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Abstract— Energy efficiency is an important issue in multihop
wireless networks with energy concerns. Usually it is achieved
with accurate knowledge of the traffic pattern and/or the current
network information such as the remaining energy level. We
investigate the problem of designing a routing scheme to minimize
the maximum energy utilization of a multihop wireless network
with weak assumption of the traffic pattern and without ongoing
collection of network information. We develop polynomial size
LP models to design such a routing scheme. We discuss general-
izations of the LP models to various radio transmission models.
In an interference-limited scenario, we show how to guarantee
schedulability of the oblivious routing. We present an extension
to consider lossy links. We also discuss implementation issues.
The LP models achieve performance close to what an oracle
can achieve in the performance study. The results for multihop
wireless networks with a single sink are especially good. We make
a first stride in designing a traffic-oblivious energy-aware routing
framework in multihop wireless networks.

I. INTRODUCTION

Research in multihop wireless networks, such as wireless ad
hoc networks, wireless sensor networks, wireless community
mesh networks and base-stations connected by wireless links,
has drawn much attention recently. Energy efficiency is a
paramount issue when the energy source is costly or there are
energy constraints. In some wireless systems, it is critical to
control heat generation, thus energy efficiency is a key factor.
In a multihop wireless network with a single sink, nodes close
to the sink tend to be heavily loaded. It is thus more important
to balance the load in the network.

Previous work on energy efficiency has made great progress.
Singh et al. [21] investigate power-aware routing in wireless
ad hoc networks. They propose several routing metrics and
study their performance through simulation. The problem of
maximizing the lifetime of a wireless ad hoc network with
energy constraints is studied in [7], [13], where the lifetime
is defined as the length of the time until the first node drains
out its energy. It assumes every node is important. Kar et
al. [11] investigate how to route the maximal number of
messages in wireless ad hoc networks with energy constraints.
Sadagopan and Krishnamachari [20] study the problem of
maximizing data extraction in wireless sensor networks with
energy constraints. If the power supply is renewable, it is
desirable that the energy consumption rate is less than the
renewal rate. Lin et al. [15] study power-aware routing with
renewable energy sources.

Some previous work assumes exact prior knowledge of
traffic pattern, e.g. [7], [20]. The traffic pattern may be

known a priori in some applications, such as in a wireless
sensor network in which sensors periodically report weather
information. With knowledge of the traffic pattern, network
flow [2] can be used to model the energy efficiency problem.
Chang et al. [7] model the problem of lifetime maximization as
a linear program (LP) and give a heuristic solution. Sadagopan
and Krishnamachari [20] develop an approximate algorithm
and a heuristic algorithm based on a LP formulation of the
data extraction problem. In our work we study the optimal
routing in the minimax sense, i.e., to minimize the maximum
energy utilization, in multihop wireless networks. Given the
traffic pattern, we can model the problem to minimax energy
utilization as a LP optimization problem.

For some classes of applications, e.g. wireless community
mesh networks or base stations connected by wireless links,
the traffic pattern may not be known a priori. It is difficult
to obtain an accurate estimate of the traffic pattern even
in the scenario of the Internet [4], [6], [23], where a large
amount of measurement data is available. It is likely to be
difficult to estimate the traffic pattern accurately in some
multihop wireless networks, e.g., in a wireless community
mesh network. Recently researchers study traffic characteri-
zation in wireless networks (without energy concerns), mainly
in a wireless LAN environment such as on a campus or in
a corporation, e.g. Meng et al. [16]. Even if an estimate is
accurate, it is in a statistical sense, which means there is an
error margin with the estimation. Some wireless networks may
be designed with the expected traffic pattern in mind. However,
in some cases, there are unexpected or unscheduled events.
In the sensor network example, where weather information
is reported periodically, the sensors may also need to report
temperature changes exceeding a certain threshold, which may
not be predictable. Furthermore, the actual traffic may deviate
from the expectation. Therefore, it is desirable to allow for
errors, deviation and uncertainties in traffic prediction when
designing a routing scheme. Two approaches may achieve this,
namely, adaptive and oblivious.

A routing scheme may be adaptive to the traffic pattern
and the network condition such as the remaining energy level
in an energy-constrained case. Some adaptive approaches can
bound the performance, e.g. [11], [13], [15]. They need to
periodically collect information such as the current energy
level. The approach in [13] needs a regular traffic pattern to
achieve the performance guarantee. The adaptive approaches
in [11], [15], which are based on the work of adaptive routing



in a wired network [18], have performance guarantees in the
order of logarithmic to network size. It is desirable to design
an efficient scheme to collect necessary information for energy
efficiency with respect to both computing an energy-efficient
route and economizing energy for information collection. We
take an alternative approach to investigate feasibility and
performance of a routing scheme oblivious to the traffic pattern
and network information.

The research on oblivious routing in optimizing link utiliza-
tion [19], [5], [4] has made great achievements. The oblivious
routing problem is to design a routing that achieves close to the
optimal performance, with no or only approximate knowledge
of the traffic pattern, without considering the current network
load. Räcke [19] investigates oblivious routing on general sym-
metric networks. Azar et al. [5] show that an optimal oblivious
routing can be computed by an LP with a polynomial number
of variables, but infinite number of constraints. Applegate and
Cohen [4] design a simple polynomial size LP to obtain traffic-
oblivious routing schemes to minimax link utilization that
achieve good performance in the scenario of the Internet.

In this paper, we study the problem of traffic-oblivious,
energy-aware routing in multihop wireless networks. We focus
on wireless networks with stationary topology. Our work is
applicable to low mobility. Our goal is to design a routing
scheme that achieves minimax energy utilization in a multihop
wireless network, with a weak assumption of the traffic
pattern, without ongoing collection of network information.
We develop polynomial size LP models to design such a
routing scheme. The routing is fixed1, thus it is oblivious to
changes and uncertainties of the traffic. It is also oblivious to
the current state of the network, such as the current energy
level of wireless nodes and the current network load. It
does not need to collect network information except for the
stationary topology and the initial energy level. The routing
achieves minimax energy utilization. Thus it is energy-aware.
It achieves energy efficiency nearly optimally as shown in
the experimental results. In contrast to the logarithmic per-
formance guarantee of adaptive approaches [11], [15], our LP
models give low, constant (close to 1.0) performance guarantee
in the studied cases.

The LP models are general enough for several radio trans-
mission models, such as omni-directional and directional an-
tennas and a radio equipped with various possible granularities
of transmission power levels. It can also work with a multi-
channel and/or multi-radio wireless system.

A wireless network has unique features, such as interference
and dynamic channel conditions, in contrast to a wired net-
work. Recently there is increased interest in jointly considering
routing and scheduling. Schedulability of a routing is studied
in Hajek and Sasaki [8] and Kodialam and Nandagopal [12] for
the “free of secondary interference” model, where a node can
transmit to or receive from at most one node. Necessary and
sufficient conditions are derived. Jain et al. [10] use a conflict

1The routing is “fixed” in the sense that there is a single output of the LP
model. It can be implemented in an opportunistic way as discussed in §III-H.

graph to model the interference relationship between links and
investigate lower and upper bounds of an achievable network
flow. On the other hand, emerging technologies, e.g. the ultra
wideband (UWB) system [17], may create an “interference-
free” wireless environment which renders schedulability of
a routing no longer a (serious) problem. We will discuss
schedulability concerns in §III-F.

A wireless channel is usually fluctuating, caused by other
ongoing transmissions and the surrounding environment. Qual-
ity of service (QoS) is an important issue, especially in a
wireless network with interference and time-varying channel
conditions. Applications may have various QoS requirements,
such as loss rate and end-to-end delay. Our work focuses
on energy efficiency. We discuss extensions to consider lossy
links in III-G. We take an optimistic treatment of a wireless
network by modeling it as a graph with stationary links, in
an attempt to gain insight of designing a traffic-independent
energy-efficient routing. We discuss an opportunistic imple-
mentation of the fixed routing to help address the issue of
link fluctuation by locally monitoring link quality in §III-H.

Our major contribution is: we design a routing scheme
which is energy-efficient, is independent of the traffic pattern
and does not need ongoing network information collection.
The experiments show that the oblivious routing can achieve
performance close to what an oracle can achieve.

In [14], we have incorporated the schedulability constraints
and considered lossy links in formulating LP models. In
this paper, we focus on the scenario where the traffic load
is relatively low compared with the bandwidth, due to the
utilization of ultra-wide band radio technology and/or the
traffic itself is sporadic.

The paper is organized as follows. §II presents the network
model, notation, and performance metrics. In §III, we develop
LP models to compute the optimal oblivious routing. We
discuss generalization to various radio transmission models
in §III-E. We discuss schedulability concerns in §III-F. An
extension to lossy links is presented in §III-G. Implementation
issues are discussed in §III-H. We present the experimental
results in §IV. Then we draw conclusions.

II. MODEL

Network Model. A multihop wireless network can be
abstracted as a digraph G = (V, E), where V is the set of
nodes and E is the set of “edges”. There is an edge (u, v) if
node u can reach node v. We assume the digraph is strongly
connected. Each node u has an initial energy level pow0(u).
We assume stationary channel conditions, e.g. an additive
white Gaussian noise (AWGN) channel with constant noise
power. We assume a transmitting node uses a fixed modulation
scheme. We use in(u) and out(u) to denote the sets of nodes
that have edges “into” and “out of” node u respectively, i.e.,
in(u) = {t|(t, u) ∈ E}, and out(u) = {(v|(u, v) ∈ E}. We
use out(v,−u) to denote the set of nodes that have edges out
of v, excluding u, i.e., out(v,−u) = {w|(v, w) ∈ E, w 6= u}.

Energy Consumption Model. The energy consumption to
transmit a unit amount of data from a node u to another node v



is tx(u, v). Usually tx(u, v) depends on the distance between
u and v. The amount of energy consumption in transmission
is proportional to the amount of data to be transmitted. This
linear model is used in previous work on energy efficiency,
e.g. [7], [9], [11], [13], [20].

We use r(u) and h(u) to model the energy consumption
of node u to receive and to overhear a unit of message
respectively. Overhearing means receiving a packet by a node
not addressed to it. We separate reception and overhearing
since they may consume different amounts of energy. For
instance, a node may overhear the whole data packet or
only the preamble before discarding it. In the former case,
overhearing consumes a comparable amount of energy to
reception; while in the latter overhearing may consumes much
less energy. During the formulation of the LP models, we only
need the function forms of these energy consumption models.
In the simulation study, we will use specific models. The
energy consumption for processing data may be a component
of the transmission model and the reception model, thus we
do not model it explicitly.

Traffic Matrix. We keep the notation traffic matrix (TM)
as in the literature of Internet traffic engineering, e.g. [23],
[4]. Denoting the number of nodes as n, a traffic matrix is an
n × n nonnegative matrix where the diagonal entries are 0.
A traffic matrix provides the amount of traffic between each
Origin-Destination (OD) pair over a certain time interval. It
characterizes the traffic pattern in an average sense.

Maximum Energy Utilization. We introduce a perfor-
mance metric, maximum energy utilization; and based on it,
we model the energy efficiency problem as a LP optimization
problem. The definition of this metric is inspired by the deriva-
tion of the maximum lifetime, e.g. in [7] and the definition of
the maximum link utilization, e.g. in [4]. With this metric, we
can handle more problems besides lifetime maximization.

A routing f specifies what fraction of the traffic for each OD
pair is routed on each edge. We will give its detailed definition
later. For a given routing f , a given traffic matrix tm, the
maximum energy utilization (MEU) measures the “goodness”
of the routing. The lower the maximum energy utilization, the
better the routing. We have,

MEU(tm, f) = max
s

energys

pow0(s)

where energys denotes the total energy consumption for all the
traffic transmitted, received and overheard by node s. We will
develop its detailed expression later. Recall pow0(s) denotes
the initial energy level of s.

Minimax Energy Utilization. For a given traffic matrix
tm, an optimal routing minimizes the maximum energy uti-
lization:

OPTE(tm) = min
f:f is a routing

MEU(tm, f)

The minimax energy utilization measures the energy con-
sumption rate of a wireless network. It can be regarded as a
unification of several studied problems: lifetime maximization
with or without energy renewal, maximization of the number

of messages or data extraction, and minimization of power
consumption. The lifetime of a wireless network is inversely
proportional to the energy consumption rate of the node that
consumes energy the fastest. For a given traffic matrix, once
we minimax the energy utilization, we effectively maximize
the lifetime of the multihop wireless network. The problem of
minimizing the renewal rate can be dealt with similarly. To
minimax energy utilization is equivalent to maximizing data
extraction according to the data rates of the sources, which
is a concurrent multi-commodity problem [2]. When wireless
nodes have the same initial power reserve, to minimax energy
utilization is equivalent to the problem of minimizing power
consumption.

Given a traffic matrix, the optimal routing to minimax
energy utilization is solvable as a LP multi-commodity flow
problem [2]. For now, we focus on routing. We discuss
schedulability of a routing in §III-F. The LP to find the optimal
routing is:

min p
f is a routing
∀ nodes s : energys/pow0(s) ≤ p

(1)

LP (1) minimizes the maximum energy utilization for a given
traffic matrix, i.e., LP (1) is equivalent to minf MEU(tm, f).
This LP is similar to that of Chang et al. [7] for maximizing
the lifetime of a wireless ad hoc network.

For an application with prior knowledge of traffic pattern,
the above LP model is sufficient to compute the optimal
routing to minimax energy utilization. For example, it maxi-
mizes the lifetime of a wireless sensor network with periodical
reports of weather information.

Competitive Ratio. The routing computed by LP (1) does
not guarantee performance for other traffic matrices. We
will develop LP models to compute the optimal routing that
achieves minimax energy utilization with a weak assumption
on the traffic pattern. First we introduce the metric of com-
petitive ratio that follows the competitive analysis [18], [4].

For a given routing f, a given traffic matrix tm, the
competitive ratio is defined as the ratio of the maximum
energy utilization of the routing f on the traffic matrix tm
to the maximum energy utilization of the optimal routing.
Competitive ratio measures how far the routing f is from the
optimal routing on the traffic matrix tm. Formally,

CR(f, {tm}) =
MEU(tm, f)
OPTE(tm)

The competitive ratio is usually greater than 1. It is equal to
1 only when the routing f is an optimal routing.

When we are considering a set of traffic matrices TM, the
competitive ratio of a routing f is defined as

CR(f, TM) = max
tm∈TM

CR(f, tm)

The competitive ratio with respect to a set of traffic matrices
is usually strictly greater than 1, since a single routing can not
optimize energy utilization over the set of traffic matrices.



When set TM includes all possible traffic matrices,
CR(f, TM) is referred to as the oblivious competitive ratio of
the routing f. This is the worse competitive ratio the routing
f achieves with respect to all traffic matrices. An optimal
oblivious routing is the routing that minimizes the oblivious
competitive ratio. Its oblivious ratio is the optimal oblivious
ratio of the network.

Suppose there is an oracle that knows the instant traffic
matrix tm and computes its optimal routing with energy
utilization e. The energy utilization of the optimal oblivious
routing for tm is guaranteed to be within [e, r ∗ e], where r is
the oblivious ratio. It may achieve lower energy utilization than
r ∗e for the particular traffic matrix tm. The oblivious routing
guarantees the performance of what an oracle can achieve
multiplied by the oblivious ratio for all traffic matrices.

III. TRAFFIC-OBLIVIOUS ENERGY-AWARE ROUTING

In the following, we start with a simpler case of a single
sink with all other nodes as sources. A potential application
is a wireless sensor network in which every sensor reports
to a single node, where there are unknown, unexpected or
unscheduled events such that it is difficult to accurately predict
the traffic pattern. Then we study the case where communi-
cation may happen between every pair of nodes. A potential
application is wireless community mesh networks with energy
constraints. It is easy to adapt our model to the cases of
multiple sources and/or multiple sinks, i.e., communication
happens only between certain pair(s) of nodes. The following
LPs are developed for the case where energy is a constraint
and not renewable. The LP models can be generalized to other
problems such as lifetime maximization when the energy is
renewable and maximization of data extraction with energy
constraints.

The LP models can be generalized to various wireless
systems as discussed in §III-E. In an interference-free en-
vironment, the routing can work well without considering
scheduling. In an interference-limited environment, we can add
additional linear constraints to guarantee schedulability of the
routing. We discuss schedulability in §III-F. We then discuss
an extension to consider lossy links and implementation issues.

A. A Single Sink Case
In the following, we develop LP models to compute the

oblivious ratio for a multihop wireless network with a single
sink, when we know no or approximate knowledge of the
traffic pattern. The sink node is assumed to have infinite energy
capacity. We first introduce the detailed definitions of a routing
f and the energy consumption energys.

When there is a single sink in a multihop wireless network,
denoted as T , the destination of any OD pair is T . The
traffic matrix is reduced to a traffic vector, with each entry
di denoting the amount of traffic originating from node i. We
study what fraction of di is routed along each edge.

A routing fi(s, t) specifies what fraction of di is routed
along edge (s, t). The traffic on edge (s, t) for di is difi(s, t).

Routing f is defined as:














∀ nodes i 6= T :
∑

j∈out(i) fi(i, j) = 1

∀ nodes i 6= T, ∀k 6= i, T :
∑

(l∈out(k) fi(k, l) −
∑

j∈in(k) fi(j, k) = 0

∀i 6= T, ∀ edges (s, t) : fi(s, t) ≥ 0

(2)

From the above, we can derive the routing conservation
constraint, ∀ nodes i 6= T :

∑

u∈in(T ) fi(u, T ) = 1.
The energy consumption of node s for di is,

energys(i) =
∑

t∈out(s){difi(s, t)tx(s, t)}

+
∑

t∈in(s){difi(t, s)r(s)}

+
∑

t∈in(s)

∑

k∈out(t,−s){I
(t,k)
(t,s) difi(t, k)h(s)}

I
(t,k)
(t,s) is an indicator function defined as,

I
(t,k)
(t,s) =

{

1 if s can overhear transmission from t to k;
0 otherwise.

The first term in energys(i) is the energy consumption for
transmission; the second for reception and the third for over-
hearing. We use I

(t,k)
(t,s) to indicate that if node s is within

the transmission range of the transmission from t to k, s
can overhear the transmission and consumes energy for the
overhearing. Chang et. al. consider only the energy consump-
tion for transmission [7]. Further investigation consider energy
consumption for both transmission and reception [20]. We also
consider the energy consumption for overhearing.

The total energy consumption of node s for all di’s is,

energys =
∑

i

energys(i).

Since dT = 0, we do not sum over i 6= T for brevity.

B. Routing With No Knowledge of Traffic: A Single Sink Case

Similar to Azar et al. [5], the optimal oblivious routing of a
multihop wireless network can be obtained by solving an LP
with a polynomial number of variables, but infinitely many
constraints. We call this LP “master LP”:

min r
f is a routing
∀ nodes s 6= T, ∀ TMs tm with OPTE(tm) = 1 :

∑

i energys(i)/pow0(s) ≤ r

(3)

The oblivious ratio is invariant with the scaling of the traffic
matrices or the scaling of the initial energy level. Thus, when
calculating the oblivious ratio, it is sufficient to consider traffic
matrices with OPTE(tm) = 1. Another benefit of using traffic
matrices with OPTE(tm) = 1 is that the objective of the LP
r, which is the maximum energy utilization of the oblivious
routing, is just the oblivious ratio of the network.

Given a routing f, the constraint of the master LP (3) can
be checked by solving the following slave LP for each node



s 6= T to examine whether the objective is ≤ r or not.

max
∑

i energys(i)/pow0(s)
gi(u, v) is a flow of demand di

∀ nodes u 6= T :
∑

i

∑

v∈out(u){gi(u, v)tx(u, v)}

+
∑

i

∑

v∈in(u){gi(v, u)r(u)}

+
∑

i

∑

v∈in(u)

∑

w∈out(v,−u){I
(v,w)
(v,u) gi(v, w)h(u)}

≤ pow0(u)
node capacity equality constraint
∀ nodes i 6= T : di ≥ 0

(4)
The constraints of LP (4) guarantee that the traffic can be
routed with maximum energy utilization of 1. In the capacity
constraint of LP (4), the first term on the left hand side is the
energy consumption for transmission; the second for reception
and the third for overhearing.

In slave LP (4), flow g is defined as,






















∀ nodes k 6= T, ∀i 6= k 6= T :
∑

u∈out(k) gi(k, u) −
∑

v∈in(k) gi(v, k) = 0

∀ nodes i 6= T :
∑

u∈out(i) gi(i, u) − di = 0

∀ edges (u, v), u 6= T, ∀i 6= T : gi(u, v) ≥ 0
∀ nodes i 6= T : di ≥ 0

(5)

From above, we can derive the flow reservation constraint,
∀ nodes i 6= T : di −

∑

u∈in(T ) gi(u, T ) = 0.
We put a “node capacity equality constraint” in LP (4).

This constraint requires that, for at least one node, the node
capacity inequality constraint takes the equality form. This
constraint prevents the case that, at optimality, all the node
capacity constraints take inequality form, which violates the
condition OPTE(tm) = 1. We will discuss how to express it
as a linear constraint when we develop the dual of LP (4). LP
models in Applegate and Cohen [4] do not express it.

Although the above “master-slave” LPs can solve the opti-
mal oblivious routing problem with polynomial time based
on the Ellipsoid algorithm [4], [5], it is not practical for
large networks [4]. Inspired by the work of Applegate and
Cohen [4], we derive simpler LP models to compute the
oblivious ratio.

The formulation can be simplified by collapsing flows gi on
an edge u → v, i.e., using g(u, v) =

∑

i gi(u, v). Constraints
of LP (4) become:

∀ nodes i 6= T :
∑

v∈in(i) g(v, i) −
∑

u∈out(i) g(i, u) + di = 0

∀ nodes u 6= T :
∑

v∈out(u){g(u, v)tx(u, v)} +
∑

v∈in(u){g(v, u)r(u)}

+
∑

v∈in(u)

∑

w∈out(v,−u){I
(v,w)
(v,u) g(v, w)h(u)} ≤ pow0(u)

node capacity equality constraint
∀ edges (u, v), u 6= T : g(u, v) ≥ 0
∀ nodes i 6= T : di ≥ 0

By relaxing the flow conservation constraint from equality
to ≤ 0, we allow for node i to deliver more flow than de-
manded, which does not affect the maximum energy utilization

of 1. The slave LP for node s 6= T is thus:

max 1
pow0(s){

∑

i

∑

t∈out(s){difi(s, t)tx(s, t)}

+
∑

i

∑

t∈in(s){difi(t, s)r(s)}}

+
∑

i

∑

t∈in(s)

∑

k∈out(t,−s){I
(t,k)
(t,s) difi(t, k)h(s)}}

∀ nodes i 6= T :
∑

(v,i)∈in(i) g(v, i) −
∑

(i,u)∈out(i) g(i, u) + di ≤ 0

∀ nodes u 6= T :
∑

v∈out(u){g(u, v)tx(u, v)} +
∑

v∈in(u){g(v, u)r(u)}

+
∑

v∈in(u)

∑

w∈out(v,−u){I
(v,w)
(v,u) g(v, w)h(u)} ≤ pow0(u)

node capacity equality constraint
∀ edges (u, v), u 6= T : g(u, v) ≥ 0
∀ nodes i 6= T : di ≥ 0

(6)
The dual of the simplified slave LP (6) (for node s 6= T ) is:

min
∑

u6=T πs(u)pow0(u)

∀ nodes i 6= T :
ps(i) ≥

1
pow0(s){

∑

t∈out(s){fi(s, t)tx(s, t)}

+
∑

t∈in(s){fi(t, s)r(s)}

+
∑

t∈in(s)

∑

k∈out(t,−s){I
(t,k)
(t,s) fi(t, k)h(s)}}

∀ edges (u, v), u 6= T :
tx(u, v)πs(u) + r(v)πs(v)

+
∑

k∈out(u,−v){I
(u,v)
(u,k)h(k)πs(k)} − ps(u) + ps(v) ≥ 0

∑

u6=T πs(u) > 0

∀ nodes i 6= T : πs(i), ps(i) ≥ 0
ps(T ) = 0, πs(T ) = 0

(7)
The dual variable ps(i) corresponds to the flow conservation
constraint for the demand di. Since there is no conservation
constraint for the demand dT , we introduce ps(T ) = 0
for convenience. The dual variable πs(u) corresponds to the
capacity constraint for node u. Since there is no capacity
constraint for node T , we introduce πs(T ) = 0.

We introduce the constraint
∑

u6=T πs(u) > 0 in the dual
LP (7) to express the “node capacity equality constraint” in
the primal LP (6), i.e. to guarantee that the node capacity
inequality constraint takes the equality form for at least one
node. According to the complementary slackness theorem [2],
we know that if the dual variable corresponding to the capacity
constraint in the primal LP is non-zero, the primal constraint
is tight. That is, if the dual variable πs(u) is non-zero, the
primal constraint for pow0(u) is tight (the maximum energy
utilization is 1). Thus in dual LP (7), we express the condition
OPTE(tm) = 1 in master LP (3).

According to the LP duality theory [2], the primal LP and
its dual LP have the same optimal values if they exist. That is,
LP (6) and LP (7) are equivalent. Replacing the constraint in
the master LP (3) with LP (7), we obtain a polynomial size LP
to compute the optimal oblivious ratio when there is a single
sink. It has O(n2+nm) variables and O(n2+nm) constraints,
where n and m are the numbers of nodes and edges.



min r
f is a routing
∀ nodes s 6= T :

∑

u6=T πs(u)pow0(u) ≤ r

∀ nodes i 6= T :
ps(i) ≥

1
pow0(s)

{
∑

t∈out(s){fi(s, t)tx(s, t)}

+
∑

t∈in(s){fi(t, s)r(s)}

+
∑

t∈in(s)

∑

k∈out(t,−s){I
(t,k)
(t,s) fi(t, k)h(s)}}

∀ edges (u, v), u 6= T :
tx(u, v)πs(u) + r(v)πs(v)

+
∑

k∈out(u,−v){I
(u,v)
(u,k)h(k)πs(k)} − ps(u) + ps(v) ≥ 0

∑

u6=T πs(u) > 0

∀ nodes i 6= T : πs(i), ps(i) ≥ 0
ps(T ) = 0, πs(T ) = 0

(8)

C. Routing with Approximate Knowledge of Traffic: A Single
Sink Case

In this section, we derive an LP model to compute the
optimal oblivious routing2 for a multihop wireless network
with a single sink when approximate knowledge of traffic
pattern is known, in the form that the traffic demand di is
within the range of [ai, bi] (0 ≤ ai ≤ bi).

Without the restriction OPTE(tm) = 1, LP (3) becomes:

min r
f is a routing
∀α > 0, ∀ nodes s 6= T :
∀ TMs tm with OPTE(tm) = α, and ∀i 6= T ai ≤ di ≤ bi :

∑

i energys(i)/pow0(s) ≤ rα
(9)

Since the oblivious ratio r is invariant with respect to the
scaling of traffic demands, we can consider a scaled TM tm′

=
α · tm. With α = 1/OPTE(tm), we have OPTE(tm′

) = 1.
Under these conditions, the master LP (9) becomes:

min r
f is a routing
∀ nodes s 6= T, ∀ TMs tm with λ > 0 such that

OPTE(tm) = 1 and ∀i 6= T λai ≤ di ≤ λbi :
∑

i energys(i)/pow0(s) ≤ r

(10)

As in §III-B, we can derive the constraints that traffic
matrices can be routed with maximum energy utilization of
1. We need to add the constraint λai ≤ di ≤ λbi, when we
know the range restriction of the traffic matrix. We also use
g(u, v) =

∑

i gi(u, v) to simplify the formulation as before.

2With a slight misuse of terms, we also call the routing that minimizes the
competitive ratio over the range restriction on the traffic matrix the “optimal
oblivious routing”, and its competitive ratio the “optimal oblivious ratio”.

∀ nodes i 6= T :
∑

v∈in(i) g(v, i) −
∑

u∈out(i) g(i, u) + di ≤ 0

∀ nodes u 6= T :
∑

v∈out(u){g(u, v)tx(u, v)} +
∑

v∈in(u){g(v, u)r(u)}

+
∑

v∈in(u)

∑

w∈out(v,−u){I
(v,w)
(v,u) g(v, w)h(u)} ≤ pow0(u)

node capacity equality constraint
∀ nodes i 6= T : 0 ≤ λai ≤ di ≤ λbi

∀ nodes i 6= T : di ≥ 0
λ > 0

The slave LP for node s 6= T with range restriction is thus:

max 1
pow0(s)

{
∑

i

∑

t∈out(s){difi(s, t)tx(s, t)}

+
∑

i

∑

t∈in(s){difi(t, s)r(s)}}

+
∑

i

∑

t∈in(s)

∑

k∈out(t,−s){I
(t,k)
(t,s) difi(t, k)h(s)}}

∀ nodes i 6= T : ⇐ ps(i)
∑

(v,i)∈in(i) g(v, i) −
∑

u∈out(i) g(i, u) + di ≤ 0

∀ nodes u 6= T : ⇐ πs(u)
∑

v∈out(u){g(u, v)tx(u, v)} +
∑

v∈in(u){g(v, u)r(u)}

+
∑

v∈in(u)

∑

w∈out(v,−u){I
(v,w)
(v,u) g(v, w)h(u)}

≤ pow0(u)
node capacity equality constraint
∀ nodes i 6= T : di − λbi ≤ 0 ⇐ w+

s (i)
∀ nodes i 6= T : −di + λai ≤ 0 ⇐ w−

s (i)
∀ edges (u, v) : g(u, v) ≥ 0
∀ nodes i 6= T : di ≥ 0
λ ≥ 0

(11)
The dual of slave LP (11) for node s is:

min
∑

u6=T πs(u)pow0(u)

∀ nodes i 6= T : ⇐ di

ps(i) + w+
s (i) − w−

s (i) ≥
1

pow0(s){
∑

t∈out(s){fi(s, t)tx(s, t)}

+
∑

t∈in(s){fi(t, s)r(s)}

+
∑

t∈in(s)

∑

k∈out(t,−s){I
(t,k)
(t,s) fi(t, k)h(s)}}

∀ edges (u, v), u 6= T : ⇐ g(u, v)
tx(u, v)πs(u) + r(v)πs(v)

+
∑

k∈out(u,−v){I
(u,v)
(u,k)h(k)πs(k)} − ps(u) + ps(v) ≥ 0

∑

u6=T πs(u) > 0

∀ nodes i 6= T :
∑

i{w
−
s (i)ai − w+

s (i)bi} ≥ 0 ⇐ λ
∀ nodes i 6= T : πs(i), ps(i), w

+
s (i), w−

s (i) ≥ 0
ps(T ) = 0, πs(T ) = 0

(12)
The dual variable ps(i) corresponds to the flow conservation
constraint for the node i. The dual variable πs(u) corresponds
to the capacity constraint for node u. The dual variables
w+

s (i) and w−
s (i) are associated with the range constraints

di−λbi ≤ 0 and −di+λai ≤ 0 respectively. To help make the
derivation of the dual LP (12) clearer, we use leftarrow “⇐” to
indicate dual variables corresponding with primal constraints
in LP (11). In dual LP (12), we indicate primal variables
corresponding to dual constraints.

Therefore, when we have approximate knowledge of the
traffic pattern in the form that the traffic demand di is within
the range [ai, bi], we can compute the optimal oblivious



ratio of a multihop wireless network with a single sink by
a polynomial size LP. It has O(n2 + nm) variables and
O(n2 + nm) constraints. The LP follows:

min r
f is a routing
∀ nodes s 6= T :

∑

u6=T πs(u)pow0(u) ≤ r

∀ nodes i 6= T :
ps(i) + w+

s (i) − w−
s (i) ≥

1
pow0(s){

∑

t∈out(s){fi(s, t)tx(s, t)}

+
∑

t∈in(s){fi(t, s)r(s)}

+
∑

t∈in(s)

∑

k∈out(t,−s){I
(t,k)
(t,s) fi(t, k)h(s)}}

∀ edges (u, v), u 6= T :
tx(u, v)πs(u) + r(v)πs(v)

+
∑

k∈out(u,−v) I
(u,v)
(u,k)h(k)πs(k) − ps(u) + ps(v) ≥ 0

∑

u6=T πs(u) > 0

∀ nodes i 6= T :
∑

i{w
−
s (i)ai − w+

s (i)bi} ≥ 0
∀ nodes i 6= T : πs(i), ps(i), w

+
s (i), w−

s (i) ≥ 0
ps(T ) = 0, πs(T ) = 0

(13)

D. All Pair Case
The multihop wireless network with a single sink is a spe-

cial case of communication over multihop wireless networks,
where there may be traffic between all pairs of nodes. When
all pairs of nodes may have traffic, an entry dij in a traffic
matrix denotes the amount of traffic of OD pair i → j. Usually
no node is assumed to have infinite energy capacity.

Similar to a single sink case, a routing fij(s, t) specifies
the fraction of traffic demand dij on edge (s, t). The traffic
on edge (s, t) for dij is dijfij(s, t). Routing f is defined as:















∀ pairs i → j :
∑

u∈out(i) fij(i, u) = 1

∀ pairs i → j, ∀ nodes k 6= i, j :
∑

u∈out(k) fij(k, u) −
∑

v∈in(k) fij(v, k) = 0

∀ pairs i → j, ∀ edges (s, t) : fij(s, t) ≥ 0

(14)

From the above, we can derive the conservation constraint,
∀ pairs i → j :

∑

u∈in(j) fij(u, j) = 1.
The energy consumption of node s for dij is,

energys(i, j) =
∑

t∈out(s){dijfij(s, t)tx(s, t)}

+
∑

t∈in(s){dijfij(t, s)r(s)}

+
∑

t∈in(s)

∑

k∈out(t,−s){I
(t,k)
(t,s) dijfij(t, k)h(s)}

The total energy consumption for node s is,

energys =
∑

i,j

energys(i, j).

Flow g is defined as,






















∀ pairs i → j, k 6= i, j :
∑

u∈out(k) gij(k, u) −
∑

v∈in(k) gij(v, k) = 0

∀ pairs i → j :
∑

t∈in(j) gij(t, j) − dij = 0

∀ pairs i → j, ∀ edges (u, v) : gij(u, v) ≥ 0
∀ pairs i → j : dij ≥ 0

From above, we can derive the flow reservation constraint,
∀ pairs i → j : dij =

∑

u∈out(i) gij(i, u).

Similar techniques in §III-B and III-C for the formula-
tion of LP models can be used here, e.g. we can collapse
flows gij on an edge u → v with the same origin by
gi(u, v) =

∑

j gij(u, v) to simplify the LP formulation. In LP
(15), we directly give the LP model to compute the optimal
oblivious ratio for a multihop wireless network, when we
know approximate knowledge of the traffic pattern that dij

is within the range of [aij , bij ]. When we have no knowledge
of the traffic pattern, i.e., the range is [0, +∞], the LP to
compute the oblivious ratio can be obtained by removing the
constraints, ∀ nodes s, ∀ nodes i, j 6= i :

∑

i{w
−
s (i, j)ai,j −

w+
s (i, j)bi,j} ≥ 0, and the variables w+

s (i, j) and w−
s (i, j) for

the range restrictions.

min r
f is a routing
∀ nodes s :

∑

u πs(u)pow0(u) ≤ r
∀ nodes i, j 6= i :

ps(i, j) + w+
s (i, j) − w−

s (i, j) ≥
1

pow0(s){
∑

t∈out(s){fij(s, t)tx(s, t)}

+
∑

t∈in(s){fij(t, s)r(s)}

+
∑

t∈in(s)

∑

u∈out(t,−s){I
(t,u)
(t,s) fij(t, u)h(s)}}

∀ nodes i, ∀ edges (u, v) :
tx(u, v)πs(u) + r(v)πs(v)

+
∑

k∈out(u,−v){I
(u,v)
(u,k)h(k)πs(k)}

−ps(u, i) + ps(v, i) ≥ 0
∑

u πs(u) > 0
∀ nodes i, j 6= i :

∑

i{w
−
s (i, j)aij − w+

s (i, j)bij} ≥ 0
∀ nodes u : πs(u) ≥ 0
∀ nodes i, j 6= i : ps(i, j), w

+
s (i, j), w−

s (i, j) ≥ 0
∀ nodes i : ps(i, i) = 0

(15)

Theorem 1. The optimal oblivious ratio and the optimal
oblivious routing of a multihop wireless network can be com-
puted by a polynomial size linear program with O(n3 +n2m)
variables and O(n3 + n2m) constraints, where n and m are
the numbers of nodes and edges.

We can prove Theorem 1 when we develop the LP model, by
counting the number of variables and constraints. A multihop
wireless network with a single sink is a special case. Its
optimal oblivious ratio and optimal oblivious routing can be
computed by a polynomial size LP with O(n2+nm) variables
and O(n2 +nm) constraints by LP (8) or LP (13). The n-fold
reduction in complexity is due to the n-fold reduction in the
number of OD pairs, since there is a single destination.

E. Generalization
Energy Consumption Model. The energy consumption

model energys (whose detailed definition is developed in §III-
A or §III-D) is general enough to take into account several
issues in radio transmission. By properly defining the indicator
function, we can handle the case in which a node can vary its
transmission range with arbitrary precision, at several discrete
levels, or with a fixed transmission range. Note a node may



transmit on different links with different power; but the power
on a link is constant.

For example, assume a disk model for radio transmission,
i.e., the maximum transmission range is the same in different
directions. Also assume omni-directional transmission. When
a node can vary its transmission range with arbitrary precision,
the indicator function is defined as,

I
(t,k)
(t,s) =

{

1 if dist(t, k) ≥ dist(t, s);
0 otherwise.

When there are nt transmission ranges for a wireless node
t, r1, r2, ..., rnt

, with r1 < r2 < ... < rnt
, we need to

replace dist(t, k) with ri, where ri ≥ dist(t, k), and if i 6= 1,
ri−1 < dist(t, k). That is, we replace dist(t, k) with the
smallest transmission range which is ≥ dist(t, k). We have,

I
(t,k)
(t,s) =

{

1 if ri ≥ dist(t, s);
0 otherwise.

In the case where the transmission range for node t is
fixed, denoted as TxR(t), we can obtain the proper indicator
function by replacing ri with TxR(t).

As well, we can handle the radio irregularity problem stud-
ied recently, e.g. in [22], that a radio has different maximum
transmission ranges in different directions. This affects the
neighborhood relationship. The energy model can be used
for the wireless communication using either omni-directional
antenna or smart antenna. For smart antenna with directional
communication, the model for transmission tx(s, t) and re-
ception r(s) need to include a component to account for the
energy consumption for managing the antenna. With smart
antennae, the indicator function will be affected, which will
affect the energy consumption for overhearing.

Multi-channel and multi-radio. In a wireless network with
multi-channel and/or multi-radio, there will be multiple edges
between a pair of nodes in a graph representation. The LP
models still work on this multigraph. The channels operated
by a radio usually interfere with each other. But there is
no interference among channels operated by multiple radios
orthogonal with each other. The work to handle interference
in Kodialam and Nandagopal [12] and Jain et al. [10] are
applicable here. Interference issues will be further discussed
in §III-F. The LP models is thus extensible to a multi-input
multi-output (MIMO) system.

F. Schedulability
In the following, we discuss schedulability of a routing in

two scenarios, “interference-free” and interference-limited.
Interference-free. When the traffic load is relatively low

compared with the bandwidth, the interference is less severe
or negligible. With the emerging ultra-wideband (UWB) radio
technology, a wireless node has a wide bandwidth, which may
result in a large number of orthogonal channels between a
pair of nodes, e.g. by MIMO; at the same time, the power
is limited, thus the traffic load is low compared to the large
bandwidth. Consequently, concurrent transmissions may be
arranged in a manner such that there is negligible interference.

This “interference-free” feature of UWB is exploited, e.g.
in [17]. In some applications, such as some sensor networks,
traffic may be sporadic. Interference will not be a major
concern in such cases. Note that in a network with low traffic
load, certain load/energy balancing technique like ours is still
needed for energy efficiency. In interference-free scenarios,
our LP model can work well without considering scheduling.

Interference-limited. In an interference-limited wireless
network, it is necessary to consider schedulability of a routing.
To optimize a schedulable routing is essentially to solve
an optimization problem at the intersection of the feasible
flow space and the feasible scheduling space. The problem
of scheduling with interference is NP-hard itself. Thus re-
searchers seek necessary and sufficient condition for a flow
to be schedulable. In the problem to maximize network flow
(throughput), researchers look for lower and upper bounds for
the schedulable flow. We discuss how to guarantee schedula-
bility of an oblivious routing.

The free of secondary interference model receives con-
siderable attention. Hajek and Sasaki [8] investigate the
schedulability of a routing in polynomial time. Kodialam
and Nandagopal [12] give necessary and sufficient conditions
implicitly in [8]. These conditions are expressed as linear
constraints over the flows and data rate on neighboring edges
of a node. For the case of multihop wireless networks with
a single sink, in terms of our notation, the necessary and
sufficient conditions can be expressed as follows for each node
s when β takes the values of 1 and 2

3 respectively:
∑

t∈out(s)

g(s,t)
c(s,t) +

∑

t∈in(s)

g(t,s)
c(t,s) ≤ β. (16)

Here c(s, t) denotes the data rate the edge (s, t) can support.
These conditions for the case of multihop wireless network
can be expressed similarly. To guarantee schedulability, we
use the sufficient condition, i.e., by setting β = 2

3 .
Our traffic-oblivious energy-aware routing scheme enjoys

the feature that it can incorporate more linear constraints, e.g.,
to make the routing schedulable. For the case of multihop wire-
less network with a single sink, we can add constraints (16) to
a slave LP, e.g., LP (6) to guarantee the flow schedulability. As
well, we can add linear constraints based on Jain et al. [10] or
exploit new progress to guarantee schedulability of the flow.
See [14] for more details.

G. Lossy Links
When developing the LP models, we implicitly assume the

wireless links are lossless. This assumption is made (implic-
itly) in most previous work that are based on a LP model,
e.g., [7], [13], [20]. A wireless link is usually lossy and some
applications need reliable transmission. As a consequence,
a packet may take several transmissions. Thus modifications
need to be made to the usual flow conservation constraints, by
considering some link loss factor, which measures the average
number of transmissions to successfully transmit a packet on
the link. If there is a constant link loss factor γij ≥ 1 for
each edge (i, j), we have linear flow conservation constraints.



Taking a single sink case as an example, the definition of flow
g in (5) becomes:



























∀ nodes k 6= T, ∀i 6= k 6= T :
∑

u∈out(k)
gi(k,u)

γku

−
∑

v∈in(k)
gi(v,k)

γvk

= 0

∀ nodes i 6= T :
∑

u∈out(i)
gi(i,u)

γiu

− di = 0

∀ edges (u, v), u 6= T, ∀i 6= T : gi(u, v) ≥ 0
∀ nodes i 6= T : di ≥ 0

(17)

In (17), gi(u, v) denotes the actual flow originating from
node i on edge (u, v) (due to retransmissions); while gi(u,v)

γuv

denotes the effective flow. The routing definition (2) remains
the same. The energy consumption model needs to change as
well. We need to multiply γst with the term difi(s, t)tx(s, t)
for energy consumption for transmission to reflect multiple
transmissions. A term for energy consumption for reception
remains the same, since there is only one successful reception.
The case for overhearing may be more complex. The number
of transmissions overheard may be related to the two γ’s of
the transmission link and the overhearing link.

Our LP models in §III-A through §III-D can be regarded as
an optimistic treatment of a lossy environment, by taking all
γ’s as 1. LP formulations in [14] take lossy links into account.

H. Implementation Issues
As the performance study will show in §IV, the traffic-

oblivious energy-aware routing has excellent theoretical re-
sults, i.e., the oblivious ratios are close to 1.0. In the following,
we discuss several issues in a potential implementation of the
routing scheme.

For a stationary network, our tools only need to collect
information of topology and initial energy level once. We need
information about node positions and their connectivity. It is
possible to construct the graph of the network with good links,
using the techniques in Woo et al. [22] to estimate link quality.
The criteria for the goodness of link quality is that its average
quality is good and relatively stable. After that, we take a
centralized way to compute the optimal oblivious routing. We
need a round of message exchanges to implement the routing,
so that each node knows, for each OD pair, what fraction of
traffic to transmit to which neighbor. Once the routing is imple-
mented, it does not need to collect global network information
any more. With only two rounds of message exchanges, our
approach has a low message complexity. Once the routing is
implemented, it is fully distributed. In contrast, the distributed
algorithms in [7], [11], [20] and the hierarchical algorithm
in [13] need ongoing collection of network information such
as the remaining energy level.

The routing computed by our LP model can be implemented
in an opportunistic manner, i.e., each node transmits data
packets opportunistically to its neighbors according to the
fraction specified by the routing. Such an implementation
has the potential to combat the fluctuating channel condition
in practice. This is achieved by monitoring the outgoing
links and choosing the one with good quality at the time
of transmission. Recently there are experimental results on

link quality estimation, e.g. Woo et al. [22], and interference
detection, e.g. Zhou et al. [24]. We can exploit their techniques
to estimate the variation of link quality caused by temporary
link failures and interference. The estimate of link quality and
the routing fraction determine which link to transmit a packet.
This is amenable to a distributed implementation, in which
each node only needs to monitor the quality of the neighboring
links. Once the fraction of traffic load on each link is satisfied,
the energy efficiency is accomplished. In this way, our “single
fixed” routing makes “rerouting” transparent. It is desirable
that the routing fractions are satisfied in a relatively short
time interval, so there will be a tradeoff between using links
with good quality and satisfying the routing fractions. The
opportunistic implementations of the oblivious routing could
help alleviate the impact of channel quality fluctuation.

In an energy-constrained multihop wireless network, when
one or several nodes have used up energy, they are discon-
nected from the network. The network may still be working
for a while. Reoptimizition of the routing may be needed. A
similar problem, how to optimize the “oblivious restoration”
when one or several nodes fail in the scenario of the Internet,
is studied in [3]. We may use similar techniques to obtain an
optimal oblivious restoration. However, collecting remaining
energy capacities consumes energy. Thus, further investigation
is needed to justify the benefit of routing reoptimization. A
simple approach is, for a node s having flow to the failed node,
to bypass the failed node by assigning additional fraction of
flow to the other downstream nodes of node s. The adjustment
of routing fractions for downstream nodes is determined by the
original routing fractions, in an attempt to balance the load.
For example, suppose in the single sink case, for origin i, node
s has routing fractions fi(s, u), fi(s, v) and fi(s, w) to nodes
u, v and w, respectively. When node u fails, node s adjusts
routing fractions to v and w as α(v)fi(s, v) and α(w)fi(s, w),
where α(x) = 1 + fi(s, x)/{fi(s, v) + fi(s, w)}. This simple
approach of detouring around the failed node is amenable to
a distributed implementation. It is worth further investigating
how to handle failure scenarios.

IV. PERFORMANCE STUDY

We study the performance of the LP models developed in
§III-A through §III-D on multihop wireless networks where
energy is a constraint and non-renewable. We also give results
when it is interference-limited and links are lossy in §IV-C.

We use random topologies. We put nodes on a k × k grid,
each cell of which represents a 10m × 10m area. In each
cell of the grid, we put a node at a random position. The
initial energy level of each node is set randomly, uniformly
within [20J, 30J ] (note the oblivious ratio is invariant with the
scaling of the initial energy level). For brevity, we use a disk
model for radio transmission. That is, suppose the maximum
transmission range of node u is Rmax, there is an edge (u, v)
if Rmax ≥ dist(u, v), where dist(u, v) denotes the distance
between u and v. In the simulations, every node has the same
maximum transmission range. We conduct experiments on
networks of various sizes. For each size of the network, we



study two maximum transmission ranges, 15m and 20m. We
use CPLEX [1] to solve the LP programs.

We use the energy model in [9], i.e., we set tx(u, v) =
Eelec +εamp×dist2(u, v) and r(u) = Eelec, where Eelec rep-
resents the energy consumption for running the transmitter or
the receiver circuitry, εamp represents the energy consumption
for running the transmitter amplifier to achieve an acceptable
signal-noise ratio. We set h(u) = r(u), i.e., we assume that the
overhearing consumes the same amount of energy per unit of
message as the reception. As in [9], we set Eelec = 50nJ/bit
and εamp = 100pJ/bit/m2.

A. A Single Sink Case
We first study a single sink case. We conduct experiments

on networks of sizes 25, 36, 49, 81, 100 and 121. We choose
the node either in the center or in the corner cell as the sink.

The oblivious ratio of a multihop wireless network is com-
puted by LP (8). The oblivious ratios of the studied networks
are shown in the last column in Table I under ∞ (which means
we have no knowledge of the traffic pattern, as will be clear
later in this section). We have encouraging results, considering
the oblivious ratios are achieved without any knowledge of the
traffic pattern, and only an oracle can achieve the ratio of 1.

It is expected that with some knowledge of traffic demands,
we can achieve lower competitive ratios. In the following we
study the performance of LP (13) if we know the degree of
accuracy of the traffic estimation, for a topology, a traffic
matrix tm and an “error margin” ε > 1. We will study the
oblivious ratio of a network, given the knowledge of traffic
demand in the range of [di/ε, εdi], with respect to the base
traffic matrix di’s. First, we need to decide the di’s.

We may have some rough estimation of the traffic pattern
in a multihop wireless network. We use four traffic models
to determine the base traffic matrix tm: Gravity, Bimodal,
Random and Uniform, to attempt to capture some broad
classes of traffic patterns in multihop wireless networks. They
are denoted as G, B, R and U respectively in the tables. In the
Gravity model, the amount of traffic originating from node
i, di, is proportional to pow0(i), the initial energy level of
node i. In the Bimodal, a small portion of nodes have a large
amount of traffic, while a large number of nodes have small
amount of traffic. In our study, 80% of the nodes have traffic
demands determined by a normal distribution N(1.0, 0.1);
while traffic demands of 20% of the nodes are determined
by N(10.0, 1.0). N(µ, σ2) denotes a normal distribution with
mean µ and variance σ2. Random model is self-explanatory. In
our study, we use a uniform distribution on the range [1, 100].
In a Uniform model, all the nodes have the same amount of
traffic. The Gravity and the Bimodal traffic models are inspired
by the study on the Internet traffic estimation in [23] and [6]
respectively, which may reflect the technical expectation to
and the social phenomenon of a network (the Internet). In
a wireless network, we may imagine that a node with high
energy capacity may tend to transmit more data. It is possible
that, in some applications, some “hotspot” area may have much
more data to transmit.

N Rmax TM 1.5 2.0 3.0 ∞

U 1.2264 1.3892 1.5808
15m G 1.2256 1.3879 1.5810 1.8239

B 1.2612 1.4430 1.5831
49 R 1.2177 1.3773 1.5815

U 1.2852 1.4884 1.7138
20m G 1.2846 1.4875 1.7163 1.9651

B 1.3018 1.5169 1.6943
R 1.2954 1.4955 1.6772
U 1.1441 1.2725 1.5154

15m G 1.1439 1.2727 1.5169 1.9964
B 1.1406 1.2824 1.4966

81 R 1.1377 1.2681 1.5208
U 1.1605 1.3086 1.5650

20m G 1.1600 1.3080 1.5663 2.0242
B 1.1883 1.3493 1.5819
R 1.1576 1.3037 1.5544
U 1.0673 1.1442 1.3221

15m G 1.0669 1.1429 1.3195 1.9065
B 1.0887 1.1851 1.3901

100 R 1.0556 1.1273 1.3037
U 1.0920 1.1834 1.3761

20m G 1.0918 1.1825 1.3743 1.9752
B 1.1219 1.2360 1.4676
R 1.0995 1.1923 1.3872
U 1.0604 1.1268 1.3012

15m G 1.0609 1.1268 1.3007 1.9071
B 1.0780 1.1529 1.3373

121 R 1.0573 1.1305 1.3166
U 1.0883 1.1886 1.4129

20m G 1.0875 1.1874 1.4113 2.0751
B 1.0784 1.2016 1.4803
R 1.0960 1.2007 1.4263

TABLE I
OBLIVIOUS RATIOS: SINGLE SINK IN THE CENTER

Tables I shows the results for the sink in the center with
the error margin ε of 1.5, 2.0 and 3.0, for the four base traffic
models respectively. For each network size N , each maximum
transmission range Rmax, the oblivious ratios for the four base
traffic models are on the same topology. We can see that LP
(13) can achieve fairly low oblivious ratios with large error
margins. Note that, with 50% error in traffic estimation, the
performance is close to the optimal (the oblivious ratio is close
to 1.0). To save space, we do not present results for networks
of sizes 25 and 36. They have similarly low oblivious ratios.

N Rmax 1.5 2.0 3.0 ∞

15m min 1.000+ 1.000+ 1.000+ 1.000+
49 max 1.2329 1.3946 1.6091 1.9340

20m min 1.0100 1.0203 1.0438 1.1800
max 1.3771 1.5880 1.7750 1.9767

15m min 1.000+ 1.000+ 1.000+ 1.0353
81 max 1.0945 1.2125 1.4442 1.9652

20m min 1.0044 1.0090 1.0224 1.1872
max 1.1706 1.3402 1.6354 2.0770

TABLE II
MIN AND MAX OBLIVIOUS RATIOS OVER 9 RUNS

A SINGLE SINK IN THE CORNER (UNIFORM BASE TM)

When the sink is in the corner, the oblivious ratio can be
much lower. We conduct experiments with 9 seeds for the
random number generator, which may change the locations of



N Rmax TM 1.5 2.0 3.0 ∞

75m G 1.2985 1.4891 1.7232 2.1356
49 R 1.3110 1.5294 1.7328

100m G 1.3128 1.5465 1.8378 2.2395
R 1.3405 1.5877 1.8332

75m G 1.1102 1.2111 1.4423 2.1934
81 R 1.0987 1.1957 1.4251

100m G 1.1580 1.3206 1.6335 2.2678
R 1.1615 1.3331 1.6350

75m G 1.0419 1.0886 1.1973 1.9786
100 R 1.0427 1.0840 1.2036

100m G 1.0720 1.1539 1.3308 2.1054
R 1.0659 1.1404 1.3253

75m G 1.0372 1.0713 1.1648 1.9499
121 R 1.0317 1.0605 1.1899

100m G 1.0764 1.1545 1.3463 2.3008
R 1.0572 1.1310 1.3324

TABLE III
OBLIVIOUS RATIOS: A SINGLE SINK IN THE CENTER, TRANSMISSION

DOMINATES ENERGY CONSUMPTION

the nodes (thus the graph), the initial energy level and the base
traffic matrix (for Bimodal and Random model). In Table II,
we show the min and max of the oblivious ratios over 9 seeds
for Uniform model for the case the sink is in the corner for
49 nodes and 81 nodes. The results of 1.000+ represent those
slightly greater than 1.0.

The energy consumption for reception and overhearing may
be insignificant in some cases such as long-range transmission.
We attempt to study how our LP models perform under such
circumstances. We still use a k×k grid. However, each cell of
the grid represents a 50m×50m area. we study two maximum
transmission ranges, 75m and 100m. Recall we set tx(u, v) =
Eelec + εamp × dist2(u, v) and r(u) = h(u) = Eelec. Thus
the distance plays an important role in energy consumption. It
seems that our LP models perform similarly over the four base
traffic models. In this set of experiments, we use the Gravity
model and Random model to determine the base traffic matrix
when we have approximate knowledge of the traffic pattern.
Experimental results in Table III shows that when the energy
consumption for reception and overhearing is less significant,
our LP models can still achieve low oblivious ratios, especially
when we have some weak knowledge of the traffic pattern.

We also conduct experiments using the energy model
in [13], where tx(u, v) = 0.0001 × dist3(u, v). Since the
reception and overhearing are not considered in [13], we set
h(u) = r(u) = 0. We obtain similarly low oblivious ratios.

B. All Pair Case
Next we study the all pair case. We study topologies of

sizes 25 and 36. The oblivious ratios of the studied networks
are shown in the last column in Table IV (denoted by the
error margin ∞). These results are encouraging, since they
are achieved without any knowledge of the traffic pattern and
without the ongoing network information collection.

Similar to §IV-A, we use four traffic models to determine
the base TM tm, when we have approximate knowledge of
the traffic pattern. In the Gravity model, the amount of traffic

of the OD pair dij is proportional to pow0(i) × pow0(j). In
the Bimodal, 20% of the pairs have traffic demands deter-
mined by N(10.0, 1.0), while 80% of the pairs determined by
N(1.0, 0.1). We use a uniform distribution on [1, 100] for the
Random model. In the Uniform model, all OD pairs have the
same amount of traffic.

With rough knowledge of the traffic pattern, the competitive
ratios can be much lower than that without any knowledge
of traffic. With error margin ε = 1.5, we can achieve an
oblivious routing that is at most 33.5%−46.5% worse than the
oracle optimal routing. We do not intend to claim that for all
the topologies we can achieve a competitive ratio within this
range. It may be lower or higher. The competitive ratio de-
pends on the topology and the relative energy capacity levels.
If the oblivious ratio is acceptably low, the oblivious routing
is a competitive option for optimizing energy efficiency.

N Rmax TM 1.5 2.0 3.0 ∞

U 1.3351 1.4928 1.6532
15m G 1.3346 1.4924 1.6532 2.1671

B 1.3357 1.4925 1.6516
25 R 1.3318 1.4882 1.6448

U 1.3732 1.5451 1.7113
20m G 1.3730 1.5449 1.7110 2.2237

B 1.3575 1.5306 1.7030
R 1.3713 1.5418 1.7086
U 1.4287 1.6151 1.8094

15m G 1.4288 1.6151 1.8097 2.4054
B 1.4277 1.6143 1.8019

36 R 1.4237 1.6134 1.8085
U 1.4642 1.6826 1.8866

20m G 1.4646 1.6830 1.8870 2.4397
B 1.4575 1.6819 1.8827
R 1.4648 1.6831 1.8866

TABLE IV
OBLIVIOUS RATIOS: ALL PAIR CASE

We also conduct experiments in the case that each cell of
the grid represents a 50m × 50m area to attempt to study
how the LP models perform in multihop wireless networks
when energy consumption for reception and overhearing is
less significant. We use two maximum transmission ranges,
75m and 100m. We use the Gravity model and Random model
when we know the range restriction on the base traffic matrix.
Table V shows that our LP models can achieve low oblivious
ratios (close to 1.0, the oracle optimal performance).

N Rmax TM 1.5 2.0 3.0 ∞

75m G 1.4048 1.6377 1.8718 2.4018
25 R 1.4054 1.6297 1.8647

100m G 1.4868 1.7438 1.9655 2.4098
R 1.4813 1.7342 1.9547

75m G 1.4253 1.6596 1.9346 2.6166
36 R 1.4309 1.6652 1.9386

100m G 1.5215 1.8107 2.1031 2.6479
R 1.5230 1.8113 2.1039

TABLE V
OBLIVIOUS RATIOS: ALL PAIR CASE, TRANSMISSION DOMINATES

ENERGY CONSUMPTION



C. Interference-limited lossy-links case
We conduct experiments for the case where it is

interference-limited and links are lossy. Loss ratio of each
edge is uniformly set within [0%, 50%]. We set β = 2

3 for
schedulability constraint (16). Table VI shows the results for
nine topologies of 81 nodes with a single sink in the center
cell and Rmax = 15m. We have low oblivious ratios. See [14]
for the LP formulation and more results.

TM 1.5 2.0 3.0 ∞

U min 1.1831 1.3320 1.6252
max 1.5835 1.6356 1.9240

G min 1.1838 1.3330 1.6279 2.4053
max 1.5848 1.6382 1.9204 (min)

B min 1.2378 1.4380 1.6249
max 1.5506 1.7279 2.0580 2.7418

R min 1.2684 1.3895 1.5625 (max)
max 1.6096 1.6688 1.9251

TABLE VI
MIN AND MAX OBLIVIOUS RATIOS OVER 9 RUNS

81 NODES WITH Rmax = 15m, A SINGLE SINK IN THE CENTER,
INTERFERENCE-LIMITED LOSSY-LINKS

V. CONCLUSIONS

Energy efficiency is an important issue in multihop wireless
networks with energy concerns. We investigate the problem
of designing optimal traffic-oblivious energy-aware routing to
minimax energy utilization in multihop wireless networks. We
design LP models of polynomial sizes in both the number of
variables and the number of constraints with a fairly weak
assumption of the traffic pattern. With no or approximate
knowledge of the traffic pattern, our LP models can achieve
the performance close to what an oracle can achieve (with
oblivious ratios close to 1.0). The performance is particularly
good when there is a single sink.

Our LP model is general enough to model various wireless
systems, such as MIMO. The routing scheme in this paper can
work well in an interference-free wireless network. We discuss
several implementation issues. In [14], we have incorporated
the schedulability constraints and considered lossy links in
formulating LP models. It is interesting to compare our work
with an adaptive approach, e.g. [11], [15]. With several issues
to further study and implementation details to fulfill, we have
made a first stride in designing a traffic-oblivious energy-aware
routing framework in multihop wireless networks.
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