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Abstract of the form

An unsatisfactor icle fi i Sy wr o — x;Y)
y property of particle filters is that they my(z) = k=11 t
may become inefficient when the observation noise is low. Zgzl w®
In this paper we consider a simple-to-implement particle fil-
ter, called ‘LIS-based patrticle filter’, whose aim is to over- WhereXt(k) and wt(k) represent théth particle’s position
come the above mentioned weakness. LIS-based particleind weight, respectively, anq-) is Dirac’s delta function.
filters sample the particles in a two-stage process that usespgre Xt(k) and wik) are (random) quantities that depend
information of the most recent observation, too. Experi-
ments with the standard bearings-only tracking problem in-
dicate that the proposed new particle filter method is indeed
a viable alternative to other methods.
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on the sequence of past observatidhs def W,..., ).
Given the empirical measure the estimate of the expectation
of an arbitrary function, with respect to the posterior is
obtained by
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) ) o _ The generic particle filter works by updating the parti-
In this paper we consider filtering of non-linear stochas- cle’s positions and weights in a recursive manner. The up-
tic processes. The problem studied can be formalizeq as fo"date is composed of two steps: computation of the parti-
lows. A sequence of valuds), Y1, Y?’ ... of some Euclid- cle’s new positions is done by sampling from the so-called
ean space, governed by the equations proposal function followed by the update of the weights
and an optional resampling step [6]. In the SIR filter [6]
Xir1 = a(Xe;641),  Xo~polt), @) the particle’s positions are updated independently of each
Yiei = b(Xit1;m401), t=0,1,... 2 other by sampling theéith particle’s new position using
a(Xt(k); ,fk)), Wheregt(k) is sampled from the common un-
is observed. Here, is the state of the system at time step derlying distribution of the process noise variagsvhilst
t, po is the initial distribution over the possible states attime the weight of the:th particle is computed by evaluating the
step zero, and;, n; are the process and observation noise gpservation Iikelihood>(}Q|X§_’ﬁ)1).
processes; they are assumed to be composed of indepen- \when the level of the observation noise is low, the obser-
dent, identically distributed random variables and also to beation likelihood function becomes ‘peaky’ or concentrated
independent of each other. The goal is to determine the posround its modes (the modes correspond to the states that
terior, 7, () = p(X; = z[Y1,...,Y;), overthe statesatany  are Jocally most likely to ‘cause’ the most recent observa-
time-step. tion). If the position of a particle is not sufficiently close to
Three major factors can be identified that influence the one of these modes then the particle’s weight will become
performance of filtering algorithms(i) the energy of the  small and thus the particle will bring in little information
process noise(ii) the energy of the observation noise; and into the estimate of the posterior. If this happens for most
(iii) the severity of ‘perceptual aliasing’ that makes the re- of the particles then the quality of the approximation to the
covery of the state from the sequence of observations hardhosterior degrade seriously. We call this problent‘these
in the ‘zero noise’ limit. of reliable observations”
Particle filters (see e.g. [6, 7, 5] and the references The curse of reliable observations is a well-known pe-
therein) approximate the posterior by empirical measuresculiarity of particle filters. The general advise to remedy
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this problem is to use a proposal that depends on the mosthe observation density’s effect on the sample, hence the
recent observation [5]. However, finding a proposal that is name of the procedure. The role of localization is to prevent
both tractable and still yields good performance can be no-particles ‘jump around’ in the state-space, i.e. to keep the
toriously hard. A straightforward alternative is to increase information in the previous estimate of the posterior. The

the number of particles until it is ensured that many particles procedure is shown in Figure 1.

are close to the peaks of the observation likelihood function.
In high dimensional state-spaces this approach may requir¢ *) _
an enormous number of particles, which in turn slows down | Initialize {(Z;",1/N)};_, from the priorpo(-).
the filtering process. Hence methods that make it possible Fort=1,2,...

to keep the number of particles low are of considerable in-| Fork=1,2,.... N

terest. ResampleS;_; = {(fo)l,wﬁ)l)};\’zl to obtain
Sin<_:e the inefficiency stems from the particles’ po_sitio_ns anew SampléZt(f)ll, 1/N)

not being close enough to the modes of the observation like- predict x® by drawing a samole from (-| 2% /)

lihood, it is a natural idea to let the modes of the likelihood f(k) y . 9 ) P t=1

‘attract’ the particles. In this paper we consider algorithms Perturb X, by drawingZ,™ from

that subscribe to this idea. The algorithms considered in ﬁT(Yt\-)g(Xt(k) — ), where

this paper generate the particles’ positions in a two-stage

sampling process, where the first step uses the prior states, (k) (k)
whilst the second uses the most recent observation. &= /T(thg(‘xt —z)dz.
In this paper we consider two methods, the first method,
thelocal likelihood samplindLLS) based particle filter in- updateweightwt(’“) using
troduced in [13], is used to motivate the second. Inthe LLS-
filter the first sampling step is the same as in SIR, whilst in & k) K(Zt( )\Zt(_)1 )
the second step of the LLS-filter a localized version of the Wy = = 0y I T
observation likelihood function is used to adjust the parti- K(X;:7127)
cles’ positions. Weights are calculated so that the process
; . EndFor
remains (locally) unbiased. In the case of the second al- . . k) (k) =N ()
. ) . : Normalize weights usinguv,’ = w," '/ >>._, Wy’ .
gorithm proposed here, the first sampling step remains the EndEor J

same, whilst in the second step the observation likelihood
is replaced by a user-chosen proposal density function tha
should be designed to be ‘close’ to the likelihood. The
weight update equations are modified so that unbiasedness
is retained. We call this second algorithm tbeal impor-
tance samplingpased patrticle filter. A particular variant that
employs mixture of Gaussian proposals is studied in greater
detail. Experimental results with the standard bearings only Proposition 1 Let (X;,Y;) evolve according to Equa-
tracking problem indicate the superiority of the proposed tions (1)-(2). Assume that is a non-negative, integrable

Figure 1. LLS-based Particle Filter

The following proposition was shown to hold in [13]:

method to some of its alternatives. function satisfying (¢) = 1. Let{(w®, Z*))} be the par-
ticle step obtained at time stepof the LLS-based particle
2 Notation filter. Then

(k) 1 (7 (k) _
Let us denote the transition kernel corresponding to the Blwy h(Zy ) [Yia] = E[h(X)[Y1lp(Ye[Yiie—1)-

dynamicsa (cf. (1)) by K = K (ulv), i.e., [, K(u|v) du =
P(a(v,&) € U), wherel{ is any measurable subset of the
state-space. Further, let us denote the observation likelihoo

In words, the statement of the proposition means that the
Ci/veighted sample obtained at time stepresents the pos-
. N i = erior properly, up to a constant factor (dependent only
densnr)]/ byr = 7(y|z), I.e.,fybﬁ(y\x)bdy e f];gb(x’t?t) < ion O the observations). As a consequence of the proposi-
Y), whereY is any measurable subset of the observation tion, we get thatE[h(X;)|Y1.¢] can be approximated us-

space. ing weighted averages of the form (3) and convergence re-
) sults (almost sure convergence, convergence in distribution,
3 Algorithms mean-square, finite sample performance bounds) can be de-
rived along the lines of previous proofs (see [3] and refer-
3.1 LLSHfilters ences therein).

What is more interesting is that in [13] a result was

The basic idea of LLS-based particle filters [13], is to proven where it was shown that the LLS-filter can be more

draw a sample from the prediction density as in SIR, but efficient than SIR (see Proposition 2, [13]) provided that the
then allow the observation density to ‘perturb’ the position cross-correlation between the observation density and the

of the particles. A window-functiong] is used to localize  observation density multiplied by the prediction density is



much larger than the cross-correlation between the convo-
lution of the window function and the observation density,
and the convolution of the window function and the prod-
uct of the observation and prediction densities. Dropping
conditioning on past observations and time indexes, let us
denote byf the observation density, and pyhe prediction
density. Then the condition for improved performance has
the forme < (f, fp) — (f g, (fp) * g). Heree is a con-
stant that depends gnandg (we omit the definition ok

due to the lack of space; the interested reader can find it in
[13]) andu x v denotes the convolution efandv. Since for
typical choices of the window function convolution with it
cuts high frequencies, the condition can be expected to hold
for a wide class of problems, especially when the predic-
tion density,p, is ‘broad’ as compared to the observation
density,f.

Note that the algorithm can be generalized easily to use
window functions that change dependingXSfF). One just
needs to replacg(Xt(k) — x) in the sample-perturbation
step byg(Xt(k) — a:;Xt(k)) and redefineyik) accordingly:
al® = [p(Vi|z)g(X™ — 2; X¥)) da. The simplest ap-
plication of this is to fity to match the energy distribution of
the observation noise. Similartycan be made dependent
on the observatioi;.

3.2 Local Importance Sampling

One problem with LLS-filters is that they depend on
whether sampling sampling fromf(Yt|-)g(Xt(k) - -)/aik)
can be implemented efficiently. One possible remedy for
this problem is to introduce a proposal density to replace
r(Y%]-). The corresponding algorithm, called Local Impor-
tance Sampling, is given in Figure 2.

The following proposition can be shown to hold (the
proof is omitted due to the lack of space):

Proposition 2 Let (X;,Y;) evolve according to Equa-
tions (1)-(2). Assume thay is a non-negative, inte-
grable function satisfying/(g) = 1 and letg, ,(-) >
0 be a bounded, integrable function for all,y. Let
{(wgk), Zt(k))} be the particle set obtained at time step
of the LIS-based patrticle filter. Then

ElwPn(Z") Y1) = EIM(X)|Yi]p(Ye|Yiie-1).

As a consequence of this result, the LIS-based particle fil-
ter enjoys similar theoretical properties as SIR. Building on
the previous argument that shows that LLS is more efficient
than the naive algorithm, one expects that under similar con-
ditions LIS will also be more efficient provided that the pro-
posal functiong, , fits (y|-) aroundz for any z,y. The
efficiency of the new algorithm will be demonstrated in the
next section on the standard bearings-only tracking prob-
lem in the next section. However, first let us consider an
important practical variant of this algorithm.

Initialize a sample se{(Zék), 1/N)}Y_, according t
the priorpg(-).
Fort=1,2,...
Fork=1,2,...,N _
ResampleS,_; = {(Z) )
to obtain a new samplez(*), ", 1/N)
Predict Xt(k) by drawing a sample frorf((~|Zt’21/)
Perturb Xt(k) by drawinth("’) from
()g(X¥ — ), where

(4)

N
1) Wy

j=1

1
57 (k
al®) qu(, NG

o)) = / a0y, (@)g(X{ — ) da
Update weightwt(k) using

k k) '
Lo _rvilz) Kz

~ (k)
Wy~ =y A
axo v, (Z") K(xP|zY))
EndFor
Normali iahts usingw® = @® /5N 5@
ormalize weights usingw,”” = ;" /> ;_, W,
EndFor

Figure 2. LIS-based Particle Filter

3.3 Using Gaussian Mixture Proposal in LIS-
based particle filters

A patrticularly attractive, easy to implement LIS-based
particle filter is obtained when the proposal function is cho-
sen to be a mixture of Gaussians and the window function
is chosen to be a Gaussian, too. The purpose of this section
is to give the details of the resulting procedure.

Letu denote the state-observation pairy) and choose
4=,y = ¢u t0 be a mixture of Gaussians withcomponents,
having priorsps, . .., p,, Mmeansm, 1, ..., My, and vari-
ancess;, ,,...,0. ,. Further, choose the window function
to be a zero-mean Gaussian with variamge Mixture of
Gaussians are attractive due to their universal approxima-
tion properties for continuous densities [11, 10] and also
due to their analytic tractability which we build heavily on
here:

For implementing the LIS-based particle filter, one needs
to be able to draw samples frog (-)g(xz — -), as well as
to evaluate(q, * g)(x). In our case, as it is well known,
qu(-)g(x — -) is a mixture of Gaussians with means
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and (un-normalized) weights: XE’“) = Ela(x™,&)x*]). Sampling is imple-
. _ mented by first doing a weighted resampling step using the
Lui= P TPeIved (6) weightSr(YtWEk)) and then drawing the next states using
2n(02 + 07 ;) the transition density kerné{. AVM can be more efficient
than SIR when the process noise variance is low and the
Hence, sampling frong,(-)g(x — -) can be implemented observation likelihood is not too peaky. AVM is similar
by first drawing an index from the normalized weights to LLS/LIS-filters in that it is also a two-stage scheme.
(Lua/Luy- -y Lyn/Ly), whereL, = > | L,;, and However, in AVM the particles’ position is still sampled
then drawing a sample from the appropriate Gaussian. Furfrom the prediction density, whilst in LLS/LIS-filters the
ther, (g, * g)(x) is just equal ta’,,. observation directly influences the particles’'s positions.
Hence, LIS-based particle filters are particularly easy to One issue with AVMs is that when the observation like-
implement when used with mixture of Gaussian proposalslihood is peaky and the number of particles is not high
and a Gaussian window function. The calculations are fur- enough then resampling the particle set us{,ﬁ@/t‘yik))}
ther elaborated on in Figure 3 for a single particle and a sin-yight not be successful at picking ‘right’ particles. A
gle time-step, assuming that the prediction densityasd  imilar problem occurs when the prediction density is
the observation density i§ (time indexes and conditioning  yyjti-modal (though in such a casé, could be replaced
on previous samples/observations are dropped). Before prepy random samples from the prediction density). Also,
when the prediction density has a large variance then even

Inputs: prediction density ), observation density), if the first stage is successful, sampling the particle’s next
observation’) state fromK might yield to a set of particles that are spread
o Draw thejith particleX; from p out t(_)o mu_ch in the state?space. The advantage of_AVM to
LIS-filters is that in LIS-filters the user has to design the
e Calculate the Gauss-Mixture parametensx( v,;, proposals, though this choice can be made automatic by
ox,v,i» Lx, v,) using Equations (4)—(6). employing standard density estimation procedures.
e Draw an indext from {LL?YY }n Another recent method ikelihood samplingconsid-
o li=l ered e.g. in details in [4]. In this approach itis the likelihood
e Draw Z; a Gaussian with meamx y,, and vari- functionp(Y;|-) that is used as the proposal, whilst the pre-
anceox; v k- diction density is used to calculate the weights. Thus the
, success of this method depends on whether the likelihood
o Calculate the weight is a good predictor of the true state. For multi-modal likeli-
n hoods (when aliasing effects are severe) a large number of
w; = ZLX* vi MM particles can be generated away from the likely next posi-
) ax v (Z) p(X5) tions of the true state. These particles will get low weights

in the weighting process and thus will have no significant ef-
fect on the estimated posterior. Hence the effective sample-

Figure 3. Local Importance Sampling with size would be small in this case. Our method overcomes
mixture-of-Gaussian proposals and Gaussian this problem by first sampling from the prediction density
window function and hence concentrating the samples in the vicinity of the

‘correct’ peaks of the likelihood function and using a local-

senting our experimental results we discuss some relevantz€d version of the likelihood.
related algorithms. In the experiments we will compare the

performance of the proposed new method to that of one of ~ The LS-N-IPS algorithm, introduced in [12], uses the
these algorithms (AVM). prediction density to derive the new particle set which is

then locally modified by climbing the observation like-

lihood. This algorithm introduces some bias and relies
on the availability of a method to climb the observation
likelihood. Although, according to the well-known bias-

variance dilemma, introducing bias is not necessarily ‘bad’,
LLS/LIS-filters may achieve roughly the same variance re-
duction that is possible to get using LS-N-IPS, but with no
additional bias (weighted importance sampling itself yields
biased estimate of the posterior). Further, LLS/LIS-filters
do not require a hill-climbing algorithm.

4 Related Work

Due to space restrictions, we give only a few key refer-
ences.

One of the best known particle filter whose aim
is to overcome the curse of reliability is thAux-
iliary Variable Method (AVM) introduced by Pitt
and Shephard [9]. AVM uses a proposal den-
sity of the form gq(zX,.... XYy =

fo:l r(Yt\YEk))K(ast|X§f)1), where Yik) is Yet another recent method is the “Boosted Particle Fil-

e.g. the expected next state for particle (i.e. ter” [8]. Using our notation, this method uses the following



proposal: This density (wherp is close to one) is thought to reflect
well a sonar’s behaviour: angle measurements are typically

(X1, Ye) = (X4, Y7) T(E')Q(Xt —) very reliable, whilst possible outliers are well modelled by
+(1— (X, V7)) K(-|Xe-1), the heavy tails of the wrapped Cauchy distribution.

. ) The parameters of the model used in the experiments
where X, is the expected next state given the current state 53,6 a5 follows: oy = 0001, p = 1 — 0.0052, and
Xi-—1and the initial state is sampled from a Gaussian with means

A if e < max e (yla); (—0.05,0.001,0.2,—0.055) and with a diagonal covari-
(T, y) :{ ’ 0 = MAXzd(ar M)A TWIT )3 ance matrix with diagonal entries given by001 x
B, otherwise. (0.52,0.0052,0.32,0.012). Figure 4 gives an example of

Here0 < B < A < 1, andry, \ are parameters to be the ship’s motion and the observed angles.

chosen by the user. Hence, when the observation likeli-
hood is sufficiently large in a neighborhood of the expected c2f A
next state then the observation likelihood is used to draw
the next sample; whilst if the observation likelihood is not
sufficiently large then the prediction density is used to draw | d
the next position. Note that the version of this algorithm
presented in [8] uses heuristically derived approximations -oif ]
to the observation likelihood and it is slightly more compli-
cated than the one presented here. In any case, the above [
proposal depends on the most recent observation and draw-_,s| ,
ing samples from it can be done in an efficient manner.
However, just like in the case of AVM, when the prediction =4[ 7
density is multi-modal or when the prediction density has sl
a large variance then since the expected value of the next
state is a bad predictor of where the next state might be, the L . . .. . !
algorithm degrades to SIR.

011 q

5 Experiments Figure 4. An example of the ship’s motion to-
gether with the observation directions.

In this section we compare the performance of the LIS-
filter to that of SIR and AVM on the standard ‘bearings-
only tracking’ problem that has been considered previously
by several authors [6, 9, 2, 1]. In this problem the aim is to 9.1 Results
track the (horizontal) motion of a ship, while observing only
angles to it. Without the loss of generality,let us assume that The performance of the LIS-based particle filter was
the coordinate system is fixed to the observer. The ship’scompared to that of AVM and SIR. All particle filters in
state is assumed to follow a second order AR process, withthese experiments ugé = 300 particles.
its acceleration driven by white noise: For the implementation of the LIS-based particle filter
the importance functiog,, , is best described using polar

1
1100 2 0 coordinates: Basically, , is a Gaussian in the angle coor-
Xiy1 = 0100 X + oy 1 ? &, dinates with variancé , = 1 — p. The window functiory
8 8 (1) 1 8 : is defined in the angular space with dispersigr= 0.05.

Figure 5 shows patrticle clouds generated by the three al-
gorithms for an arbitrary selected time-step. It should be
clear from the figure that the particle set generated by LIS
(shown as dots on the figure) is much better concentrated
around the true state than the sets generated by both AVM
('+) and SIR ('x’). In particular, the particles are more

whereX;, & € R?, &1, &9 ~ N(0,1), and Xy, Xy3 rep-
resent the ship’s vertical and horizontal positions, respec-
tively, whilst X5, X4 represent the ship’s vertical and hor-
izontal velocities. The initial state is sampled from a 4-

dimensional Gaussian with a diagonal covariance matrix. ncentrated along the lin inting towards the true stat
What makes this problem particularly challenging is that concentrated aiong the ines po g towards the true state.
Also, the particle sets generated by AVM are more concen-

the observations depend on the state only through the an:
gle, 0; = tan=!(X;3/X;1), at which the ship is observed. trated around the true state than those generated by SIR. We

The observation noise is defined using a wrapped Cauch)/“?te that a straightforwardly implemented likelihood sam-
density: pling algorlt_hm woulq perform much weaker than any qf
these algorithms as it would have no clue about the dis-
1 1—p? tance of the ship, and thus it would need to distribute sam-
r(yl0:) = 27 1+ p2 —2pcos(y — ;) ples evenly along the measurement lines. In order to get a
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Figure 5. Particle clouds generated by AVM
(+), SIR (' x") and LIS (" -") for the bearings
only tracking problem.

more precise picture of the performance of these algorithms,

we have measured the tracking performance by computing

the Euclidean distance between the predicted and the ac
tual ship positions as a function of time. The errors were
measured witl20 independently generated tracking (mea-
surement) sequences, and by running each algoritifhs
times on each of the 20 measurement sequences. Figure
shows the resulting tracking error of SIR, AVM and LIS as
a function of the number of time steps. As expected, AVM
performs better than baseline SIR, but LIS improves upon
the performance of both SIR and AVM by a considerable
margin. The observed performance differences were found
to be significant.

Tracking Error
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Figure 6. Tracking errors of SIR, AVM and LIS
as a function of time

6 Conclusions

We have proposed a family of algorithms to enhance
particle filters with the aim to overcome the ‘curse of reli-
able observations’. The proposed algorithms, the LLS/LIS-
filters of which LIS-filters were introduced here, are mod-
ifications of the standard SIR algorithm whereas after the
prediction step the position of the particles are randomly
re-sampled from a localized version of the observation den-
sity or a localized importance function. We argued that us-
ing the new method higher effective sample sizes can be
achieved when the observations are reliable and when the
design parameters of the new algorithm are chosen appro-
priately. One expects this increase to be reflected by an im-
proved tracking performance. Experiments with the stan-
dard bearings-only tracking problem indicate that the pro-
posed algorithm is indeed capable of improving the tracking
performance as compared with the performance of SIR and
AVM.
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