
Safe Strategies for Agent Modelling in Games

Peter McCracken and Michael Bowling
Department of Computing Science

University of Alberta
{peterm,bowling}@cs.ualberta.ca

Abstract

Research in opponent modelling has shown success, but a
fundamental question has been overlooked: what happens
when a modeller is faced with an opponent that cannot be
successfully modelled? Many opponent modellers could do
arbitrarily poorly against such an opponent. In this paper,
we aim to augment opponent modelling techniques with a
method that enables models to be used safely. We introduce
ε-safe strategies, which bound byε the possible loss versus
a safe value. We also introduce the Safe Policy Selection
algorithm (SPS) as a method to varyε in a controlled fash-
ion. We prove in the limit that an agent using SPS is guar-
anteed to attain at least a safety value in the cases when the
opponent modelling is ineffective. We also show empirical
evidence that SPS does not adversely affect agents that are
capable of modelling the opponent. Tests with a domain of
complicated modellers show that SPS is effective at elimi-
nating losses while retaining wins in a variety of modelling
algorithms.

Introduction
A common and important component of decision-making
in a multiagent system is agent modelling1. The goal of
agent modelling is to represent and extract knowledge of
the behavior of other agents in the environment. This prob-
lem has been explored under a number of guises including
plan recognition (Kautz & Allen 1986; Bauer 1995), be-
havior classification (Han & Veloso 1999), and opponent
modelling (Riley & Veloso 2002). The idea of represent-
ing knowledge of other agents’ behavior is also present
in research in the field of game theory (e.g., fictitious
play (Brown 1949; Robinson 1951), and finite automaton
learning (Carmel & Markovitch 1996)). A possibly over-
looked problem in this line of research is how a constructed
model can then be used in the decision-making process. The
common approach is to optimize the agent’s behavior with
respect to these constructed models,i.e., playing a best-
response to the modelled behavior of the other agents (Ri-
ley & Veloso 2002; Robinson 1951; Carmel & Markovitch
1996).

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1We will use “opponent” and “agent” interchangeably without
implying anything about the other agents’ goals. Our experimental
results, though, do focus on a competitive situation.

One of the common unstated assumptions in this work
is that the other agents can be modelled by the modelling
agent. Although this seems to be a critical assumption to
even beginning the endeavour, it means much of the research
has ignored an important possibility. What if one is interact-
ing with agents that cannot be modelled, or (more likely) are
just more complex than the agent’s space of models? For ex-
ample, an agent that is itself modelling may be too complex
to be modelled. When an agent interacts with these difficult
agents the resulting failure can be catastrophic. Considerfic-
titious play, which learns a model of other agents assuming
their behavior is stationary. An agent with even a very sim-
ple dynamic behavior can result in the fictitious play agent
doing arbitrarily poorly.

This paper seeks to address this problem by introducing a
safeopponent modelling algorithm. This safe algorithm pro-
vides a lower bound guarantee on the resulting performance
even when interacting with agents that cannot be modelled.
Our approach does not change how a model is constructed,
but rather focuses on how a model is used to affect decision-
making. We introduce the concept ofε-safe strategies to
bound the agent’s worst-case performance. We then show
how ε can be varied to gain both the advantages of safe
strategies and the advantages of an accurate agent model.
This approach complements the existing agent modelling
work, by focusing on how an opponent model is used. It
assumes that an agent model is available, constructed using
existing agent modelling techniques. We use a very generic
form for an agent model to facilitate the algorithm’s use
across the variety of these techniques. The safe opponent
modelling approach, then, has broad application across the
entire field of agent modelling.

The paper will be organized as follows. First, we will
outline the required background material for normal form
games, opponent modelling, safe strategies, and no-regret
algorithms. Next we describe the Safe Policy Selection al-
gorithm and prove its safety. We also show experimental
results in an advanced opponent modelling domain that in-
dicate there is little loss when an agent is capable of mod-
elling the opponent. Finally, we conclude with a discussion
of issues related to SPS.

Definitions and Background
Throughout this paper, we discuss issues related to policy se-
lection in the context of normal form games. Normal form
games can be considered an abstraction of an arbitrary mul-
tiagent system; their use here is meant to retain the gener-
ality of our algorithm. An efficient implementation of our
approach would exploit the known structure of the game,
which does not necessarily have to be in normal form. A nor-
mal form game (Owen 1995; Gintis 2000) is defined by the
number of agents, the reward function, and the actions avail-
able to each agent. To play a normal form game, each agenti
simultaneously choses an actionai from their action setAi.
The combination of each of the agents’ action choices is a
joint actiona from the setA = A1 × · · · × An. When dis-
cussing actions,a-i ∈ A-i is the set of action choices made
by all agents except for agenti. Each agent also has a reward
functionRi : A → R. A two-player normal form game is
often given in the form of a payoff matrix, as in Table 2.

A policy (or strategy),πi, is a multinomial probability dis-
tribution over actions. The space of all possible policies for
agenti is Πi. When an agent plays according to a given
policy, the agent samples from the policy and plays the ac-
tion indicated by the sample value. A deterministic policy
assigns all of the probability mass to a single action. The
value of a policy, given the actions of the other players, is

V (πi, a-i) =
∑

ai∈Ai

πi(ai)Ri(ai, a-i)

The value of a policy, given the policies of the other players,
is

V (πi, π-i) =
∑

ai∈Ai

∑

a-i∈A-i

πi(ai)π-i(a-i)Ri(ai, a-i)

The functionV (πi), whereV : Π → R, will be used to
abbreviateV (πi, π-i). The goal of each agent is to play ac-
cording to the policy that maximizes its reward.

In a repeated normal form game, the agents play the same
game repeatedly, and maintain a history of the results of past
games. The action sets and the reward functions remain con-
stant for all timesteps, but the agents are able to vary their
strategies over time. We are interested in the algorithms that
chose strategies for the agents. In this section, we explore
two example algorithms: fictitious play, which attempts to
exploit opponents, is typical of many opponent modellers,
and minimax, which guarantees a safety value but often ac-
cepts lower payoffs than necessary. We also look at no-
regret algorithms, which are a class of algorithms that are
able to guarantee an outcome at least as good, on average,
as the best of a set of strategies provided to it.

Fictitious Play
Opponent modelling algorithms are learning algorithms that
attempt to build an explicit model of the opponent, and then
choose actions according to that model. A traditional game-
theoretic method of opponent modelling is fictitious play
(Fudenberg & Levine 1999), which was originally devel-
oped as an iterative method for “solving” a game. Fictitious
play records the frequencies of the opponents’ joint actions.

It then uses that model, along with the payoffs in the normal
form game, to compute the best-response – the action with
the highest expected payoff. That action is then determinis-
tically selected.

According to Bowling & Veloso in (2002), a best-
response learner is one such that if the opponents’ policy
converges to a static policy, the learner will eventually con-
verge to the best-response to that policy. Under this defini-
tion, fictitious play is a best-response learner. It will eventu-
ally build an accurate model of any static opponents’ strate-
gies, and will act to maximize its reward given that opponent
model.

The trouble with fictitious play, and opponent modelling
in general, is that modelling an arbitrary opponent is not
feasible; there are too many possible types of agents in or-
der for any known generic system to be able to model them
all. As an example, consider the infinite recursion of models
that would be required for an opponent modeller to create a
perfect model of another perfect opponent modeller. Thus,
opponent modellers must make assumptions about their op-
ponents. A frequent assumption, used by algorithms like
fictitious play, is that the other agents are Markov,i.e., that
the other agents have a static distribution over actions forall
timesteps. Clearly this assumption is not always valid, par-
ticularly against learning algorithms that adapt their strate-
gies over time.

Because of the assumptions made by opponent modellers,
they can be exploited by opponents that do not meet the
modeller’s expectations. If an opponent can predict how the
modeller will react to a given history, it can know how to
play to maximally exploit the modeller. For instance, if an
opponent knows that the agent uses fictitious play, it could
compute what that agent’s “best-response” is, and then act
to maximize its reward given the knowledge of the agent’s
impending action.

Although fictitious play is a simple example of an oppo-
nent modeller, most of the problems with it remain in more
complex modellers. Mixed strategies and complex meta-
reasoning can lessen some of the problems, but not eliminate
them completely. By deviating from a safe policy, opponent
modellers open themselves up for exploitation.

Minimax Strategies

Game theoretic optimal solutions in normal form games
maximize reward in the worst case (von Neumann & Mor-
genstern 1944). A strategy that maximizes a reward as-
suming that the opponent will try to minimize the reward
is known as a minimax strategy. The minimax algorithm is
designed for adversarial games, in which agents necessar-
ily attempt to minimize their opponents’ payoffs in order to
maximize their own. Unlike opponent modelling, minimax
strategies are intended to be as unexploitable as possible.
Regardless of the actions of the opponent, a minimax pol-
icy π∗ is able to guarantee a minimum level of reward,r∗.
Any non-optimal choices on the part of the opponent only
increase the payoff to the minimax player. Because of this
guaranteed reward, minimax strategies can be viewed as a
safestrategy.

A significant advantage of the minimax strategy over
other algorithms is that it is independent of the policy played
by the opponent. This means that a minimax solution can
be calculated ahead of time for any game, and this strategy
can be put into effect regardless of the actions of the oppo-
nent. Unlike learning algorithms, such as opponent mod-
ellers, there is no initial period of low effectiveness while
the model is being built.

Like the opponent modelling strategies, it is the assump-
tions made by minimax agents that are their main weakness.
Minimax strategies assume that the opponents are optimal,
and that the goals of the opponents are opposite the goals
of the agent. In cases where these assumptions are not true,
minimax players can end up settling for much lower payoffs
than are allowed by the game and the opponent. This means
that minimax players do not follow a best-response policy,
unless the opponent is optimal and adversarial.

No-Regret Algorithms
No-regret algorithms are learning algorithms that guarantee,
in the limit, that the average obtained reward is no worse
than that obtained by playing any static strategy (Jafariet
al. 2001). Hedge, described in (Aueret al. 1995), is a
simple no-regret algorithm that uses probabilistic strategies
to balance exploration and exploitation of actions. Actions
that have provided better payoffs in the past are played with
higher frequency. Aueret al. show that, with proper param-
eter selection, Hedge is expected to obtain a payoff no worse
than

√
2T lnK less than the best payoff from any fixed ac-

tion, whereT is the number of games andK is the number
of actions.

While the definition of no-regret algorithms concerns no-
regret versus fixed strategies, no-regret algorithms can gen-
erally be used to guarantee no-regret versus given dynamic
strategies, as well. For instance, in Hedge, the base ac-
tions could be replaced by experts that recommend policies.
Hedge could probabilistically choose between the experts,
preferring those that have given higher rewards in the past.
Used in this way, Hedge could select between a safe policy
and an opponent modeller, and guarantee zero regret versus
both of them. However, as we will see later, the algorithm
presented in this paper has some advantages over no-regret
algorithms when used to guarantee safety.

ε-Safe Strategies
We present hereε-safe strategies, which have a controlled
level of safety, and the Safe Policy Selection algorithm
(SPS), which defines how to control the safety level. An
agent that uses SPS is guaranteed in the limit to have an av-
erage payoff of at leastr∗, the expected value of playingπ∗.
Unlike normal safe strategies, though, an agent usingε-safe
strategies and SPS can also take advantage of its underlying
opponent modeller to earn rewards greater thanr∗. In this
section we will first describeε-safe strategies, then present
Safe Policy Selection, and conclude with a theoretical proof
showing the safety of the algorithm.

A strategyπ is consideredε-safe if it is guaranteed to have
an expected payoff no lower thanε less thanr∗, the safety

value of the game;i.e.,

V (π, a-i) ≥ r∗ − ε, ∀a-i ∈ A-i

In general, there can be multiple strategies for a game that
areε-safe for any given value ofε. This set of strategies we
denoteSAFE(ε). TheSAFE() function implicitly depends
on the chosen value ofr∗, which we assume in this paper to
be the minimax value of the game. Two special cases include
SAFE(0), which is the set of safe strategies that guarantee
a payoff ofr∗, andSAFE(β), which contains all possible
strategies. The special valueβ is the difference betweenr∗

and the lowest possible payoff in the game. The benefit of
anε-safe strategy over a safe strategy is that, although it can
possibly lose by a greater margin, it can also win by a greater
margin. The greater number of strategies afforded by relax-
ing the safety constraint allows more freedom for the agent
to choose a strategy that will earn a larger reward.

In order to choose the best strategy fromSAFE(ε), an
opponent modeller is used. In this context, an oppo-
nent modeller can be considered an evaluation function,
M : Π → R, that returns an estimate of the expected value
of a policy when played against the modelled opponent. An
agent that uses anε-safe strategy will play according to the
policy πε where:

πε
.
= argmax

π∈SAFE(ε)

M(π)

It should be noted thatM(π) is not necessarily the same
asV (π). If the opponent modeller does not have a correct
model of the opponent, it is possible thatM(πε) > r∗ and
V (πε) < r∗, and the agent would be better off playingπ∗

thanπε. These are the cases in whichε-safe strategies are
useful, because the value ofε limits the amount whichπε

can lose. The policy

πmax
.
= argmax

π∈Π
M(π)

is the policy thatM considers to be the best-response to the
opponent. Note thatπmax could beπ∗, if the opponent mod-
eller believes that the opponent is optimal. In cases where
V (πmax) < r∗, ε-safe strategies will prevent the agent from
getting arbitrarily bad rewards.

If the value ofε remains fixed, anε-safe strategy suffers
the same disadvantages as the safety policy, because it is
not necessarily a best-response to the true opponent. It also
suffers the disadvantages of an opponent modeller, because
it can be exploited since it deviates from the safety strategy.
Because of this, it is necessary to change the value ofε in
response to how well the agent is actually performing.

Safe Policy Selection in Normal Form Games
Table 1 shows the Safe Policy Selection algorithm for us-
ing ε-safe strategies in a normal form game. It is assumed
that the agent knowsA andRi, and also that the agent can
observe the actions of the opponent.

The given update policy forε in Step 4 is:

ε(t+1) ← ε(t) + f(t + 1) + V (π(t), a
(t)
-i)− r∗

The Safe Policy Selection Algorithm
Parameters:The matrix game,G, and decay function,f

r∗ ← the safety value ofG
Initialize opponent model,M
ε(1) ← f(1)
At each timestep,t, from1 to T :

(1) π(t) ← argmax
π∈SAFE(ε(t))

M(π)

(2) play actiona(t)
i according toπ(t)

(3) updateM with opponents’ actions,a(t)
-i

(4) ε(t+1) ← ε(t) + f(t + 1) + V (π(t), a
(t)
-i)− r∗

Table 1: The Safe Policy Selection Algorithm for Playeri

Since the reward function is known, the value of
V (π(t), a

(t)
-i) can easily be calculated. The function

f : N → R is the decay function for updatingε. It is
an arbitrary function that has the properties:

f(t) > 0 (1)

lim
T→∞

∑T

t=1 f(t)

T
= 0 (2)

We choosef(t) = β
t
. Informal experiments show that

this choice works well, and that functions that decay at a
slower rate are more exploitable in the short run.

Theoretical Analysis
In this section, we show that, in the limit, following SPS will
guarantee an average reward at least as great asr∗.

Theorem 1 AsT → ∞, the worst case average reward of
following the Safe Policy Selection algorithm will be at least
that of the safety policy.

Proof: The worst case opponents always choose their ac-
tions a

(t)
-i to maximize the loss of the agent. Because the

loss is bounded byε(t), the worst case opponents ensure

V (π(t), a
(t)
-i) = r∗ − ε(t)

The total difference between the expected payoff for the
played policy and the safety policy is

T
∑

t=1

r∗ −
T
∑

t=1

V (π(t), a
(t)
-i)

=

T
∑

t=1

r∗ −
(

T
∑

t=1

(

r∗ − ε(t)
)

)

=

T
∑

t=1

ε(t)

=

T
∑

t=1

(

ε(t−1) + f(t) + V (π(t−1), a
(t−1)
-i)− r∗

)

=

T
∑

t=1

f(t) +

T
∑

t=1

(

V (π(t−1), a
(t−1)
-i)− (r∗ − ε(t−1))

)

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Table 2: The payoff matrix for Player One in Rock-Paper-
Scissors.

=

T
∑

t=1

f(t)

Thus, in the short run, the exploitability of the agent is
bounded by the sum

∑T

t=1 f(t). In the limit, asT → ∞,
the time average expected difference over allT timesteps is
zero, due to Condition 2 onf(t). Therefore, in the limit, an
agent using SPS will have an average reward at least as good
as the safety policy.2

Experimental Analysis
The previous section showed only that SPS is guaranteed to
be safe. In practise, however, SPS also has the property that
it does not significantly impact the ability of agents to prop-
erly model the opponent. To test the claims made in the pre-
vious section, we experiment withε-safe strategies and SPS
in the game of Rock-Paper-Scissors. Although Rock-Paper-
Scissors itself is simple, it provides a complex environment
for opponent modelling, and opponent modellers are avail-
able that have many degrees of subtlety. These experiments
show thatε-safe strategies are able to improve on all but the
best opponent modellers, without a detrimental effect on the
modellers that could not be improved.

Rock-Paper-Scissors
Rock-Paper-Scissors (RPS) is a simple two-player, zero-sum
matrix game, with the payoff matrix defined in Table 2. The
optimal game theoretic strategy in RPS is to play all actions
with equal probability. This is a Nash equilibrium and has an
expected value of 0, regardless of what the opponent plays.
This value will be used asr∗ in our experiments withε-safe
strategies.

Because RPS is a simple game, it is an effective domain
for testing opponent modellers. Players can focus on mod-
elling without the distraction of complicated game rules or
stochastic events. Agents can use pattern detection, statisti-
cal analysis, or other complicated methods in order to model
their opponents, while attempting to not be modelled by any
opponent. See (Billings 2000) for more information on the
types of opponent modelling used in the RPS domain. A
simple giveaway that the “optimal” solution is not sufficent
in tournament settings is that, as seen in Table 3, the random
player placed 20th out of 25 competitors.

The opponent modellers used for these experiments came
from the first International RoShamBo Programming Com-
petition, described in (Billings 2000). The source code for
the competition and players is freely available. These play-
ers make an effective test bed forε-safe strategies and SPS,
because of their complexity, diversity, and their previously
established success rates.

Experimental Setup
The RoShamBo competitors consisted of 24 opponent mod-
ellers, and a minimax player that chose actions randomly.
The experiments were run as round robin tournaments, in
which each competitor played 1,000 games against every
other competitor. Fifty tournaments were run for each ex-
periment, and the results given are the average total reward
over the tournaments.

To determine the effect ofε-safe strategies and SPS, a set
of tournaments was run for each competitor, in which the
competitor was used as an opponent modeller in the SPS
algorithm. All other opponents were left the same. For a
baseline ranking of the opponent modellers, one set of tour-
naments was run with all of the competitors unmodified.
The effect of SPS is evaluated by how well the modified op-
ponent modellers fared when compared to their unmodified
counterparts. We hope to show that all of the modellers will
perform as well or better than their counterparts.

At each timestep, the opponent modellers recommend an
action,a. In an unmodified player,a will be the action taken.
In anε-safe player, an evaluation function over strategies is
created such thatπmax is considered to be the policy that
choosesa with probability 1, and other policies are ranked
by their probability of choosinga. The played policy,π(t),
is calculated by solving a linear system with constraints en-
suring that the loss is no greater thanε(t), and maximizing
the probabilty ofa.

Results
Table 3 shows an overview of the results of augmenting the
RoShamBo players with SPS. To analyze these results, we
will look at the effect of SPS on total score, tournament rank,
and match scores.

The ‘Score’ columns in Table 3 show the sum of the re-
wards obtained in the 24 matches against the other players,
averaged across 50 tournaments. The ‘Sig.’ column indi-
cates whether the change in score between the unmodified
player and theε-safe player is statistically significant with
99% confidence. Of the 24 players, 15 experienced a signif-
icant increase in score. Four players had a decreased over-
all score, but none of these reductions were significant. It
should be noted that all of theε-safe players obtained bet-
ter scores thanr∗, even though five of the original players
had negative scores. As expected, the change in scores was
most significant for weaker players, because these were the
players that were most frequently unable to model their op-
ponents.

The ‘Rank’ columns in Table 3 show the ranking of each
player in the original tournament, and the rank of theε-safe
version of that opponent in the modified tournament. The
ranks were calculated by sorting the average scores for each
player over the 50 tournaments. The values give an indica-
tion of how well each RoShamBo player would have done if
it had used SPS in the tournament. In total, 15 out of the 24
players increased in rank when SPS was used. One player
decreased in rank, although the actual difference in scores
was not significant. Like the scores, the change in rank was
most significant for the weaker opponents.

Player Rank Score Sig.O ε O ε
Iocaine Powder 1 1 4123 4116
Phasenbott 2 2 3533 3584
Simple Modeller 3 3 2786 2868
MegaHAL 4 3 2751 2838
Biopic 5 5 2346 2408 X

Boom 6 6 1852 1903
ACT-R Lag2 7 7 1790 1784
Robertot 8 6 1779 1920 X

Shofar 9 9 1643 1617
Bugbrain 10 9 1591 1736 X

RussRocker4 11 4 1583 2731 X

Simple Predictor 12 5 1399 2296 X

Sweet Rocky 13 12 893 1386 X

Piedra 14 13 835 1315 X

Marble 15 6 808 2090 X

Granite 16 6 763 2094 X

Vroomfondel 17 18 713 696
Majikthise 18 18 699 720
Mixed Strategy 19 13 591 1142 X

Random (Optimal) 20 - -36 -
ZQ Bot 21 6 -260 1742 X

Multi-strategy 22 13 -3159 903 X

Inocencio 23 12 -3546 1177 X

Knucklehead 24 20 -5810 154 X

Peterbot 25 15 -19674 101 X

Table 3: Overall results for the RPS experiments. ‘Rank’
is the placement in the tournament, based on the average
score, and ‘Score’ is the total reward against all opponents,
averaged across the 50 tournaments. The columns labelled
‘O’ are from the original competition, and the ‘ε’ columns
show the results when the player uses SPS. ‘Sig.’ shows
whether the difference in scores is statistically significant
with 99% confidence.

In tournament settings like the RoShamBo competition,
the effect of SPS on rank is two-fold. The first effect, which
we have seen, is that the score of theε-safe player rises since
it no longer loses against other players. The second effect is
that the players that previously were able to win against the
ε-safe player have their scores reduced by a corresponding
amount. Thus, the score of theε-safe player is relatively
closer to the scores of the other players, which can lead to
increases in rank. A prime example of this effect is Peter-
bot and Knucklehead, whose ranks rose to 15 and 20 when
using SPS, respectively. However, Peterbot’s score of 101
was less than Knucklehead’s score of 154. The reason that
Peterbot’s rank increased by five more spots than Kunckle-
head’s is because the scores of the other players decreased.
Most of the average players were able to win almost all of
their games against the original Peterbot, which made a sig-
nificant contribution to their score. Thus, when these play-
ers were no longer able to win against Peterbot, their scores
dropped enough that Peterbot was able to surpass them.

When the original player obtains a positive reward in in-
dividual matches, we expect that the SPS-augmented player

Player: Iocaine Powder

Opponent Score Sig.O ε
Phasenbott 111 95
MegaHAL 54 55
Simple Modeller 33 30
Inocencio 296 320
Knucklehead 562 559
Peterbot 988 987

(a) Matches with Iocaine Powder

Player: RussRocker4

Opponent Score Sig.O ε
Iocaine Powder -519 -14 X

Phasenbott -530 -6 X

MegaHAL -94 -5 X

Inocencio 189 222
Knucklehead 477 478
Peterbot 992 992

(b) Matches with RussRocker4

Table 4: The results of individual matches, with against and
without usingε-safe strategies. In the ‘O’ columns, the
player was unmodified, and in the ‘ε’ column, the player
usedε-safe strategies. The opponents were all unmodified.

will obtain the same reward. When the original player’s
reward was negative, we expect that the SPS-augmented
player’s reward will increase tor∗ −∑T

t=1 f(t), which is
about−7.5 for the RPS experiments. The actual results are
close to the expected results; on average, a penalty of about
−4.5 was incurred in the cases when the reward was already
positive2. In the cases when the reward was originally neg-
ative, theε-safe score was increased to−3.7.

In order to show more detail in how SPS affects match
results, Table 4 gives the results of individual matches. Only
selected results are shown, but the rest of the results follow
the general trend shown in these two tables.

Table 4(a) shows the match results for Iocaine Powder,
the strongest player, against the three other strongest play-
ers, and against the three weakest players. Without SPS,
Iocaine Powder was able to model all six of the opponents,
although it only had slight leads against the stronger oppo-
nents. Thus, usingε-safe strategies would not be expected
to help Iocaine Powder. The important thing to note is that
SPS did not significantly interfere with the ability to model
the opponents.

Table 4(b) shows the match results for RussRocker4,
against the three strongest and three weakest opponents.
Unmodified, RussRocker4 was defeated by all three of the

2When the anomalous cases discussed later are removed from
this calculation, the average penalty decreases to−2.5.

stronger opponents, but was able to win against the three
weaker opponents. Theε-safe version of RussRocker4
maintained its lead against the weak opponents. Against
the strong opponents, the large negative values were all in-
creased to small negative values, obtaining a reward only
slightly less than the safety value of 0.

In almost every case, when SPS is used, the ability of
players to model their opponents is unaffected. However,
there were two anomalous cases when using SPS substan-
tially interferred with the ability of an agent to model an
opponent. In both cases, the opponent was Peterbot. ACT-
R Lag2 and Knucklehead were able to earn an average re-
ward of 397 and 803, respectively, against Peterbot, but
when using SPS they earned average rewards of 196 and
279. In general, anomalies like this are possible when arbi-
trary opponent modellers are used, since even slightly differ-
ent behaviours could trigger different styles of play in oppo-
nents. It is also possible for anomalies like these to work in
favor of theε-safe players, as well. For instance, when Pe-
terbot used SPS against Inocencio, its score changed from
−794 to 228, even thoughε-safe strategies should not be
expected to increase a negative score to a large positive one.

Results with a No-Regret Algorithm
As described previously, no-regret algorithms perform the
same basic function as SPS; they ensure that the long run
results are no worse than those of a safety strategy. As a test
of how SPS performs in practise against existing algorithms,
we repeated the RoShamBo experiments using Hedge (Auer
et al. 1995) as an example no-regret algorithm.

Hedge can be used to choose between multiple strategies
by treating each strategy as a basic action in the algorithm.
Hedge then decides with what probability each strategy is
followed, and guarantees in the limit that the regret of the
played actions versus each strategy is zero. This is stronger
than the guarantees made by SPS, because SPS has no theo-
retical guarantee that it will perform as well as the opponent
modeller. In our experiments, the value used for Hedge’sη
parameter was the value recommended in (Aueret al. 1995);
η = ln(1 +

√

2 lnK/T), whereK = 2 (the actions were
‘follow the random strategy’ or ‘follow the opponent mod-
eller’) and T = 1000 (the number of games). At each
timestep, a probabilityp was calculated, using the Hedge
algorithm, for following the action recommended by the
opponent modeller. Thus, players augmented with Hedge
play policies that consist of linear combinations of the safety
strategy and the recommended action.

Table 5 shows a subset of the results for the Hedge exper-
iments. Like SPS, using Hedge significantly improves the
scores of the weak and middle players. Overall, 12 play-
ers had a significant increase in score, and 14 of the players
increased in rank. However, Hedge caused significant re-
ductions in the scores of five of the stronger players, and 6
players decreased in rank. Thus, it seems that Hedge is an
effective way to increase the score of weak and mediocre
players; but is dangerous to use with the strongest players.
SPS did not adversely affect the scores of the strongest play-
ers, despite the lack of proof for SPS’s best response prop-
erties.

Player Rank Score Sig.O H O H
Iocaine Powder 1 1 4123 3932 X

Phasenbott 2 2 3533 3399 X

Simple Modeller 3 4 2786 2529 X

MegaHAL 4 4 2751 2632 X

Biopic 5 5 2346 2373
Boom 6 7 1852 1800
ACT-R Lag2 7 11 1790 1373 X

Robertot 8 6 1779 2030 X

Shofar 9 11 1643 1552
Bugbrain 10 9 1591 1715 X

RussRocker4 11 5 1583 2424 X

Simple Predictor 12 6 1399 2069 X

Sweet Rocky 13 14 893 905
Piedra 14 13 835 833
Marble 15 12 808 1443 X

Granite 16 12 763 1479 X

Vroomfondel 17 18 713 678
Majikthise 18 17 699 755
Mixed Strategy 19 14 591 926 X

Random (Optimal) 20 - -36 - -
ZQ Bot 21 13 -260 1127 X

Multi-strategy 22 14 -3159 743 X

Inocencio 23 12 -3546 1148 X

Knucklehead 24 22 -5810 -550 X

Peterbot 25 22 -19674 -1309 X

Table 5: A selection of overall results for the RPS experi-
ments, using Hedge as the safety guarantee algorithm.

Hedge is not as effective as SPS for mitigating loss. Even
in cases when both algorithms improve on the original score,
theε-safe score tends to be larger, and SPS does not reduce
the scores of the strong players. There were 16 cases where
theε-safe score improved significantly over the Hedge score,
and only one case in which Hedge significantly improved
upon SPS.

Discussion
In this section, we present some issues related toε-safe
strategies and Safe Policy Selection. We discuss when they
should be used, how they can be feasibly implemented, and
how they differ from the class of no-regret algorithms.

Appropriate Use of ε-Safe Strategies

We saw in the results from the RoShamBo tournament
that usingε-safe strategies appropriately is able to prevent
weaker opponent modellers from losing by large amounts.
The result was that weak players became mediocre players,
and mediocre players became stronger players. However,
the effect ofε-safe strategies on the strongest players was
negligible. The SPS algorithm is not a magic solution to
turn a bad player into the best player, since its success is lim-
ited by the underlying opponent modeller. Therefore, there
seems to be a conflict: in order to win, the opponent mod-
eller must already work well, and if the opponent modeller

already works well, SPS is not needed. This begs the ques-
tion, why use SPS at all?

Using ε-safe strategies could be thought of as a type of
insurance for opponent modellers. While a small penalty
could be paid in cases when the opponent modeller is suc-
cessful, large losses are prevented in the cases when the op-
ponent modeller is incapable of modelling the other play-
ers. For a perfect opponent modeller, of course doing any-
thing but following the opponent model will be detrimental,
and SPS cannot improve on it. In general, though, the type
and skill of opponents will not be known ahead of time, and
therefore it will not be known how well the agent will fare.
Also, as opponents become more sophisticated, the proba-
bilty that there can be one universal modeller becomes small.
Even for extremely good modellers, the ability to retreat in
an intelligent way to a safe strategy will become more es-
sential.

Making SPS Tractable
The SPS algorithm assumes that the best strategy,πε, can
be chosen from the setSAFE(ε). In general, iterating over
SAFE(ε) to find πε is impossible since| SAFE(ε)| is infi-
nite. Several solutions are possible for this problem, suchas
function optimization or approximation ofSAFE(ε). Func-
tion optimization is the approach taken in the RPS domain.
Instead of being enumerated explicitly,SAFE(ε) is defined
by a set of constraints, and the opponent modeller provides
an optimization objective. If the constraints are linear, as
with RPS, thenπε can be found with linear programming.

Another method of making SPS tractable is to use an ap-
proximationX(ε) of SAFE(ε). X(ε) could be a discretized
version ofSAFE(ε), or some other abstraction that can be
optimized over more efficiently. If an approximation is used,
it should satisfy the properties (∀ε,ε′):

X(ε) 6= ∅
X(ε) ⊆ SAFE(ε)

ε < ε′ ⇒ X(ε) ⊆ X(ε′)

πmax ∈ X(β)

Note that this implies any approximation ofSAFE(ε) should
be conservative; if any unsafe strategy is deemed safe by the
approximation, then long term safety can no longer be guar-
anteed. Using an approximation or reduced strategy space is
meant to confine computation to areas where maximization
can be done efficiently. In general, better approximations of
SAFE(ε) will result in better performance of the algorithm.

SPS and No-Regret Algorithms
We saw in the previous section that Hedge, a no-regret al-
gorithm, did not perform as well as SPS in the RoShamBo
tournaments. While the performance of Hedge does not nec-
essarily reflect on the peformance of other no-regret algo-
rithms, there is a common trait of all algorithms in this class.
A fundamental difference between the approaches taken by
the SPS algorithm and by no-regret algorithms is the space
of policies that each considers. No-regret algorithms are
only capable of stochastically switching between strategies
that are provided to the algorithm. Although these strategies

can be dynamic, such as an opponent modeller strategy, the
fact that there is only a finite number of strategies limits the
flexibility of no-regret algorithms.

The SPS algorithm takes a much more general approach.
Instead of switching between a finite set of strategies, it can
choose to play any strategy that satisfies the given safety
constraint. This can lead to policies that would never be con-
sidered by a no-regret player. This is important for two rea-
sons. First, it means the agent has more freedom to choose
appropriate policies. Second, it could be seen as a form of
exploration, which may enable the opponent modeller to cre-
ate more accurate models of how the other players react to
given styles of play. The drawback of this approach is that
it requires more computation, and may require a more so-
phisticated modeller in order to accurately evaluate arbitrary
policies.

Conclusion
In a multi-agent learning environment, the ability to react
appropriately to the actions of other agents is essential. Part
of reacting appropriately includes knowing when to take ad-
vantage of, or compensate for, perceived weaknesses in an-
other agent, and when to retreat to the safety of a known
policy. In this paper we have shown theoretically that SPS
is capable of ensuring safety for an agent, and practically
that it still allows the agent to model an opponent and ex-
ploit weaknesses. In the Rock-Paper-Scissors domain, SPS
was applied to a large collection of real opponent modellers,
and significantly improved the performance of most of them,
while not significantly harming any of them.

Our main direction of future research withε-safe strate-
gies is to extend their use to more complicated games. Rock-
Paper-Scissors worked very well as a domain for testing
their effect in a pure opponent modelling enviroment. How-
ever, a more practical demonstration of their effectiveness
would need to involve a larger game. In particular, we would
like to apply ε-safe strategies to stochastic games, which
have multiple states. Preliminary work with a stochastic do-
main shows that the translation of the algorithm to account
for multiple states is non-trivial. Also, the theoretical guar-
antee of safety no longer exists when actions have side ef-
fects other than immediate reward, such as state transitions.

Acknowledgements
We would like to thank Dale Schuurmans for help in work-
ing out some of the theory for safe opponent modelling, and
the anonymous reviewers for finding errors and providing
some suggestions to polish the paper. We would also like
to acknowledge NSERC and iCORE, along with the Alberta
Ingenuity Fund through its funding of the Alberta Ingenu-
ity Centre for Machine Learning, for their support of this
research.

References
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
1995. Gambling in a rigged casino: The adversarial multi-
arm bandit problem. In36th Annual Symposium on Foun-

dations of Computer Science, 322–331. Milwaukee, WI:
IEEE Computer Society Press.
Bauer, M., ed. 1995.IJCAI 95 Workshop on The Next
Generation of Plan Recognition Systems: Challenges for
and Insight from Related Areas of AI (Working Notes).
Billings, D. 2000. The first international roshambo pro-
gramming competition. International Computer Games
Association Journal23(1):3–8,42–50.
Bowling, M., and Veloso, M. 2002. Multiagent learn-
ing using a variable learning rate.Artificial Intelligence
136(2):215–250.
Brown, G. W. 1949. Some notes on computation of games
solutions. RAND Report P-78, The RAND Corporation,
Santa Monica, California.
Carmel, D., and Markovitch, S. 1996. Learning models
of intelligent agents. InProceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence. Menlo Park,
CA: AAAI Press.
Fudenberg, D., and Levine, D. K. 1999.The Theory of
Learning in Games. The MIT Press.
Gintis, H. 2000.Game Theory Evolving. Princeton Uni-
versity Press.
Han, K., and Veloso, M. 1999. Automated robot behav-
ior recognition applied to robotic soccer. InProceedings
of the 9th International Symposium of Robotics Research
(ISSR’99), 199–204.
Jafari, A.; Greenwald, A.; Gondek, D.; and Ercal, G. 2001.
On no-regret learning, fictitious play, and Nash equilib-
rium. In Proceedings of the Eighteenth International Con-
ference on Machine Learning, 226–223.
Kautz, H., and Allen, J. 1986. Generalized plan recog-
nition. In Proceedings of the 5th National Conference on
Artificial Intelligence (AAA1-86), 32–37.
Owen, G. 1995.Game Theory. Academic Press.
Riley, P., and Veloso, M. 2002. Planning for distributed
execution through use of probabilistic opponent models. In
Proceedings of the Sixth International Conference on AI
Planning and Scheduling, 77–82.
Robinson, J. 1951. An iterative method of solving a game.
Annals of Mathematics54:296–301.
von Neumann, J., and Morgenstern, O. 1944.Theory of
Games and Economic Behavior. John Wiley and Sons.

