoids building incorrect
macros where a predicate should be both true and false.

• The repetition rule prunes operators that generate cycles. A macro containing a cycle
is either useless, producing an empty effect set, or it can be written in a shorter form
by eliminating the cycle. A cycle in a macro is detected when the effects of the first
k1 operators are the same as for the first k2 operators, with k1 < k2. In particular, if
k1 = 0 then the first k2 operators have no effect.

• The chaining rule requires that for consecutive operators o1 and o2 in a macro, the
preconditions of o2 must include at least one positive effect of o1. This rule is motivated
by the idea that the action sequence of a macro should have a coherent meaning.

592

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

(:action TAKE-IMAGE
:parameters

(?r - rover ?p - waypoint ?o - objective ?i - camera ?m - mode)
:precondition

(and (calibrated ?i ?r) (on-board ?i ?r) (equipped-for-imaging ?r)
(supports ?i ?m) (visible-from ?o ?p) (at ?r ?p))

:effect
(and (have-image ?r ?o ?m) (not (calibrated ?i ?r)))

)
(:action TAKE-IMAGE—TAKE-IMAGE

:parameters
(?r0 - rover ?p - waypoint ?o - objective ?i0 - camera ?m - mode
?r1 - rover ?i1 - camera)

:precondition
(and (calibrated ?i0 ?r0) (on-board ?i0 ?r0) (equipped-for-imaging ?r0)

(calibrated ?i1 ?r1) (on-board ?i1 ?r1) (equipped-for-imaging ?r1)
(supports ?i0 ?m) (visible-from ?o ?p) (at ?r0 ?p)
(supports ?i1 ?m) (at ?r1 ?p))

:effect
(and (have-image ?r0 ?o ?m) (not (calibrated ?i0 ?r0))

(have-image ?r1 ?o ?m) (not (calibrated ?i1 ?r1)))
)

Figure 9: Operator take-image and macro-operator take-image—take-image in
Rovers. This macro is rejected by the locality rule.

• We limit the size of a macro by imposing a maximal length and a maximal number
of preconditions. Similar constraints could be added for the number of variables or
effects, but we found this unnecessary. Limiting the number of preconditions indirectly
limits the number of variables and effects. Large macros are generally undesirable, as
they can significantly increase the preprocessing costs and the cost per node in the
planner’s search.

• The locality rule is meant to prune macros that change two or more abstract com-
ponents at the same time. All local static preconditions of an acceptable macro are
part of the same abstract component. Given an abstract type at and a macro m,
let the local static preconditions be the static predicates that are part of both m’s
preconditions and at’s edges. Local static preconditions and their parameters in m’s
definition define a graph structure (different variable bindings for the operators that
compose m can create different graph structures). To implement the idea of locality
we require that this graph is isomorphic with a subgraph of at.

As an example of the locality rule, consider the Rovers abstract type at in Figure 5
and the macro m take-image—take-image shown in Figure 9 (this figure also shows

593

Botea, Enzenberger, Müller, & Schaeffer

Figure 10: Local static preconditions of macro take-image—take-image with respect to
the abstract type in Figure 5. As the picture shows, these correspond to a graph
with 4 nodes and 2 edges.

the definition of the take-image operator). Intuitively, m involves two components, since
two distinct cameras and two distinct rovers are part of the macro’s variables. We show
that this macro is rejected by the locality rule. The graph corresponding to the local static
preconditions of m and at is shown in Figure 10. Obviously, this is not a subgraph of at’s
graph shown in Figure 5, so m is rejected.

2.2.2 Macro Ranking and Filtering

The goal of ranking and filtering is to reduce the number of macros and use only the most
efficient ones for solving problems. The overhead of poor macros can outweight their benefit.
This is known under the name of the utility problem (Minton, 1988). In CA-ED, adding
more operators to a domain increases the preprocessing costs and the cost per node in the
planner’s search.

We used a simple but efficient and practical approach to dynamic macro filtering to
select a small set of macro operators. We count how often a macro operator is instantiated
as an action in the problem solutions found by the planner. The more often a macro has
been used in the past, the greater the chance that the macro will be useful in the future.

For ranking, each macro operator is assigned a weight that estimates its efficiency. All
weights are initialized to 0. Each time a macro is present in a plan, its weight is increased
by the number of occurrences of the macro in the plan (occurrence points), plus 10 bonus
points. No effort was spent on tuning parameters such as the bonus. For common macros
that are part of all solutions of training problems, any bonus value v ≥ 0 will produce the
same ranking among these common macros. No matter what the value v is, each common
macro will receive v × T bonus points, where T is the number of training problems. Hence
the occurrence points decide the relative ranking of common macros.

We use the simplest problems in a domain for training. For these simple problems,
we use all macro operators, giving each macro a chance to participate in a solution plan
and increase its weight. After the training phase, the best macro operators are selected to
become part of the enhanced domain definition. In experiments, 2 macros, each containing
two steps, were added as new operators to the initial sets of 9 operators in Rovers, and
5 operators in Depots and Satellite. In these domains, such a small amount of extra-

594

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

information was observed to be a good tradeoff between the benefits and the additional
pre-processing and run-time costs. In more difficult domains, possibly with larger initial
sets of operators, using more macros would probably be beneficial.

3. Using Macros from Solutions in an Enhanced Planner

In this section we introduce SOL-EP, the macro system that we used in the fourth interna-
tional planning competition. We start with a motivation in Section 3.1, and then describe
the method in the following two sections. SOL-EP follows the same four-step pattern as
before, but can be applied to more general classes of problems. Section 3.2 describes steps
1 – 3, and Section 3.3 shows step 4. Section 3.4 concludes this section with a discussion.

3.1 Motivation

SOL-EP was designed with the goal of eliminating the main limitations of CA-ED. Specif-
ically, we wanted to extend the applicability of CA-ED to larger classes of domains. Since
CA-ED generates macros based on component abstraction, its applicability is limited to
domains with static predicates in their definition. SOL-EP generates macros from solutions
of sample problems, with no restrictions caused by the nature of a domain’s predicates.

Furthermore, CA-ED is limited to relatively simple subsets of PDDL such as STRIPS.
Since CA-ED adds macros as new operators to the original domain, complete definitions of
macros, including precondition and effect formulas, are required. These formulas are easy
to obtain in STRIPS, as shown in Figures 7 and 8. However, adding macros to an ADL
domain file becomes unfeasible in practice for two main reasons. First, the precondition
and effect formulas of a macro are hard to infer from the formulas of contained operators.
Second, even if the previous issue is solved and a macro with complete definition is added
to a domain, the costs for pre-instantiating it into ground macro-actions can be large.

To illustrate how challenging the formula inference is in ADL, consider the example
in Figure 11, which shows operator move from the ADL Airport domain used in IPC-4.
The preconditions and the effects of this operator are quite complex formulas that include
quantifiers, implications and conditional effects. Assume we want to compose a macro
that applies two move actions in a row with a given parameter mapping. To achieve a
complete definition of macro move move, its precondition and effect formulas would have
to be automatically composed by analyzing how the preconditions and effects of the two
contained operators interact. We could not find a straight-forward way to generate a macro’s
formulas, so we decided to move towards an alternative solution that is presented later in
this subsection.

Even if the above issue is solved and macros can be added as new domain operators, pre-
instantiating a macro into ground actions can be costly. Many top-level planners, including
FF, pre-instantiate the domain operators into all possible ground actions that might be
applied in the problem instance at hand. The cost of instantiating one operator is exponen-
tial in the total number of parameters and quantifier variables. Macros tend to have larger
numbers of parameters and quantifiers and therefore their instantiation can significantly
increase the total preprocessing costs. ADL Airport is a good illustration of how important
this effect can be. As shown in Section 5.2, the preprocessing is so costly as compared to the

595

Botea, Enzenberger, Müller, & Schaeffer

(:action move
:parameters

(?a - airplane ?t - airplanetype ?d1 - direction ?s1 ?s2 - segment ?d2 - direction)
:precondition

(and (has-type ?a ?t) (is-moving ?a)
(not (= ?s1 ?s2))
(facing ?a ?d1) (can-move ?s1 ?s2 ?d1)
(move-dir ?s1 ?s2 ?d2) (at-segment ?a ?s1)
(not

(exists (?a1 - airplane)
(and (not (= ?a1 ?a)) (blocked ?s2 ?a1))))

(forall (?s - segment)
(imply (and (is-blocked ?s ?t ?s2 ?d2)

(not (= ?s ?s1)))
(not (occupied ?s))))

)
:effect

(and (occupied ?s2) (blocked ?s2 ?a)
(not (occupied ?s1))
(when (not (is-blocked ?s1 ?t ?s2 ?d2))

(not (blocked ?s1 ?a)))
(when (not (= ?d1 ?d2))

(not (facing ?a ?d1)))
(not (at-segment ?a ?s1))
(forall (?s - segment)

(when (is-blocked ?s ?t ?s2 ?d2)
(blocked ?s ?a)))

(forall (?s - segment)
(when (and (is-blocked ?s ?t ?s1 ?d1)

(not (= ?s ?s2))
(not (is-blocked ?s ?t ?s2 ?d2)))

(not (blocked ?s ?a))))
(at-segment ?a ?s2)
(when (not (= ?d1 ?d2))
(facing ?a ?d2))

)
)

Figure 11: Operator move in ADL Airport.

596

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

Figure 12: The solution steps of problem 1 in the Satellite benchmark.

main search that it dominates the total cost of solving a problem in this domain. Further
increasing the preprocessing costs with new operators is not desirable in such domains.

Our solution for ADL macros is to represent a SOL-EP macro as a list of atomic actions.
Precondition and effect formulas are not explicitly provided. Rather, they are determined
at run-time, when a macro is dynamically instantiated by applying its action sequence.

The benchmarks used in IPC-4 emphasize the need to address the issues described
above. Many competition domains were provided in both STRIPS and ADL formulations.
The “main” definition was in ADL and, for planners that could not take ADL domains as
input, STRIPS compilations of each ADL domain were provided. We could only run our
system on ADL domains. The reason is that in STRIPS compilations of ADL domains,
a distinct domain file was generated for each problem instance. However, our learning
approach requires several training problems for each domain.

3.2 Generating Macros

As a running example, we will use the solution plan for problem 1 in the Satellite domain
shown in Figure 12. For each step, the figure shows the order in the linear plan, the action
name, the argument list, the preconditions, and the effects. To keep the picture simple,
we ignore static preconditions of actions. Static facts never occur as action effects, and
therefore do not affect the interactions between preconditions and effects of actions.

In SOL-EP, macro-operators are extracted from the solutions of the training problems.
Each training problem is first solved with no macros in use. The found plan can be rep-
resented as a solution graph, where each node represents a plan step (action), and edges
model interactions between solution steps. Building the solution graph is step 1 (analysis)
in our general four-step pattern. In IPC-4 we used a first implementation of the solution
graph, that considers interactions only between two consecutive actions of a plan. Here an
interaction is defined if the two actions have at least one common argument, or at least one

597

Botea, Enzenberger, Müller, & Schaeffer

action has no arguments at all. Hence the implementation described in this article extracts
only such two-action sequences as possible macros.

The macro-actions extracted from a solution are translated into macro-operators by
replacing their instantiated arguments with generic variables. This operation preserves
the relative mapping between the arguments of the contained actions. Macro-actions with
different sets of arguments can result in the same macro-operator. For the Satellite solution
in Figure 12, the sequence turn-to followed by take-image occurs three times. After
replacing the constant arguments with generic variables, all occurrences yield the same
macro-operator.

There are many pairs of actions in a solution, and a decision must be made as to
which ones are going to beneficial as macro-operators in a search. Macros are statically
filtered according to the rules of Section 2.2.1 excluding the limitation of the number of
preconditions, which is not critical in this algorithm, and the locality rule. Also, as said
before, we use a different version of the chaining rule. We request that the operators of a
macro have common variables, unless an operator has 0 parameters.

Macro-operators are stored in a global list ordered by their weight, with smaller being
better. Weights are initialized to 1.0 and updated in a dynamic ranking process using a
gradient-descent method.

For each macro-operator m extracted from the solution of a training problem, we re-
solve the problem with m in use. Let L be the solution length when no macros are used, N
the number of nodes expanded to solve the problem with no macros, and Nm the number
of expanded nodes when macro m is used. Then we use the difference N −Nm to update
wm, the weight of macro m. Since N −Nm can take arbitrarily large values, we map it to
a new value in the interval (−1, 1) by

δm = σ(
N −Nm

N
)

where σ is the sigmoid function

σ(x) =
2

1 + e−x
− 1.

Function σ generates the curve shown in Figure 13. This particular definition of σ was
chosen because it is symmetric in (0, 0) (i.e., σ(x) = −σ(−x)) and bounded within the
interval (−1, 1). In particular, the symmetry property ensures that, if Nm = N , than the
weight update of m at the current training step is 0. The size of the boundary interval has no
effect on the ranking procedure, it only scales all weight updates by a constant multiplicative
factor. We used a sigmoid function bounded to (−1, 1) as a canonical representation, which
limits the absolute value of δm between 0 and 1.

The update formula also contains a factor that measures the difficulty of the training
instance. The harder the problem, the larger the weight update should be. We use as the
difficulty factor the solution length L rather than N , since the former has a smaller variance
over a training problem set. The formula for updating wm is

wm = wm − αδmL

where α is a small constant (0.001 in our implementation). The value of α does not affect
the ranking of macros. It was used only to keep macro weights within the vicinity of 1. See

598

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

-1

 0

 1

-10 -5 0 5 10

Figure 13: Sigmoid function.

the second part of Section 3.4 for a comparison between CA-ED’s frequency-based ranking
and SOL-EP’s gradient-descent ranking.

In CA-ED, only two macros are kept for future use, given the large extra-costs associated
with this type of macros. In SOL-EP we allow an arbitrary (but still small) number of
macros to be used in search, given the smaller extra-costs involved. SOL-EP macros have
no preprocessing costs, and the cost per node in the search can be much smaller than in
the case of CA-ED macros (see Table 4).

To decide the number of selected macros in a domain, a weight threshold wim is de-
fined. This threshold can be seen as the weight of an imaginary macro im with “constant
performance” in all training instances. By “constant performance” we mean that, for each
training instance,

N −Nim

N
= c,

where c > 0 is a constant parameter. The threshold wim is updated following the same
procedure as for regular macros: The initial value of wim is set to 1. For each training
problem, the weight update of im is

wim = wim − αδimL = wim − ασ(c)L

After all training problems have been processed, macros with a weight smaller than wim

are selected for future use. In experiments we set c to 0.01. Given the competition tight
deadline, we invested limited time in studying this method and tuning its parameters. How
to best determine the number of selected macros is still an open problem for us, which
clearly needs more thourough study and evaluation.

3.3 Using Macros at Run-Time

The purpose of learned macros is to speed up search in new problem instances. A classical
search algorithm expands a node by considering low-level actions that can be applied to the
current state. We add successor states that can be reached by applying the whole sequence
of actions in a macro. We order these macro successors before the regular successors of a

599

Botea, Enzenberger, Müller, & Schaeffer

state. Macros affects neither the completeness nor the correctness of the original algorithm.
The completeness of an original search algorithm is preserved since SOL-EP removes no
regular successors of a state. Correctness is guaranteed by the following way of applying
a macro to a state. Given a state s0 and a sequence of actions m = a1a2...ak (k = 2 in
our competition system), we say that m is applicable to s0 if ai can be applied to si−1,
i = 1, ..., k, where si = γ(si−1, ai) and γ(s, a) is the state obtained by applying a to s.

When a given state is expanded at runtime, many instantiations of a macro could be ap-
plicable but only a few would actually be shortcuts towards a goal state. If all instantiations
are considered, the branching factor can significantly increase and the induced overhead can
be larger than the potential savings achieved by the useful instantiations. Therefore, the
challenge is to select for state expansion only a small number of good macro instantiations.
To determine what a “good” instantiation of a macro is, we use a heuristic method called
helpful macro pruning. Helpful macro pruning is based on the relaxed graphplan compu-
tation that FF (Hoffmann & Nebel, 2001) performs for each evaluated state s. Given a
state s, FF solves a relaxed problem, where the initial state is the currently evaluated state,
the goal conditions are the same as in the real problem, and the actions are relaxed by ig-
noring their delete effects. This computation produces a relaxed plan RP (s). In FF, the
relaxed plan is used to heuristically evaluate problem states and prune low-level actions in
the search space (helpful action pruning).

In addition, we use the relaxed plan to prune the set of macro-instantiations that will
be used for node expansion. Since actions from the relaxed plan are often useful in the real
world, we request that a selected macro and the relaxed plan match i.e., each action of the
macro is part of the relaxed plan.

3.4 Discussion

The first part of this section summarizes properties of CA-ED macros and SOL-EP macros.
Then comments on macro-ranking are provided, including a brief comparison of frequency-
based ranking and gradient-descent ranking.

3.4.1 CA-ED Macros vs SOL-EP Macros

When treated as single moves, macro-actions have the potential to influence the planning
process in two important ways. First, macros can change the search space (the embedding
effect), adding to a node successor list states that would normally be achieved in several
steps. Intermediate states in the macro sequence do not have to be evaluated, reducing the
search costs considerably. In effect, the maximal depth of a search could be reduced for the
price of increasing the branching factor.

Second, macros can improve the heuristic evaluation of states (the evaluation effect). As
shown before, FF computes this heuristic by solving a relaxed planning problem (i.e., the
delete effects of actions are ignored) in a graphplan framework. To illustrate the benefits of
macros in relaxed graphplan, consider the example in Figures 6 and 7. Operator unload
has one add effect (lifting) and one delete effect (available) that update the status of
a hoist from available (free) to lifting (busy). Similarly, operator drop updates the hoist
status with two such effects. However, when macro unload—drop is used, the status of
the hoist does not change: it was available (free) before, it will be available after. No effects

600

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

are necessary to express changes in the hoist status. Hence two delete effects (one for each
operator) are safely eliminated from the real problem before relaxation is performed. The
relaxed problem is more similar to the real problem and the information loss is less drastic.
See Section 5.4 for an empirical evaluation of how macros added to a domain affect the
heuristic state evaluation with relaxed graphplan.

When macros can be added to the original domain formulation, both the evaluation
effect and the embedding effect are present, with no need to extend the original planning
engine. The disadvantages of this alternative include the limitation to STRIPS domains
and, often, a significant increase of the preprocessing costs, memory requirements, or cost
per node in the search (as shown in Section 5). When SOL-EP macros are used, each of the
two effects needs a special extension of the planning engine. The current implementation of
the enhanced planner handles the embedding effects but does not affect the computation of
the heuristic state evaluation. Improving the heuristic state evaluation with macros is an
important topic for future work.

3.4.2 Comments on Ranking

The frequency-based ranking method used with CA-ED is simple, fast and was shown to
produce useful macros. Part of its success is due to the combination with static pruning
rules. In particular, limiting macro length to only two actions simplifies the problem of
macro ranking and filtering.

However, in the general case, the savings that a macro can achieve depend not only
on how often it occurs as part of a solution, but also on several other factors, which can
interact. Examples of such factors include the number of search nodes that the application
of a macro would save, and the ratio of useful instantiations of a macro (providing shortcuts
towards a goal state) versus instantiations that guide the search into a wrong direction. See
the work of McCluskey and Porteous (1997) for more details on factors that determine the
performance of macro-operators in AI planning.

The reason why we have extended our approach from frequency-based ranking to gradient-
descent ranking is that integrating such factors as above into a ranking method is expected
to produce more accurate results. Compared to frequency-based ranking, gradient-descent
ranking measures the search performance of a macro more directly. To illustrate this,
consider the solution plan in Figure 12. Table 2 shows the 5 distinct macro-operators ex-
tracted from this solution plan. For each macro, both the gradient-descent weight and the
frequency-based weight are shown. In the latter case, the bonus points are ignored, since
they do not affect the ranking (all macros will receive the same amount of bonus points
for being part of this solution plan). Each method produces a different ranking. For ex-
ample, macro take-image turn-to is ranked fourth with the gradient-descent method
and second with the frequency-based method. The reason is that a macro such as turn-to
calibrate (or switch-on turn-to) saves more search nodes than take-image turn-to,
even though it appears less frequently in the solution.

When compared to the simple and fast frequency-based method, gradient-descent rank-
ing is more expensive. Each training problem has to be solved several times; once with no
macros in use and once for each macro. As shown in Table 3 in Section 5, the training
time can become an issue in domains such as PSR and Pipesworld Non-Temporal Tankage.

601

Botea, Enzenberger, Müller, & Schaeffer

Macro Weight Occurrences

turn-to take-image 0.999103 3

turn-to calibrate 0.999103 1

switch-on turn-to 0.999103 1

take-image turn-to 0.999401 2

calibrate turn-to 0.999700 1

Table 2: Macros generated in the Satellite example.

Both ranking techniques ignore elements such as the interactions of several macros when
used simultaneously, or the effects of macros on the quality of plans. See Section 5 for an
evaluation of the latter.

Macro ranking is a difficult problem. The training data is often limited. In addition,
factors such as frequency, number of search nodes that a macro would save, effects on
solution quality, etc. have to be combined into a total ordering of a macro set. There is no
clear best solution for this problem. For example, should we select a macro that speeds up
planning but increases the solution length?

4. Implementation Enhancements in Macro-FF

This section describes the implementation enhancements added to FF with the goal of
improving CPU and memory requirements. FF version 2.3 is highly optimized with respect
to relaxed graphplan generation, which was assumed to be the performance bottleneck by
the original system designers. We found that in several domains of the planning competition
this assumption does not hold and the planner spends a significant portion of its time in
other parts of the program. We applied two implementation enhancements to FF to reduce
the CPU time requirements.

Another problem was that the memory requirements for some data structures built
during the pre-processing stage grew exponentially with problem size and therefore did not
scale. We replaced one of these data structures and were able to solve a few more problems
in several domains within the memory limit used in the planning competition.

The enhancements described in this section affect neither the number of expanded nodes
nor the quality of plans found by FF.

4.1 Open Queue

FF tries to find a solution using an enhanced hill climbing method and, if no solution is
found, switches to a best-first search algorithm. Profiling runs showed that in the Pipesworld
domains of the planning competition up to 90% of the CPU time is spent inserting nodes
into the open queue. The open queue was implemented as a single linked list. We changed
the implementation to use a linked list of buckets, one bucket for each heuristic value. The
buckets are implemented as linked lists and need constant time for insertion, since they no
longer have to be sorted.

602

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

4.2 State Hashing

The original FF already used state hashing to help identify previously visited states, with
a full comparison of states in case of a collision. Each fact of a planning problem is assigned
a unique 32-bit random number, and the hash code of a problem state is the sum of all
random numbers associated to the facts that characterize the given state. Profiling runs
showed that in some domains up to 35% of the CPU time is spent in the comparison of
states. These are in particular domains with large states and small graphplan structures
such as PSR and Philosophers. We replaced the original hash key by a 64-bit Zobrist hash
key implementation, a standard technique in game-tree search (Marsland, 1986). Each fact
is assigned 64-bit random number, and the hash key of a state is obtained applying the
XOR operator to the random numbers corresponding to all facts true in the state.

When checking if two states are identical, only their hash codes are compared. If the
hash codes are different, than the states are guaranteed to be different too. If the two
compared states have the same hash code, we assume that the states are identical. This
choice gives up completeness of a search algorithm: two different states with the same hash
code can exist. However, this is so unlikely to occur that fast state comparison based on
64-bit Zobrist hashing is a common standard in high-performance game-playing programs.
The large size of the hash key and the better randomization makes the occurrence of hash
collisions much less probable than random hardware errors.

4.3 Memory Requirements

Some of the optimizations in FF require the creation of large lookup tables built during the
preprocessing stage. One of them is a lookup table storing the facts of the initial state. This
table is sparsely populated but the required memory is equal to the number of constants
to the power of the arity of each predicate summed over all predicates in the domain. This
caused the planner to run out of memory in some large domains given the 1 GB memory
limit used in the planning competition. We replaced the lookup table by a balanced binary
tree with minimal memory requirement and a lookup time proportional to the logarithm of
the number of facts in the initial state.

5. Experimental Results

This section summarizes our experiments and analysis of results. We evaluate our ideas with
several experiments, described in the next subsections. Section 5.1 evaluates the impact of
the implementation enhancements on the planner’s performance. Section 5.2 focuses on the
effect of macro-operators in the system used in the competition. In these two subsections,
the benchmarks that we competed in as part of IPC-4 are used for experimental evalua-
tion: Promela Dining Philosophers – ADL (containing a total of 48 problems), Promela
Optical Telegraph – ADL (48 problems), Satellite – STRIPS (36 problems), PSR Middle
Compiled – ADL (50 problems), Pipesworld Notankage Nontemporal – STRIPS (50 prob-
lems), Pipesworld Tankage Nontemporal – STRIPS (50 problems), and Airport – ADL
(50 problems). Macro-FF took the first place in Promela Optical Telegraph, PSR, and
Satellite.

603

Botea, Enzenberger, Müller, & Schaeffer

Section 5.3 compares the two abstraction techniques discussed in this article using
STRIPS domains with static facts. We provide more details later in this section. Section 5.4
contains an empirical analysis of how CA-ED macros affect heuristic state evaluation and
depth of goal states. All experiments reported in this article were run on a AMD Athlon 2
GHz machine, with the limits of 30 minutes and 1 GB of memory for each problem.

5.1 Enhanced FF

The new open queue implementation shows a significant speed-up in the Pipesworld do-
mains. Figure 14 shows the difference in CPU time for the two different Pipesworld domains
(note the logarithmic time scale). The simplest problems at the left of these charts are solved
so quickly that no data bar is drawn. The speedup depends on the problem instance with
maximum gains reaching a factor of 10. As a result two more problems were solved in
the Pipesworld Tankage Non-Temporal domain and one more problem in the Pipesworld
No-Tankage Non-Temporal domain.

The new 64-bit state hashing is especially effective in the PSR and Promela Dining
Philosophers domains. Figure 15 shows a speed-up of up to a factor of 2.5. This resulted in
3 more problems solved in PSR, contributing to the success of Macro-FF in this domain.

The reduced memory requirement is important in Promela Optical Telegraph. Figure 16
shows the memory requirement of the original FF for the initial facts lookup table. As a
result of the replacement of the lookup table, 3 more problems were solved in this domain.

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 5 10 15 20 25 30 35
Problem

Pipesworld Tankage Non-Temporal - CPU Time (seconds)

FF open queue
New open queue

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 5 10 15 20 25 30 35
Problem

Pipesworld No-Tankage Non-Temporal - CPU Time (seconds)

FF open queue
New open queue

Figure 14: Comparison of old and new open queue implementation in Pipesworld Tank-
age Non-Temporal (left) and Pipesworld No-Tankage Non-Temporal (right). Re-
sults are shown for sets of 50 problems in each domain.

5.2 Evaluating Macros in the Competition System

In this subsection we evaluate how SOL-EP macros can improve performance in the com-
petition system. We compare the planner with implementation enhancements against the
planner with both implementation enhancements and SOL-EP macros.

604

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 5 10 15 20 25 30 35 40 45
Problem

PSR - CPU Time (seconds)

FF hashing
New hashing

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 2 4 6 8 10 12
Problem

Philosophers - CPU Time (seconds)

FF hashing
New hashing

Figure 15: Comparison of the two implementations of state hashing in PSR (left) and
Promela Dining Philosophers (right). Results are shown for 50 problems in
PSR and 48 problems in Promela Dining Philosophers.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0 5 10 15 20 25 30 35 40 45 50

By
te

s

Problem

Optical

Old
New

Figure 16: Size of the data structures for initial facts in the old implementation (lookup ta-
ble) and the new implementation (balanced tree) in Promela Optical Telegraph.

For each of the seven test domains, we show the number of expanded nodes and the
total CPU time, again, on a logarithmic scale. A CPU time chart shows no distinction
between a problem solved very quickly (within a time close to 0) and a problem that could
not be solved. To determine what the case is, check the corresponding node chart, where
the absence of a data point always means no solution.

Figure 17 summarizes the results in Satellite, Promela Optical Telegraph, and Promela
Dining Philosophers. In Satellite and Promela Optical Telegraph, macros greatly improve
performance over the whole problem sets, allowing Macro-FF to win these domain formu-

605

Botea, Enzenberger, Müller, & Schaeffer

lations in the competition. In Promela Optical Telegraph macros led to solving 12 additional
problems. The savings in Promela Dining Philosophers are limited, resulting in one more
problem solved.

Figure 18 shows the results in the ADL version of Airport. The savings in terms of
expanded nodes are significant, but they have little effect on the total running time. In this
domain, the preprocessing costs dominate the total running time.

The complexity of preprocessing in Airport also limits the number of solved problems
to 21. The planner can solve more problems when the STRIPS version of Airport is used,
but no macros could be generated for this domain version. STRIPS Airport contains one
domain definition for each problem instance, whereas our learning method requires several
training problems for a domain definition.

Figure 19 contains the results in Pipesworld Non-Temporal No-Tankage, Pipesworld
Non-Temporal Tankage, and PSR. In Pipesworld Non-Temporal No-Tankage, macros often
lead to significant speed-up. As a result, the system solves four new problems. On the other
hand, the system with macros fails in three previously solved problems. The contribution
of macros is less significant in Pipesworld Non-Temporal Tankage. The system with macros
solves two new problems and fails in one previously solved instance. Out of all seven
benchmarks, PSR is the domain where macros have the smallest impact. Both systems
solve 29 problems using similar amounts of resources. In the competition official run,
Macro-FF solved 32 problems in this domain formulation.

Table 3 shows the number of training problems, the total training time, and the selected
macros in each domain. The training phase uses 10 problems for each of Airport, Satellite,
Pipesworld Non-Temporal No-Tankage, and PSR. We reduced the training set to 5 problems
for Promela Optical Telegraph, 6 problems for Promela Dining Philosophers, and 5 problems
for Pipesworld Non-Temporal Tankage. In Promela Optical Telegraph, the planner with
no macros solves 13 problems, and using most of them for training would leave little room
for evaluating the learned macros. The situation is similar in Promela Dining Philosophers;
the planner with no macros solves 12 problems. In Pipesworld Non-Temporal Tankage,
the smaller number of training problems is caused by both the long training time and the
structure of the competition problem set. The first 10 problems use only a part of the
domain operators, so we did not include these into the training set. Out of the remaining
problems, the planner with no macros solves 11 instances. The large training times in
Pipesworld Non-Temporal Tankage and PSR are caused by the increased difficulty of the
training problems.

5.3 Evaluating our Abstraction Techniques

To evaluate the performance of our two abstraction methods, we compare four setups of
Macro-FF. In all four setups, the planner includes the implementation enhancements
described in Section 4. Setup 1 is the planner with no macros. Setup 2 includes CA-ED,
the method described in Section 2. Setup 3 uses SOL-EP, the method described in Section
3. Setup 4 is a combination of 2 and 3. Since both methods have benefits and limitations,
it is interesting to analyze how they perform when applied together. In setup 4, we first
run CA-ED, obtaining an enhanced domain. Next we treat this as a regular domain, and

606

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

Domain TP TT Macros

Airport 10 365 MOVE MOVE
PUSHBACK MOVE
PUSHBACK PUSHBACK
MOVE TAKEOFF

Promela 5 70 QUEUE-WRITE ADVANCE-EMPTY-QUEUE-TAIL
Optical ACTIVATE-TRANS QUEUE-WRITE
Telegraph ACTIVATE-TRANS ACTIVATE-TRANS

PERFORM-TRANS ACTIVATE-TRANS

Promela 6 10 ACTIVATE-TRANS QUEUE-READ
Dining ACTIVATE-TRANS ACTIVATE-TRANS
Philosophers QUEUE-READ ADVANCE-QUEUE-HEAD

Satellite 10 8 TURN-TO SWITCH-ON
SWITCH-ON TURN-TO
SWITCH-ON CALIBRATE
TURN-TO TAKE-IMAGE
TURN-TO CALIBRATE
TAKE-IMAGE TURN-TO

Pipesworld 10 250 POP-START POP-END
Non-Temporal PUSH-START PUSH-END
No-Tankage PUSH-START POP-START

Pipesworld 5 4,206 PUSH-START PUSH-END
Non-Temporal PUSH-START POP-END
Tankage PUSH-END POP-START

POP-END PUSH-START
PUSH-END PUSH-START
PUSH-START POP-START
POP-START PUSH-START

PSR 10 1,592 AXIOM AXIOM
CLOSE AXIOM

Table 3: Summary of training in each domain. TP is the number of training problems
and TT is the total training time in seconds. The last column shows the macros
selected for each domain. For simplicity, we do not show the variable mapping of
each macro.

607

Botea, Enzenberger, Müller, & Schaeffer

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

 5 10 15 20 25 30 35
Problem

Satellite - Nodes

FF enhanced
With macros

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 5 10 15 20 25 30 35
Problem

Satellite - CPU Time (seconds)

FF enhanced
With macros

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

 5 10 15 20 25
Problem

Optical - Nodes

FF enhanced
With macros

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 5 10 15 20 25
Problem

Optical - CPU Time (seconds)

FF enhanced
With macros

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

 2 4 6 8 10 12 14
Problem

Philosophers - Nodes

FF enhanced
With macros

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 2 4 6 8 10 12 14
Problem

Philosophers - CPU Time (seconds)

FF enhanced
With macros

Figure 17: Comparison of our enhanced version of FF with and without macros in Satellite
(36 problems), Promela Optical Telegraph (48 problems) and Promela Dining
Philosophers (48 problems).

apply SOL-EP to generate a list of SOL-EP macros. Finally, the enhanced planner uses as
input the enhanced domain, the list of SOL-EP macros, and regular problem instances.

Since component abstraction can currently be applied only to STRIPS domains with
static facts in their formulation, we used as testbeds domains that satisfy these constraints.

608

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

 5 10 15 20
Problem

Airport - Nodes

FF enhanced
With macros

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 5 10 15 20
Problem

Airport - CPU Time (seconds)

FF enhanced
With macros

Figure 18: Comparison of our enhanced version of FF with and without macros in Airport
(50 problems in total).

We ran this experiment on Rovers (20 problems), Depots (22 problems), and Satellite (36
problems). These domains were used in the third international planning competition IPC-3,
and Satellite was re-used in IPC-4 with an extended problem set. In our experiments, the
Rovers and Depots problems sets are the same as in IPC-3, and the Satellite problem set
is the same as in IPC-4.

Figures 20 – 23 and Table 4 summarize our results. The performance consistently
improves when macros are used. Interestingly, combining CA-ED and SOL-EP often leads
to better performance than each abstraction method taken separately. In Rovers, all three
abstraction setups produce quite similar results, with a slight plus for the combined setup. In
Depots, CA-ED is more effective than SOL-EP in terms of expanded nodes. The differences
in CPU time become smaller, since adding new operators to the original domain significantly
increases the cost per node in Depots (see the discussion below). Again, the overall winner
in this domain is the combined setup. In Satellite, adding macros to the domain reduces
the number of expanded nodes, but has significant impact in cost per node (see Table 4
later in this section) and memory requirements. Setups 2 and 4, which add macros to the
original domain, fail to solve three problems (32, 33, and 36) because of the large memory
requirements in FF’s preprocessing phase.

Table 4 evaluates how macros can affect the cost per node in the search. The cost per
node is defined as the total search time divided by the number of evaluated states. A value
in the table is the cost per node in the corresponding setup (i.e., CA-ED or SOL-EP) divided
by the cost per node in the setup with no macros. For each of the two methods we show the
minimum, the maximum, and the average value. When macros are added to the original
domain (i.e., the domain is enhanced), the increase in cost per node can be significant. The
average rate is 7.70 in Satellite, and 6.06 in Depots. It is interesting to notice that this cost
is less than 1 in Rovers. This is an effect of solving a problem with less nodes expanded.
Operations such as managing the open list and the closed list have costs that increase with
the size of the lists at a rate that can be higher than linear. The right part of the table
shows much better values for the cost rate when macros are used in an enhanced planner.

609

Botea, Enzenberger, Müller, & Schaeffer

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

 10 20 30 40 50
Problem

Pipesworld No-Tankage Non-Temporal - Nodes

FF enhanced
With macros

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 10 20 30 40 50
Problem

Pipesworld No-Tankage Non-Temporal - CPU Time (seconds)

FF enhanced
With macros

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

 5 10 15 20 25 30 35 40
Problem

Pipesworld Tankage Non-Temporal - Nodes

FF enhanced
With macros

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 5 10 15 20 25 30 35 40
Problem

Pipesworld Tankage Non-Temporal - CPU Time (seconds)

FF enhanced
With macros

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

 5 10 15 20 25 30 35 40 45
Problem

PSR - Nodes

FF enhanced
With macros

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

 5 10 15 20 25 30 35 40 45
Problem

PSR - CPU Time (seconds)

FF enhanced
With macros

Figure 19: Comparison of our enhanced version of FF with and without macros in
Pipesworld No-Tankage Non-Temporal, Pipesworld Tankage Non-Temporal and
PSR (50 problems for each domain).

It is important to analyze why macros added as new operators generate such an increase
in cost per node in Satellite and Depots. The overhead is mostly present in the relaxed
graphplan algorithm that computes the heuristic value of a state. The complexity of this
algorithm depends upon the total number of actions that have been instantiated during

610

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

preprocessing for a given problem. Adding new operators to a domain increases the num-
ber of pre-instantiated actions. Since macros tend to have more variables than a regular
operator, the corresponding number of instantiations can be significantly larger. Let the
action instantiation rate be the number of actions instantiated for a problem when macros
are used divided by the number of actions instantiated in the original domain formulation.
Our statistics show that the average action instantiation rate is 6.03 in Satellite, 3.20 in
Depots, and 1.04 in Rovers.

The results show no significant impact of macro-operators on the solution quality. When
macros are used, the length of a plan slightly varies in both directions, with an average close
to the value of the original FF system.

Domain CA-ED SOL-EP
Min Max Avg Min Max Avg

Depots 3.27 8.56 6.06 0.93 1.14 1.04

Rovers 0.70 0.90 0.83 0.85 1.14 1.00

Satellite 0.98 14.38 7.70 0.92 1.48 1.11

Table 4: Relative cost per node.

5.4 Evaluating the Effects of CA-ED Macros on Heuristic State Evaluation

As shown in Section 3.4, macros added to a domain as new operators affect both the
structure of the search space (the embedding effect) and the heuristic evaluation of states
with relaxed graphplan (the evaluation effect). This section presents an empirical analysis
of these.

Figure 24 shows results for Depots, Rovers and Satellite. For each domain, the chart
on the left shows data for the original domain formulation, and the chart on the right
shows data for the macro-enhanced domain formulation. For each domain formulation,
the data points are extracted from solution plans as follows. Each state along a solution
plan generates one data point. The coordinates of the data point are the state’s heuristic
evaluation on the vertical axis, and the number of steps left until the goal state is reached
on the horizontal axis. The number of steps to a goal state may be larger than the distance
(i.e., length of shortest path) to a goal state. The reason why states along solution plans
were used to generate data is that for such states, both the heuristic evaluation, and the
number of steps to a goal state are available after solving a problem.

The first conclusion from Figure 24 is that macros added to a domain improve the
accuracy of heuristic state evaluation of relaxed graphplan. The closer a data point is to
the diagonal, the more accurate the heuristic evaluation of the corresponding state.

Secondly, data clouds are shorter in macro-enhanced domains. This is a direct result of
the embedding effect, which reduces the depth of goal states.

611

Botea, Enzenberger, Müller, & Schaeffer

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20 22
Problem

Rovers - Nodes

(1) No Macros
(2) CA-ED

(3) SOL-EP
(4) 2 + 3

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16 18 20 22
Problem

Rovers - CPU Time (seconds)

(1) No Macros
(2) CA-ED

(3) SOL-EP
(4) 2 + 3

Figure 20: Evaluating abstraction techniques in Rovers. We show the number of expanded
nodes (top), and the CPU time (bottom).

612

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20
Problem

Depots - Nodes

(1) No Macros
(2) CA-ED

(3) SOL-EP
(4) 2 + 3

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20
Problem

Depots - CPU Time (seconds)

Figure 21: Evaluating abstraction techniques in Depots. We show the number of expanded
nodes (top), and the CPU time (bottom).

613

Botea, Enzenberger, Müller, & Schaeffer

 1 1
0

 1
00

 1
00

0

 1
00

00

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
Pr

ob
le

m

Sa
te

lli
te

 -
N

od
es

(1
) N

o
M

ac
ro

s
(2

) C
A

-E
D

(3
) S

O
L-

EP
(4

) 2
 +

 3

Figure 22: Evaluating abstraction techniques in Satellite. We show the number of expanded
nodes.

614

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

 0
.0

1

 0
.1 1 1
0

 1
00

 1
00

0

 1
00

00

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
Pr

ob
le

m

Sa
te

lli
te

 -
CP

U
 T

im
e

(s
ec

on
ds

)

(1
) N

o
M

ac
ro

s
(2

) C
A

-E
D

(3
) S

O
L-

EP
(4

) 2
 +

 3

Figure 23: Evaluating abstraction techniques in Satellite (continued). We show the CPU
time.

615

Botea, Enzenberger, Müller, & Schaeffer

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

H
eu

ris
tic

 e
va

lu
at

io
n

Number of steps to goal

Original Depots

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

H
eu

ris
tic

 e
va

lu
at

io
n

Number of steps to goal

Depots + CA-ED Macros

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160

H
eu

ris
tic

 e
va

lu
at

io
n

Number of steps to goal

Original Rovers

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160

H
eu

ris
tic

 e
va

lu
at

io
n

Number of steps to goal

Rovers + CA-ED Macros

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

H
eu

ris
tic

 e
va

lu
at

io
n

Number of steps to goal

Original Satellite

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

H
eu

ris
tic

 e
va

lu
at

io
n

Number of steps to goal

Satellite + CA-ED Macros

Figure 24: Effects of CA-ED macros on heuristic state evaluation and depth of goal states.

616

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

6. Related Work

The related work described in this section falls into two categories. We first review ap-
proaches that make use of the domain structure to reduce the complexity of planning, and
next consider previous work on macro-operators.

An automatic method that discovers and exploits domain structure has been explored by
Knoblock (1994). In this work, a hierarchy of abstractions is built starting from the initial
low-level problem description. A new abstract level is obtained by dropping literals from
the problem definition at the previous abstraction level. Planning first produces an abstract
solution and then iteratively refines it to a low-level representation. The hierarchy is built
in such a way that, if a refinement of an abstract solution exists, no backtracking across
abstraction levels is necessary during the refinement process. Backtracking is performed
only when an abstract plan has no refinement. Such situations can be arbitrarily frequent,
with negative effects on the system’s performance.

Bacchus and Yang (1994) define a theoretical probabilistic framework to planning in
hierarchical models. Abstract solutions of a problem at different abstraction levels are
hierarchically represented as nodes in a tree structure. A tree edge indicates that the
target node is a refinement of the start node. An abstract solution can be refined to
the previous level with a given probability. Hierarchical search in this model is analytically
evaluated. The analytical model is further used to enhace Knoblock’s abstraction algorithm.
The enhancement refers to using estimations of the refinement probabilities for abstract
solutions.

More recently, implicit causal structure of a domain has been used to design a domain-
independent heuristic for state evaluation (Helmert, 2004). These methods either statically
infer information about the structure of a domain, or dynamically discover the structure
for each problem instance. In contrast, we propose an adaptive technique that learns from
previous experience in a domain.

Two successful approaches that use hand-crafted information about the domain struc-
ture are hierarchical task networks and temporal logic control rules. Hierarchical task
networks (HTNs) guide and restrict planning by using a hierarchical representation of a do-
main. Human experts design hierarchies of tasks that show how the initial problem can be
broken down to the level of regular actions. The idea was introduced by Sacerdoti (1975)
and Tate (1977), and has widely been used in real-life planning applications (Wilkins &
desJardins, 2001). SHOP2 (Nau, Au, Ilghami, Kuter, Murdock, Wu, & Yaman, 2003) is a
well-known heuristic search planner where search is guided by HTNs.

In planning with temporal logic control rules, a formula is associated with each state in
the problem space. The formula of the initial state is provided with the domain description.
The formula of any other state is obtained based on its successor’s formula. When the
formula associated with a state can be proven false, that state’s subtree is pruned. The
best known planners of this kind are TLPlan (Bacchus & Kabanza, 2000) and TALPlanner
(Kvarnström & Doherty, 2001). While efficient, these approaches also rely heavily on human
knowledge, which might be expensive or impossible to obtain.

Early contributions to macro-operators in AI planning includes the work of Fikes and
Nilsson (1971). Macros are extracted after a problem was solved and the solution became
available. Minton (1985) advances this work by introducing techniques that filter the set

617

Botea, Enzenberger, Müller, & Schaeffer

of learned macro-operators. In his approach, two types of macro-operators are preferred:
S-macros, which occur with high frequency in problem solutions, and T-macros, which can
be useful but have low priority in the original search algorithm. Iba (1989) introduces
the so-called peak-to-peak heuristic to generate macro-operators at run-time. A macro
is a move sequence between two peaks of the heuristic state evaluation. Such a macro
traverses a “valley” in the search space, and using this later can correct errors in the heuristic
evaluation. Mooney (1988) considers whole plans as macros and introduces partial ordering
of operators based on their causal interactions.

Veloso and Carbonell (1993) and Kambhampati (1993) explore how planning can reuse
solutions of previously solved problems. Solutions annotated with additional relevant infor-
mation are stored for later use. This additional information contains either explanations of
successful or failed search decisions (Veloso & Carbonell, 1993), or the causal structure of
solution plans (Kambhampati, 1993). Several similarity metrics for planning problems are
introduced. When a new problem is fed to the planner, the annotated solutions of similar
problems are used to guide the current planning process.

McCluskey and Porteous (1997) focus on constructing planning domains starting from
a natural language description. The approach combines human expertise and automatic
tools, and addresses both correctness and efficiency of the obtained formulation. Using
macro-operators is a major technique that the authors propose for efficiency improvement.
In this work, a state in a domain is composed of local states of several variables called
dynamic objects. Macros model transitions between the local states of a variable.

The planner Marvin (Coles & Smith, 2004) generates macros both online (as plateau-
escaping sequences) and offline (from a reduced version of the problem to be solved). No
macros are cached from one problem instance to another.

Macro-moves were successfully used in single-agent search problems such as puzzles or
path-finding in commercial computer games, usually in a domain-specific implementation.
The sliding-tile puzzle was among the first testbeds for this idea (Korf, 1985; Iba, 1989).
Two of the most effective concepts used in the Sokoban solver Rolling Stone, tunnel and
goal macros, are applications of this idea (Junghanns & Schaeffer, 2001). More recent work
in Sokoban includes an approach that decomposes a maze into a set of rooms connected
by tunnels (Botea, Müller, & Schaeffer, 2002). Search is performed at the higher level
of abstract move sequences that rearrange the stones inside a room so that a stone can
be transferred from one room to another. Using macro-moves for solving Rubik’s Cube
puzzles is proposed by Hernádvölgyi (2001). A method proposed by Botea, Müller, and
Schaeffer (2004a) automatically decomposes a navigation map into a set of clusters, possibly
on several abstraction levels. For each cluster, an internal optimal path is pre-computed
between any two entrances of that cluster. Path-finding is performed at an abstract level,
where a macro-move crosses a cluster from one entrance to another in one step.

Methods that exploit at search time the relaxed graphplan associated with a problem
state (Hoffmann & Nebel, 2001) include helpful action pruning (Hoffmann & Nebel, 2001)
and look-ahead policies (Vidal, 2004). Helpful action pruning considers for node expansion
only actions that occur in the relaxed plan and can be applied to the current state. Helpful
macro pruning applies the same pruning idea for the macro-actions applicable to a state,
with the noticeable difference that helpful macro pruning does not give up completeness
of the search algorithm. A lookahead policy executes parts of the relaxed plan in the real

618

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

world, as this often provides a path towards a goal state with no search and few states
evaluated. The actions in the relaxed plan are iteratively applied as long as this is possible
in a heuristically computed order. When the lookahead procedure cannot be continued with
actions from the relaxed plan, a plan-repair method selects a new action to be applied.

7. Conclusion and Future Work

Despite the great progress that AI planning has recently achieved, many benchmarks remain
challenging for current planners. In this paper we presented techniques that automatically
learn macro-operators from previous experience in a domain, and use them to speed up the
search in future problems. We evaluated our methods on standard benchmarks from interna-
tional planning competitions, showing significant improvement for domains where structure
information can be inferred. We implemented our ideas in Macro-FF, an extension of
FF version 2.3. Macro-FF participated in the classical part of the fourth international
planning competition, competing in seven domains and taking first place in three of them.

Exploring our method more deeply and improving the performance in more classes of
problems are major directions for future work. We also plan to extend our approach in
several directions. Our learning method can be generalized from macro-operators to more
complex structures such as HTNs. Little research focusing on learning HTNs has been
conducted, even though the problem is of great importance.

We plan to explore how a heuristic evaluation based on the relaxed graphplan can be
improved with macro-operators. As shown in this article, a macro added to an original
domain formulation as a regular operator influences the results of the heuristic function.
This is convenient (no changes are necessary in the planning engine), but limited only to
STRIPS domains. For other subsets of PDDL, the relaxed graphplan algorithm can be
extended with special capabilities to handle macros when no enhanced domain definition is
provided.

The long-term goal of component abstraction is automatic reformulation of planning
domains and problems. When a real-world problem is abstracted into a planning model,
the corresponding formulation is expressed at an abstraction level that a human designer
considers appropriate. However, choosing a good abstraction level could be a hard and
expensive problem for humans. Hence methods that automatically update the formulation
of a problem based on its structure would be helpful.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and Alberta’s Informatics Circle of Research Excellence (iCORE). We
thank Jörg Hoffmann for making the source code of FF available, and for kindly answering
many technical questions related to FF. We also thank the organizers of IPC-4, the reviewers
of this article, and Maria Fox, who led the reviewing process.

References

Bacchus, F. (2001). AIPS’00 Planning Competition. AI Magazine, 22 (3), 47–56.

619

Botea, Enzenberger, Müller, & Schaeffer

Bacchus, F., & Kabanza, F. (2000). Using Temporal Logics to Express Search Control
Knowledge for Planning. Artificial Intelligence, 16, 123–191.

Bacchus, F., & Yang, Q. (1994). Downward Refinement and the Efficiency of Hierarchical
Problem Solving. Artificial Intelligence, 71 (1), 43–100.

Botea, A., Müller, M., & Schaeffer, J. (2002). Using Abstraction for Planning in Sokoban.
In Schaeffer, J., Müller, M., & Björnsson, Y. (Eds.), 3rd International Conference on
Computers and Games (CG’2002), Vol. 2883 of Lecture Notes in Artificial Intelligence,
pp. 360–375, Edmonton, Canada. Springer.

Botea, A., Müller, M., & Schaeffer, J. (2004a). Near Optimal Hierarchical Path-Finding.
Journal of Game Development, 1 (1), 7–28.

Botea, A., Müller, M., & Schaeffer, J. (2004b). Using Component Abstraction for Automatic
Generation of Macro-Actions. In Fourteenth International Conference on Automated
Planning and Scheduling ICAPS-04, pp. 181–190, Whistler, Canada. AAAI Press.

Coles, A., & Smith, A. (2004). Marvin: Macro Actions from Reduced Versions of the
Instance. In Booklet of the Fourth International Planning Competition, pp. 24–26.

Fikes, R. E., & Nilsson, N. (1971). STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence, 5 (2), 189–208.

Helmert, M. (2004). A Planning Heuristic Based on Causal Graph Analysis. In Fourteenth
International Conference on Automated Planning and Scheduling ICAPS-04, pp. 161–
170, Whistler, Canada.

Hernádvölgyi, I. (2001). Searching for Macro-operators with Automatically Generated
Heuristics. In Fourteenth Canadian Conference on Artificial Intelligence, pp. 194–
203.

Hoffmann, J., Edelkamp, S., Englert, R., Liporace, F., Thiébaux, S., & Trüg, S. (2004).
Towards Realistic Benchmarks for Planning: the Domains Used in the Classical Part
of IPC-4. In Booklet of the Fourth International Planning Competition, pp. 7–14.

Hoffmann, J., & Nebel, B. (2001). The FF Planning System: Fast Plan Generation Through
Heuristic Search. Journal of Artificial Intelligence Research, 14, 253–302.

Iba, G. A. (1989). A Heuristic Approach to the Discovery of Macro-Operators. Machine
Learning, 3 (4), 285–317.

Junghanns, A., & Schaeffer, J. (2001). Sokoban: Enhancing Single-Agent Search Using
Domain Knowledge. Artificial Intelligence, 129 (1–2), 219–251.

Kambhampati, S. (1993). Machine Learning Methods for Planning, chap. Supporting Flex-
ible Plan Reuse, pp. 397–434. Morgan Kaufmann.

Knoblock, C. A. (1994). Automatically Generating Abstractions for Planning. Artificial
Intelligence, 68 (2), 243–302.

Korf, R. (1985). Macro-Operators: A Weak Method for Learning. Artificial Intelligence,
26(1), 35–77.

Kvarnström, J., & Doherty, P. (2001). TALplanner: Temporal Logic Based Forward Chain-
ing Planner. Annals of Mathematics and Artificial Intelligence, 30, 119–169.

620

Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

Long, D., & Fox, M. (2003). The 3rd International Planning Competition: Results and
Analysis. Journal of Artificial Intelligence Research, 20, 1–59. Special Issue on the
3rd International Planning Competition.

Marsland, T. A. (1986). A Review of Game-Tree Pruning. International Computer Chess
Association Journal, 9 (1), 3–19.

McCluskey, T. L., & Porteous, J. M. (1997). Engineering and Compiling Planning Domain
Models to Promote Validity and Efficiency. Artificial Intelligence, 95, 1–65.

McDermott, D. (2000). The 1998 AI Planning Systems Competition. AI Magazine, 21 (2),
35–55.

Minton, S. (1985). Selectively Generalizing Plans for Problem-Solving. In IJCAI-85, pp.
596–599.

Minton, S. (1988). Learning Search Control Knowledge: An Explanation-Based Approach..
Hingham, MA. Kluwer Academic Publishers.

Mooney, R. (1988). Generalizing the Order of Operators in Macro-Operators. In Fifth
International Conference on Machine Learning ICML-88, pp. 270–283.

Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J., Wu, D., & Yaman, F. (2003). SHOP2:
An HTN Planning System. Journal of Artificial Intelligence Research, 20, 379–404.

Sacerdoti, E. (1975). The Nonlinear Nature of Plans. In Proceedings IJCAI-75, pp. 206–214.

Tate, A. (1977). Generating Project Networks. In Proceedings of IJCAI-77, pp. 888–893.

Veloso, M., & Carbonell, J. (1993). Machine Learning Methods for Planning, chap. Toward
Scaling Up Machine Learning: A Case Study with Derivational Analogy, pp. 233–272.
Morgan Kaufmann.

Vidal, V. (2004). A Lookahead Strategy for Heuristic Search Planning. In Fourteenth
International Conference on Automated Planning and Scheduling ICAPS-04, pp. 150–
159, Whistler, Canada.

Wilkins, D., & desJardins, M. (2001). A Call for Knowledge-Based Planning. AI Magazine,
22 (1), 99–115.

621

