

© EUROSIS-ETI

A PATTERN CATALOG FOR COMPUTER ROLE PLAYING GAMES

C. Onuczko, M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy,
K. Waugh, M. Carbonaro* and J. Siegel

Department of Computing Science, *Department of Educational Psychology
University of Alberta, Edmonton, AB, Canada T6G 2E8

{onuczko, meric, duane, jonathan, mcnaught, troy, siegel }@cs.ualberta.ca, *mike.carbonaro@ualberta.ca

KEYWORDS
Generative design patterns, scripting languages, code
generation, computer games.

ABSTRACT

The current state-of-the-art in computer games is to
manually script individual game objects to provide desired
interactions for each game adventure. Our research has
shown that a small set of parameterized patterns (commonly
occurring scenarios) characterize most of the interactions
used in game adventures. They can be used to specify and
even generate the necessary scripts. A game adventure can
be created at a higher level of abstraction so that team
communication and coding errors are reduced. The cost of
creating a pattern can be amortized over all of the times the
pattern is used, within a single adventure, across a series of
game adventures and across games of the same genre. We
use the computer role-playing game (CRPG) genre as an
exemplar and present a pattern catalog that supports most
scenarios that arise in this genre. This pattern catalog has
been used to generate ALL of the scripts for three classes of
objects (placeables, doors and triggers) in BioWare Corp.’s
popular Neverwinter Nights CRPG campaign adventure.

MANUAL SCRIPTING

A computer game typically contains a game engine that
renders the graphical objects and characters, and manages
sound and motion. A programming team writes a game
engine that can be re-used across multiple game adventures
and enhanced for future games. They also produce a set of
computer aided design (CAD) tools that are used by a team
of writers, artists, musicians, voice actors and other skilled
craftspeople to create content such as backgrounds, models,
textures, creatures, props, sounds, and music that are shared
across game adventures. Adventure (story) designers also
use these tools to create individual adventures. For example,
Figure 1 shows BioWare’s (http://www.bioware.com/)
Aurora Toolset that is used to create game adventures for
Neverwinter Nights (NWN) (http://nwn.bioware.com/).

A game engine typically dispatches game events to scripts
that support interactions between the player character (PC)
and game objects. These interactions vary for each game
adventure and programmers must write the scripts that
control them. For example, an adventure designer may want
the PC to agree to complete a quest before allowing the PC
to enter a castle. To ensure that the quest is accepted, a heat
source is placed close to the castle door that prevents the PC
from getting close enough to the door to use it. The designer
provides a non-player character (NPC) with a cloak of fire
resistance that will be given to the PC after the PC has
agreed to undertake the quest

Figure 1: The Aurora Toolset CAD Tool for NWN
Adventure Designers

void main() {
 object Enterer;
 object Cloak;
 object FireCenter;
 location jumperLocation;
 vector jumperPosition;
 float jumperFacing;
 object jumperArea;
 vector targetPosition;
 vector heading;

 Enterer = GetEnteringObject();
 Cloak = GetObjectByTag("CloakofFireResistance");
 if(! GetItemInSlot(INVENTORY_SLOT_CLOAK, Enterer)
 == Cloak) {
 ApplyEffectToObject(DURATION_TYPE_INSTANT,
 EffectVisualEffect(VFX_IMP_FLAME_S), Enterer);
 FireCenter = GetObjectByTag("firecenter");
 jumperLocation = GetLocation(Enterer);
 jumperPosition = GetPositionFromLocation
 (jumperLocation);
 jumperArea =
 GetAreaFromLocation(jumperLocation);
 jumperFacing = GetFacingFromLocation
 (jumperLocation);
 targetPosition = GetPositionFromLocation
 (GetLocation(FireCenter));
 heading = Vector(targetPosition.x –
 jumperPosition.x, targetPosition.y -
 jumperPosition.y, targetPosition.z –
 jumperPosition.z);
 heading = VectorNormalize(heading);
 jumperPosition = jumperPosition - 2.5*heading;
 jumperLocation = Location(jumperArea,
 jumperPosition, jumperFacing);
 AssignCommand(Enterer, JumpToLocation(
 jumperLocation));
 FloatingTextStringOnCreature
 ("The heat is too strong.", Enterer, FALSE);
 }
}

Figure 2: An NWScript Script for a Barrier

The adventure designer may ask a programmer to implement
this scenario as scripts attached to game objects. One of
these scripts prevents the PC from getting to the door unless
the PC is wearing the cloak. The other script gives the cloak

© EUROSIS-ETI

to the PC, after the PC agrees to undertake the quest. Figure
2 shows the script that prevents the PC from getting near the
door, written in NWScript, the NWN scripting language.
This script is long and complex, containing local variables,
literal tags (representing objects created by the designer
using the Aurora Toolset), conditional expressions and many
function calls to the NWScript library. A professional game
designer without extensive programming experience could
not write this script.

Computer games typically have thousands of game objects
that must be scripted. There are four serious disadvantages to
scripting these objects manually: 1) poor script tracking, 2)
simplistic scripts that take too long to write, 3) scripting
errors and 4) team communication problems.

Manually written scripts are hard to track. The large number
of game objects makes it difficult to organize and track
objects during adventure development. Organizing and
tracking scripts is even more difficult since most scripts
involve interactions between several objects. A change to an
object or a script often results in unexpected negative
consequences.

Most scripts provide only simplistic game behaviors. Since a
large number of objects require scripts, all but the most
important objects must have very simple scripts. Unless an
object is on the critical path of the main plot line, it usually
has a single trivial script. This makes the game repetitive and
predictable, and therefore boring. More interesting
interactions are desirable, but are not cost effective to write
because of the large time investment needed. Even scripting
simple behaviors consumes too much programmer time,
which could be better spent on developing better game
engines and additional tools for the game designers.

Many common scripting errors are difficult to detect without
manually playing through all of the game scenarios and
trying all of the different combinations of user choices. For
example, scripts are often created using cut-and-paste
techniques and it is not uncommon for the programmer to
cut-and-paste scripts without making all the changes needed
for the new context. There are so many game objects and
scripts that it has become standard practice to use object
numbers or script numbers as part of their names. An off-by-
one error in a name often results in a legal script that
performs incorrectly.

Many designers are unable to write scripts themselves and
must rely on programmers. Delegating the scripting to a
programmer can lead to inconsistencies between the game
designer’s intent and the programmer’s scripts due to
communication errors.

At least professional adventure designers have access to
programmers who can write scripts for them. Recently, there
has been a trend to create computer games where amateur
designers can create adventures and post them online for
others to play. For example, NWN has an active adventure
designer community. Thousands of players contribute
adventure modules of their own creation. Contributed
modules can be freely downloaded from the Neverwinter
Nights Vault web site (http://nwvault.ign.com). The most

popular of the 4,100 community-created modules at this site
has been downloaded over 252,000 times (as of May 2005),
and the tenth-most, 88,000 times. Most of these community
designers are non-programmers, so they cannot write the
scripts themselves. Instead, they try to copy existing scripts
from other adventures and paste them into their own
adventures. This does not work very well, since the copied
scripts usually have many adventure-dependent literal tags
and other context dependent code. Therefore, the adventure
designers turn to the community for help by posting to one
of the NWN scripting forums. There have been about
150,000 scripting-related postings to the BioWare forums
(http://nwn.bioware.com/forums/viewforum.html?forum=47)
(as of May 2005). Unfortunately, the help they receive from
these forums is often not very useful (Carbonaro et al 2005).

FROM SCRIPTING TO PATTERNS

Our approach to solving these problems is to provide an
alternative to manual scripting, based on a higher-level
abstraction than scripting code. Our first goal was to identify
a set of patterns that describe all of the object interactions
that commonly occur in CRPGs. A pattern is a familiar
commonly occurring scenario or idiom in an adventure of
the appropriate genre. An example of a pattern in the CRPG
genre is a secret door that appears when a protagonist gets
close enough to it and notices it. Our second goal was to
build a tool that uses this set of patterns to generate the
scripting code automatically.

Our work is inspired by the use of design patterns to describe
object collaborations (Gamma et al. 1994) in general purpose
programs. A design pattern specifies the solution to a
software design problem at a higher level of abstraction than
a program that implements the design. For example, recall
the scenario from the previous section. It required two
scripts. One script was used to prevent the PC from getting
close to the door. The other script allowed an NPC to give a
protective cloak to the PC after a conversation had taken
place. We provide the game designer with a set of re-usable
patterns that can be used to specify such scripts at a higher
level of abstraction. The adventure designer would still use
two scenes, the conversation and the encounter near the
door. We provide two general patterns that can be adapted
for these scenes and for many other scenes as well.

In this example, the game designer uses two patterns,
Trigger enter/exit – barrier and Conversation when/what.
The first pattern prevents a PC from entering or exiting a
trigger region and the second pattern controls whether a
particular conversation point can be reached and makes
something happen if it is reached. Patterns support adventure
design at a higher level of abstraction. For example, the first
pattern applies whenever the designer wants to prevent the
PC from getting into or out of a region. It is not restricted to
being near a door or due to a heat source. Patterns reduce
and clarify design team communication, since low-level
details do not obscure the designer intent. Designers and
programmers can quickly grasp the meaning of a barrier
pattern. Patterns foster re-use across scenarios in the design
of a particular adventure, across the design of multiple
adventures for a single game and even across games of the
same genre.

© EUROSIS-ETI

A traditional software design pattern is generic. It provides a
set of solutions to a general design problem (Gamma et al.
1994). The pattern must be adapted to a specific context
during application design. The designer refines the design
solution family to a single solution in the context of the
application.

Our CRPG patterns are also generic. Each pattern must be
adapted to a specific scenario by the adventure designer. For
example, the Trigger enter/exit – barrier has several options,
including a trigger, a distance and a visual effect. The trigger
is a polygonal region that the designer paints into the
adventure using a computer-aided design tool. When a
character in the game steps into or out of the region, the
game engine generates an onEnter or onExit trigger event
respectively and the appropriate script attached to the trigger
object is executed. The trigger option of the barrier defines
the region that a creature cannot enter or exit. The distance
option defines the distance that the creature trying to cross
the barrier will bounce back from the barrier. The visual
effect option defines the visual effect that will occur when
the creature tries to cross the barrier. These options are
“hard-wired” into the script that appears in Figure 2, but not
into the pattern. Using a pattern is much more generic and
safer than cutting and pasting and changing these “hard-
wired” values. Setting options is only the simplest form of
seven kinds of adaptation that can be used to adapt CRPG
patterns. These other forms of adaptation differentiate a
pattern from a simple function call and are discussed in the
next section. The important idea is that each pattern defines a
generic family of solutions that must be adapted to the
particular context of a game adventure, analogously to the
way traditional software design patterns must be specialized
to the context of an application.

A traditional software design pattern is descriptive (Gamma
et al. 1994). Each pattern provides a design lexicon,
describes a set of solution structures and describes the
reasoning behind the solutions. A programmer selects an
appropriate descriptive design pattern, adapts it to the
application program and manually translates it to code.
Experienced programmers who have implemented the same
design pattern in other contexts can usually perform
adaptation and coding more quickly than novice
programmers, where unfamiliar or ambiguous natural
language pattern documentation can lead to slow progress
and coding errors. Our CRPG patterns can be used
descriptively so that the adventure designer can
communicate adventure designs more concisely and
accurately to a programmer who can implement these
descriptive patterns by writing scripting code. However,
there is another kind of design pattern.

A generative design pattern (GDP) (Budinsky et al. 1996)
(Florijn et al. 1997) (MacDonald et al. 2002) has all of the
characteristics of a descriptive pattern. In addition, it
generates application code automatically so that a
programmer does not have to manually translate the pattern
to code. Novice and experienced designers can use GDPs to
speedup code production and reduce coding errors. Recently,
we have used GDPs in computer games for the first time
(McNaughton et al. 2003). If GDPs are used, then the

adventure designer gains one more advantage from using
patterns rather than manual scripting. GDPs allow a game
designer to generate scripting code automatically without
any need for programmer intervention. This eliminates any
chance of communication error between the adventure
designer and the programmer.

The pattern catalog presented in this paper is supported as a
generative pattern catalog in a tool called ScriptEase
(http://www.cs.ualberta.ca/~script/scripteasenwn.html) that
automatically generates scripting code for NWN. An
adventure designer can also use this pattern catalog to create
descriptive design patterns for any CRPG. In this case, each
pattern serves as a template for the explicit specification of a
scenario that can be implemented by a script programmer. A
pattern catalog is not a static entity. It is meant to evolve by
expanding (and contracting) as appropriate to satisfy the
needs of adventure designers. Therefore, ScriptEase also
includes a pattern design tool, which allows adventure
designers to modify existing patterns and to create new ones.

PATTERN ADAPTATION

To understand pattern adaptation, it is necessary to
understand the component parts of a pattern (McNaughton et
al. 2004b). Each pattern contains one or more event-driven
scenarios called situations. Each situation (icon S) contains
the event (icon V) that activates it and a set of definitions
(icon D), conditions (icon C) and actions (icon A). For
example, Figure 3 shows the components of the Trigger
enter/exit – barrier pattern.

The first situation has been opened to show its components,
but the other three are closed (for brevity). There are no
conditions in this pattern. The first action (jumps towards
with effect) is an example of an action encounter, which is a
re-usable action that contains other actions. It has four
options, Jumper – bound to Enterer, Target – bound to The
Center, Distance – bound to Negative Bounce Distance, and
Impact Effect – bound to Touch Effect.

To use a pattern, a designer creates an instance of the pattern
and adapts it for a specific scenario. The simplest form of
adaptation is to set the pattern options as described
previously. However, setting options provides only limited
abstraction, equivalent to setting function parameters and is
not sufficient for the kinds of adaptation needed to support
CRPG patterns. Other forms of adaptation include adding or
removing components. Table 1 lists the various kinds of
adaptation in increasing order of complexity.

Table 1: Kinds of Pattern Adaptation in Increasing Order of

Complexity

1. Setting options
2. Removing situations
3. Removing actions and definitions
4. Removing conditions
5. Adding actions and definitions
6. Adding conditions
7. Adding situations

© EUROSIS-ETI

Figure 3: The Trigger enter/exit - barrier Pattern

To use this pattern for the scenario described in the previous
section, the designer adapts the instance by:
1. setting the options to the appropriate objects and values:

The Trigger – a region near the door (“Firetrigger”), The
Center – a waypoint near the center of the trigger
(“firecenter”), Touch Effect – A flame visual effect
(VFX_IMP_FLAME_S), Destroy Effect – not used,
Bounce Distance – 2.5, Caption – “The heat is too
strong.",

2. removing the unwanted scenarios: Try to exit trigger,

Destroy barrier on entry and Destroy Barrier on exit,
and

3. adding a definition and a condition so that the barrier

will not work on a creature that is wearing the cloak.

After adapting this instance, it looks like the pattern in
Figure 4. This instance can serve as a specification for a
programmer. Alternately, if the adventure designer is
designing for NWN, then ScriptEase can be used to generate
the scripting code automatically.

Figure 4: An Adapted Instance of the Trigger enter/exit -
barrier Pattern

THE PATTERN CATALOG

We have identified four kinds of patterns that are necessary
to generate all of the scripts found in CRPGs: encounter,
dialogue, behavior, and plot. In total our pattern catalog has
60 patterns, consisting of 56 encounter patterns, 1 dialogue
pattern and 3 behavior patterns. We are actively engaged in
adding more patterns, especially dialogue, behavior and plot
patterns. Our pattern catalog is available online at
http://www.cs.ualberta.ca/~script/patterncatalog/.

An encounter pattern is used to script an interaction between
the PC and an inanimate game object. It is useful to divide
inanimate objects into groups that can be interacted with in
different ways. Three examples of inanimate object groups
are: placeables, doors and triggers. A placeable is an
inanimate object that can be placed anywhere in the story
world. Examples include chests, statues, chairs, tables,
levers, and piles of rubble. A placeable is considered a
container if it can hold items. A door can only be placed at
the entrance to a structure or between two rooms in a
structure. A trigger is a region of space that generates an
event when a character enters or exits its perimeter. The
Trigger enter/exit – barrier pattern described earlier is an
example of an encounter pattern. The pattern catalog
contains 28 placeable, 15 door and 13 trigger encounter
patterns, for a total of 56 encounter patterns.

A dialogue pattern is used to control conversations. A tree is
a common model for conversations in an interactive
adventure. At alternate levels in the tree, either the game
player selects a conversation node from those available for
the PC, or a script selects a conversation node for the NPC.
Figure 5 shows an example NWN conversation tree in
ScriptEase, for the scenario described previously. Nodes
marked [OWNER] (red) are for the NPC and the other nodes
(blue) are for the PC.

© EUROSIS-ETI

Figure 5: A NWN Conversation Tree in ScriptEase

There are actually two kinds of scripts that can be attached to
a conversation node. A when script evaluates a Boolean that
indicates whether the node should appear in the conversation
or not. A what script provides actions that are taken if the
conversation node is reached. Our pattern catalog currently
contains a single generic dialogue pattern. The Conversation
when/what pattern allows the adventure designer to generate
when and what scripts for a conversation node. The sample
scenario described earlier can be created using an instance of
this pattern. Figure 6 shows the instance of this pattern that is
attached to the conversation node “[OWNER] – Thank you
<FirstName>. Take this Cloak …”. This pattern instance
transfers the cloak from the NPC to the PC and fires a visual
effect. In general, this pattern has two situations: When
displayed and What actions. The designer has deleted the
first situation during adaptation, since this node should
always be displayed if its parent node in the tree is displayed.

Figure 6 An Adapted Instance of the Conversation
when/what Dialogue Pattern that uses the What actions

Situation

Figure 7 shows an example of using this pattern to control
whether a conversation node appears in a conversation or
not. The adventure designer would like the first [OWNER]
node in Figure 5 to appear only if the PC has completed the
quest, and the second [OWNER] node to appear only if the
PC has accepted the quest, but not yet completed it. Notice
from Figure 6 that the PC is given a plot token called
Almuric Quest Given after agreeing to complete the quest.
This plot token can be used in a Conversation what/when

pattern to hide the second [OWNER] node until the PC has
obtained the plot token. Figure 7 shows an adapted instance
of the Conversation what/when pattern that achieves this
objective.

Figure 7: An Adapted Instance of the Conversation
what/when pattern Dialogue Pattern that uses the When

displayed Situation

A different instance of this pattern is used to hide the first
[OWNER] node until the PC returns with the head of the
evil-doer. This pattern is not split into two separate patterns
since there are often times when a conversation node is both
guarded by a “when” and requires “what” actions. This
single dialogue pattern in our pattern catalog can be used to
control all conversations on a node-by-node basis. We are
currently developing other dialogue patterns that can be used
at a higher level of abstraction to model frequently occurring
conversation patterns consisting of many nodes.

A story designer can use a behavior pattern to specify the
actions of an NPC. For example, the adventure designer may
want an NPC to stay near an object and to start a dialogue
whenever the PC gets close to that object. Our pattern
catalog has a pattern called Creature heartbeat – (PC near
object) show dialogue that supports this behavior. There are
three behavior patterns in our catalog at the current time and
we are actively adding more behavior patterns.

A plot pattern guides the player character (PC) through the
story. For example, in CRPGs it is common to give the
player quests. The player advances through the quest in a
series of states: unassigned, assigned, resolved and closed. A
common way to have the player participate in a quest is
through a dialogue with a non-player character (NPC), which
consists of a series of conversations. The dialogue pattern
Simple verbal quest specifies which conversation is used for
each of the various states of the quest. This pattern depends
on other patterns to set a plot token which causes the quest
state to change. External patterns are used to provide
flexibility since a quest can involve solving a riddle posed by
a different NPC, defeating a creature, opening a door,
obtaining a specific item, etc. We are currently building a
basic set of plot patterns to add to our catalog. Although
there are currently no plot patterns in our catalog, many are
under development. In the meantime, we have introduced the
concept of a plot token as illustrated in the previous example.

© EUROSIS-ETI

EVALUATION OF THE PATTERN CATALOG

In a previous paper (McNaughton et al. 2004a), we described
how we used encounter patterns to generate all of the
scripting code attached to placeable objects in the NWN
official campaign story. In that experiment, we replaced 497
calls to 182 different scripts comprising 1925 non-comment
lines of hand-written code by pattern-generated code using
431 instances of 23 different encounter patterns and our 1
dialogue pattern.

To ensure that our pattern catalog could be used by non-
programmers, we invited a high school English class to use
the Aurora Toolset, our pattern catalog and ScriptEase, to
write short stories as adventures in NWN. The students
succeeded in using our patterns to generate interesting stories
(Szafron et al. 2005) that play as NWN adventures.

Besides NWN, we have identified patterns in two other
CRPGs, Fable (http://www.fablegame.com) by Lionhead
Studios and The Elder Scrolls III: Morrowind
(http://www.morrowind.com) by Bethesda Softworks. For
example, Placeable use – toggle door can be found in Fable
where there are four rocks and a door. The player must hit
the rocks in the correct order to open the door. Currently, the
PC must attack the rocks, but it makes more sense to
restructure the puzzle so that the PC is required to touch the
rocks rather than hit them. In Morrowind, this pattern is used
to open a door when the PC uses a lever. The pattern Door
click – show monologue can be observed in several areas of
Fable that involve the use of riddles. Throughout the game
there are several doors called Demon Doors, which require
the player to solve a riddle to open them. When the user
clicks on the door, the door speaks a monologue giving the
user the riddle that must be solved. This pattern is used in
Morrowind near the beginning of the game. When the user
clicks on a door, the PC is told to look in a nearby barrel for
a ring. The pattern Trigger enter – spawn creature near
object is used in Fable for an ambush. The player at one
point in the game is asked to escort a person to a nearby
farm. When the person being escorted enters a trigger, an
enemy is spawned nearby to attack the person. In Morrowind
this pattern is used to spawn a person high above the player
that falls to his death, due to the misuse of a jumping potion.

CONCLUSION

In this paper, we have presented a pattern catalog for
CRPGs. This catalog contains 60 patterns that can be used
by adventure designers to effectively communicate their
stories to programmers who must write the scripts to make
these adventures come alive. These patterns can also be used
to automatically generate scripts for adventure designers
working with the NWN system.

ACKNOWLEDGEMENT

This research was supported by grants from the (Canadian)
Institute for Robotics and Intelligent Systems (IRIS), the
Natural Sciences and Engineering Research Council of
Canada (NSERC), Alberta's Informatics Circle of Research
Excellence (iCORE), BioWare Corp. and Electronic Arts
(Canada) Ltd. We thank former ScriptEase team members
James Redford (M.Sc.), Dominique Parker (M.Sc.),
Stephanie Gillis (High School Teacher) and Sabrina
Kratchmer (WISEST summer student) for their efforts on
ScriptEase. We especially thank our many friends at
BioWare for their feedback, support and encouragement,
with special thanks to Mark Brockington.

REFERENCES

Budinsky, F., Finnie, M., Vlissides, J. and Yu, P. 1996. “Automatic
code generation from design patterns”. IBM Systems Journal,
35, 2, 151-171.

Carbonaro, M., Cutumisu, M., McNaughton, M., Onuczko, C., Roy,
T., Schaeffer, J., Szafron, D., Gillis, S., Kratchmer, S. 2005.
“Interactive Story Writing in the Classroom: Using Computer
Games” In Proceedings of DiGRA 2005 Conference: Changing
Views – Worlds in Play, (Vancouver, Canada, June), 323-338.

Florijn, G., Meijers, M. and van Winsen, P. 1997. “Tool support for
object-oriented patterns”. In Proceedings of the 11th European
Conference on Object-Oriented Programming, Vol. 1241 of
Lecture Notes in Computer Science, Springer, 472-495.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA.

MacDonald, S., Szafron, D., Schaeffer, J., Anvik, J., Bromling, S.
and Tan, K. 2002. “Generative Design Patterns”, In
Proceedings of the 17th IEEE International Conference on
Automated Software Engineering, (Edinburgh, UK, September),
23-34.

McNaughton, M., Cutumisu, M., Szafron, D., Schaeffer, J.,
Redford, J., and Parker, D. 2004a. ScriptEase: “Generative
Design Patterns for Computer Role-Playing Games”, In
Proceedings of the 19th Interntational Conference on
Automated Software Engineering, (Linz, Austria, September),
88-99.

McNaughton, M., Redford, J., Schaeffer, J., and Szafron, D. 2003.
“Pattern-based AI Scripting using ScriptEase”, In Proceedings
of the 16th Canadian Conference of Artificial Intelligence,
(Halifax, Canada, June), 35-49.

McNaughton, M., Schaeffer, J., Szafron, D., Parker, D. and
Redford, J. 2004b. “Code Generation for AI Scripting in
Computer Role-Playing Games”, In Proceedings of the
Challenges in Game AI Workshop at AAAI-04, (San Jose, USA,
July), 129-133.

Szafron, D., Carbonaro, M., Cutumisu, M., Gillis, S., McNaughton,
M., Onuczko, C., Roy T. and Schaeffer, J. 2005. “Writing
Interactive Stories in the Classroom”, Interactive Multimedia
Electronic Journal of Computer-Enhanced Learning (IMEJ),
Volume 7, Number 1, May.

