Optimistic Active Learning using Mutual Information

Yuhong Guo and Russell Greiner
University of Alberta, Edmonton, Canada

Idea: an optimistic active learner that exploits the **discriminative partition information** in the unlabeled instances, makes an **optimistic assessment** of each candidate instance, and temporarily switches to a different policy if the optimistic assessment is wrong.

Optimistic Query Selection

1. Most uncertain query selection (MU):
 \[
 \arg \max_{i \in U} H(Y_i | x_i, L) = \sum_i P(y_i | x_i, L) \log P(y_i | x_i, L)
 \]
 Shortcoming: ignores the unlabeled data !

2. Select the query that maximizes its conditional mutual information about the unlabeled data:
 \[
 \arg \max_{i \in U} \{ H(Y_i | X_U, L) - H(Y_i | X_U, L, (x_i, y_i)) \}
 \]
 Proposals:
 (a) Take the expectation wrt \(Y_i \) (MCMI[avg]):
 \[
 \arg \min_{i \in U} \sum_i H(Y_i | x_i, \theta_{L+}(x_i, y_i))
 \]
 Shortcoming: aggravates the ambiguity caused by the limited labeled data.
 (b) Take an **optimistic** strategy: use only the best query label (MCMI[min]):
 \[
 \arg \min_{i \in U} \sum_i H(Y_i | x_i, \theta_{L+}(x_i,))
 \]
 Question: How to determine \(y_i \)?

 Proposals:

 - Take the expectation wrt \(Y_i \) (MCMI[avg]):
 \[
 \arg \min_{i \in U} \sum_i H(Y_i | x_i, \theta_{L+}(x_i,))
 \]
 - Online Adjustment:
 - Can easily detect this “guessed wrong” situation, in the immediate next step,
 - Simply compare the actual label for the query with its optimistically predicted label
 - Whenever Mm+M guesses wrong,
 - it switches to a different query selection criterion (MU) for the next 1 iteration

Experimental Evaluation

- **Comparing Mm+M with other Active Learners**
 - Over 100 sample sizes, over 17 datasets:
 - Mm+M was
 - “statistically better” 85 times
 - “statistically worse” 2 times
 - “tied” 13 times
 - Signed Rank Test shows Mm+M is better

- **Comparing Mm+M vs MU, for PIMA dataset:**
 - Over 100 sample sizes, Mm+M was
 - “statistically better” for >5 more sample-sizes: 13 times
 - “statistically worse” for >5 more sample-sizes: 2 times
 - Signed Rank Test shows Mm+M is better

- **Future work:**
 - Understand when Mm+M is appropriate
 - Design further variants