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Abstract

We consider the task of filtering dynamical
systems observed in noise by means of se-
quential importance sampling when the pro-
posal is restricted to the innovation com-
ponents of the state. It is argued that
the unmodified sequential importance sam-
pling/resampling (SIR) algorithm may yield
high variance estimates of the posterior in
this case, resulting in poor performance when
e.g. in visual tracking one tries to build a SIR
algorithm on the top of the output of a color
blob detector. A new method that associates
the innovations sampled from the proposal
and the particles in a separate computational
step is proposed. The method is shown to
outperform the unmodified SIR algorithm in
a series of vision based object tracking ex-
periments, both in terms of accuracy and ro-
bustness.

1 Introduction

Let us consider a stochastic dynamical system ob-
served in noise. Assume that the state of the system
(¢ € R™) evolves in time according to a Markovian
dynamics given by the transition kernel p(x:|x:_q),
whilst the observations (yo,y1,... R™) are generated
from an observation density of the form p(y;|z;).} Fur-
ther, let us assume that zq is distributed according to
the prior p(z).

!The function symbol p is overloaded as is usual in the
literature: the particular density corresponding to a partic-
ular occurance of p is determined uniquely by the types of
symbols that appear as the arguments of p in that instance
of p. Therefore, in the case of p(z¢|x¢t—1), p denotes the
density that describes the time-evolution of states, whilst
in the case of p(y:|x+), p denotes the density that describes
the dependence of observations on the states. The same
applies to the symbol 7 to be introduced below.
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In this paper we shall consider sequential impor-
tance sampling algorithms for estimating the posterior
p(x¢|yo.t) corresponding to the observation sequence
Yot = (Yo, ..., yt), where t =0,1,2,....

In particular we shall condider sequential importance
sampling/resampling (SIR) algorithms (e.g. [2]). SIR
algorithms work by keeping track of a finite number

of hypotheses xgl), e ,xﬁN)

some weights w,gl), .. ,wt(N) associated with them and

providing a discrete approximation to the posterior
p(z¢|yo.+). Often, :cgl),...,xgm are called particles.
In each time step, when a new observation arrives the
states associated with the particles are updated first.

This is done by drawing a proposed next state 9%1(521

of the state along with

from a so-called proposal density m ;: i"gl)l ~ (),
i = 1,...,N. The choice of the proposal m; is
left to the user. Obviously, the choice of 7 ; effects
the efficiency of the algorithm in a fundamental way.
Often m; takes the form (-2, y,41) where 7 is
a fixed density function, i.e., the proposal depends
only on the particle’s previous state and the most
recent observation. Two simple and popular choices
are w(it+1|x§z),yt+1) = p(:%t+1|x§1’)) (the dynamics)
and w(:%t+1|x§l)_, Ye+1) = 7 (Z441|Yt+1). Once the pro-
posed states f7§21 (i=1,...,N) are all computed, the
weights associated with them are calculated according
to the formulae:

A~ (3) w(i)p(yt+1|£§21)p(i£21|x£2))

Wy O Wy :
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where the weights uﬁt(:zl are normalized such that

Zi\[:l w§21 = 1. In the final step, the particle
states and weights are either updated by equating
them with the proposed states and weights, one-
by-one (i.e., xEQ = i‘g:}l and w,(fgl = w,ﬁfﬁl),
or they are resampled from the weighted multi-set
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Afterwards, the whole process is started again. For
the sake of simplicity in what follows we shall assume
that resampling happens in each iteration.

The problem studied in this article arises when the
proposal density and the dynamics have a special form
and when the cost of evaluating the likelihood function
is high. Such problems commonly arise in vision based
tracking as we shall see it later. For now, let us con-
sider our assumptions in more details.

Assumption A “Partitioned dynamical model.” We
shall assume that the state x; is partitioned into two

parts:
Xy,
Tt = ( sz ) ) (2)

where z1; € R™ and z2; € R™ (ng + ngy = n,
ny,ng > 1) and its evolution is given by

T1e41 = fi(xe) + s,
T2 t41 = f2($t), (3)
where s; is a martingal series: E[s¢|s¢—1, St—2,...] = 0.

According to Equation (3) the component x; ; evolves
stochastically, while x5 ; evolves in a deterministic way.

Systems of this type arise when a system’s config-
uration at the next time step depends on a finite
number of previous configurations. Hence, we shall
call z9+ the history part of the state, whilst we call
x1,; the innovation part of it. As a particular ex-
ample of processes of this kind let us consider auto-
regressive (AR) processes. Remember that in the case
of a k-dimensional order-p AR process the dynamics
is given as follows: The state x; is partitioned into p
parts: 2, = ((x¢)§, ..., (x)] )T, where z; € R*P and
(z¢); € R*. Now, z441 is given by

p—1
(Ti41)0 = ZAj “(z¢)j +eir1, and
§=0
(Te11)j41 = (@), j=0,....,p—2. (4)
Here Ay, ..., A, 1 € R**¥ are parameters of the pro-

cess, and eg,eq,... is a series of independent, iden-
tically distributed zero-mean k-dimensional Gaussian
random variables. The dynamics can be transformed
into the form (3) by defining n; = k, no = k(p — 1),
x14 = (24)0 and 2oy = ((z)T, ..., (xt)gll)T.

Assumption B “Restricted proposal.” According to
this assumption, the proposal 7 depends only on y;41
and is defined only for the innovation component of

yWei1 = N

the state. Therefore in what follows we shall write 7
in the form (21 ¢41|ye+1)-

Assumption C “The cost associated with evaluating
the observation density is high.”

In order to simplify the exposition we shall further
assume the following:

Assumption D “The observation density depends
only on 21 4, the innovation part of the state.” Accord-
ing to this assumption one can write p(yiy1|xi+1) =

P(Yet1]T1,e41)-

Assumptions A, B, C, and D are often satisfied when
particle filters are used in visual tracking. First, the
dynamics of the object to be tracked is often repre-
sented by some AR process (satisfying Assumption A).
It is also quite common that Assumptions B and D are
satisfied. One example is given when a color blob de-
tector is used to produce the proposal density (e.g. see
[3]). Note that in the case of visual tracking, accord-
ing to Assumption B the proposed states will depend
only on information derived using the images (a “bot-
tom up” approach). Finally, it is also reasonable to
presume Assumption C since in visual tracking the
evaluation of the observation density involves image
processing steps and these are generally computation-
ally very expensive operations.

Under Assumptions A, B, C, and D algorithm SIR
takes the form presented in Table 1. In what follows
we shall call this algorithm “Basic-SIR”. In order to
spare some space when descibing the algorithms we
will always omit their initialization phase: we assume
that initialization is always done by drawing samples
from the true prior p(xg). Under this condition, the
particle set a:,gl) updated using Basic-SIR can be shown
to represent an unbiased estimate of the posterior, i.e.,
for any measurable function h defined over the state

space, £ % sz\;1 h(xgi)) ‘ yO:t} = E[h(z¢) | yo:t) 2

Unfortunately, Basic-SIR can be very inefficient and
may require a large number of particles to achieve even
a modest precision. This is because in Step 2 of the
algorithm, many weights can get pretty small at the
same time, since in Step 1 the innovation “§21 that
will be associated with particle ¢ at time ¢ + 1 is sam-
pled independently of the state (zgz)) associated with
that particle. Therefore, with high probability, the

value of p(fgﬁl\mti)) will be small when e.g. the den-

sity p(scﬁﬂxgl)) is concentrated to a small portion of
the state space. This happens e.g. when the variance

2Under certain ergodicity assumptions, one can also
show that the estimated posterior decouples from the prior
at a geometric rate [5]. However, these results are outside
of the scope of the present article.



of the system noise s; (cf. Equation (3)) is small. The
problem is illustrated in Figure 1 below.

1. Sample U§21 ~ m(u|yss1)
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Table 1: Main loop of Basic-SIR. N is the number
of particles and ¢ = 1,2,..., N is a particle index.
Note that U521 corresponds exactly to the innovation
component of the state.

The inefficiency of particle filter methods have been
observed by many authors. The typical sugestion is
to replace the proposal distribution by a “better” one.
For example, Pitt and Shephard proposed the so-called
auxiliary variable method whereas they suggest to use
a proposal distribution that is an appropriately defined
mixture that depends both on the past state and the
most recent observation [6]. Although their method
overcomes the problem of weight degeneracy in most
of the cases, it involves R > N evaluation steps of
the observation density and thus, under Assumption
C, the computational burden of this algorithm can be
pretty high. More recently, van der Merwe et. al pro-
posed to use a bank of unscented Kalman filters to
define the proposal distribution [9]. This algorithm,
called the unscented particle filter, is similar in essence
to the auxiliary variable method but avoids the expen-
sive likelihood calculations.

Note that the computational example used by Isard
and Blake to illustrate their ICondensation algorithm
[3] satisfies both Assumptions A, B, C, and D. We will
discuss ICondensation in the last section.

2 Algorithms

The idea of the algorithms we consider is to ensure
that for each particle the history component of the
particle will match the innovation component sampled
from the proposal. We achieve this by drawing an
appropriate history for each innovation component.

The main loop of our first algorithm called HS-SIR,
(SIR with History Sampling) is shown in Table 2.
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Figure 1: [llustration of the behavior of Basic-SIR.
Consider a system where the state z; = (21,4, %2,)
evolves according to a one-dimensional first-order AR-
model. The first two rows of the figure represent the
particle set at time ¢, where the individual particles
are identified by the arrows connecting z; and x7 ;.
The next row shows the proposal density and the in-
novations (ugl) drawn from it. The arrows from 1,
to ug1 show the association of the randomly sampled
innovations and the particles. In the lower part of the
figure the new particle set is depicted just before the
resampling step. Weights of the individual particles
are represented by the strength of the respective ar-
rows.

In order to understand this algorithm, let us intro-
duce the auxiliary variables (x,(f” ),wgi’j )) such that
(xgi’j),wgi’j)) = (mii)7w§i)) and let a particle set at
time ¢ + 1 be defined by the equations

2B = ugi)l and
* fa(z(?)

) _ w(i,ﬁp(ym\xﬁﬁ))p(xﬁﬂ)Ixt

Wity = Wy .
W(UE% [Yi+1)
o) P(Ye41 |ugi)1)p(u§i)1 |z

_ _
() [yer1)

iJ))

9

Here the last equation follows by our assumptions on
the observation and proposal densities. Now assume
that at time t the particle set (a:,gi),w,gi))fil repre-
sents an unbiased estimate of the posterior p(x¢|yo.t)-
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Table 2: Main loop of HS-SIR (SIR with history sam-
pling).

Clearly, by the unbiasedness of the basic importance
sampling scheme, the particle set (! +Jl),wt(f1))fvj L
will represent an unbiased estimate of the posterior
p(Tr41]yoe+1) (cf. Steps 1- 2 of the basic SIR algo-
rithm of Table 1). Now, if I /1 and Jt(Jr)1 are the ran-

dom indexes drawn as in Step 2 and 3 of HS-SIR, then

P, =k IO =) = PAY, = kI, = 1) -
(k,1)

P(J(Z) l) Wy (ut+1|w(k))
t+1 = k.l 1 BNE
Zl 1“’( ) (u§l1|x£ ))
N (k1 k
Doim1 Wy ) (Ut+1|$( )> (k1)

X Wy
Zk 1 Zl 1w(k D (U§Q1|x£k)) o
Therefore Steps 2 and 3 of HS-SIR take the
form of a standard resampling step for the parti-
cle set (ngl),wt(fl)) and therefore the particle set
(xﬁl,l/N )N, will represent an unbiased estimate
of the posterior. Actually, Steps 2 and 3 of the
above algorithm can be considered as sampling from
(... th(+1)v ...) by means of partitioned sampling [4]:
Step 2 samples the innovation components, whilst Step
3 samples the appropriate histories to be associated
with these components.

The advantage of HS-SIR over Basic-SIR should be
clear by now: HS-SIR selects (by random sampling)
pairs of innovations and histories that have high prob-
ability of co-occurring and thereby it will in general
reduce the variance of the estimate of the posterior.
Convergence theorems similar to those of [1] can be
derived but are omitted due to lack of space.

Our next algorithm can be considered as a Rao-
Blackwellised version of the previous one, whereas
sampling of the innovation component indeces (Jt(-l-)1)
is avoided - causing a further reduction in the vari-

ance of the estimate of the posterior. The algorithm,
that we call RB-HS-SIR, (Rao-Blackwellised SIR with
history sampling) is shown in Table 3, whilst Figure 2

illustrates the algorithm’s working principles.  Again,
1. Sample ugl ~ (U1 |Yet1)
2. Sample I %
. Sample I, ~ [...,w; p(ut+1|:r ),]
(4)
3. Let 2!V, = t(JIr}” )
t+1 f2 (It t+1 )
_ W N 0)
4 Let 'wg?l _ P(Yt+1] t+1)Zz LWy ( | )
ﬂ—(ut+1‘yf+l)

Table 3: Main loop of RB-HS-SIR (SIR with Rao-
Blackwellised history sampling). Note that in this al-
gorithm resampling occurs in Step 3 and not in the
last step of the algorithm.

one expects that during the course of the algorithm the
effective sample size will stay high as the algorithm
will prefer (on the average) highly probable history-
innovation associations.

In order to show the unbiasedness of this algorithm we

evaluate R = E[Efv 1 wi?lh(a:gzlﬂyo:t“] directly:

N
(I )
R=E Z £+)1h( x, ! )‘yO:t+1]
i=1
N
Z E|P It(+1—l’y0t+17wt()a$§)a“§4)-1)
i=1,l=1

7 (It/ ai)
E[wgﬁlh(xwlﬂ ) | Yo:t+1,

() ()

I(Z) » Ly »ut+1] | Yo:t41 ]

tr1 = Lwy

Now, since
P(It(fi-)l = l’yo t+1,wt(')755§.)7“§l1) =
l l
_wp(u )
N r )y’
D=1 wwg )p(ut+1|$t ))

by the definition of wt(:zl one gets that

l i 1)
wy p(ui i)

N r r
ppm 1wt( )p(ut+1|x( ))
(k) (k))
t

P(%HW&L)Z;C 1 W P(Ut+1|5f

ﬂ-(uf+1|yt+1)
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Figure 2: [lllustration of the behavior of the RB-HS-
SIR. The figure is almost identical to Figure 1, except
that now the arrows from x;; to u;y; show all the
possible associations of innovations and particles, and
the strength of these arrows are proportional to the

weights that are used in associating particles histories
and innovation components.
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which finishes the proof of unbiasedness, since we have
already seen that the particle set (xiﬂf),wgf)) gives

an unbiased representation of the posterior.?

Other variants of the algorithm can also be given. As
an example let us mention the variant when the par-
ticle’s innovation components are resampled, whilst
their history components are retained. This variant
can be advantageous if the particle set bears more in-
formation about the posterior than the proposal func-
tion.

Finally, let us mention the practical variant when the

3Again, under appropriate conditions, bounds on the
variance of the estimate of the posterior can be derived
along the lines of [1].

proposal function is further restricted to a few selected
components of the innovation component. For exam-
ple in visual tracking, often the configuration is com-
posed of translational and other components (e.g. ro-
tation, scale) and the proposal depends only on the
translational component (this is the case when color
blob detection is used to define the proposal [3]). For
this case we propose a variant of RB-HS-SIR that we
shall call RB-SS-HS-SIR (Rao-Blackwellised subspace
SIR with history sampling). The main loop of this al-
gorithm is given in Table 4. We will still use the sym-

1. Sample ugl ~ (g1 |Yeg1)

.. ()

2. Sample It(j-)l , Wy p(ugﬂxg)), o

(@)

)
3. Draw v,/; from p(vt+1|ut+1,x ).

(@)

Up 1
@0 _ e
4. Let Tl = t+1
(o)
G (yt+1‘uf+1)zl 1w£l) (l) |a:(l))

4. Let =
© wt+1 ﬂ(ug+1‘yt+1)

Table 4:  Main loop of RB-SS-HS-SIR (Rao-
Blackwellised subspace SIR with history sampling).

bol uyy1 for the component sampled from the proposal,
while vy is used to denote the remaining components
of the innovation. In order to see the unbiasedness of
the algorithm note that

(2)

p(r 75-5-1|9’j o

a?)
Hl) p(ut+1avt+1|x

( t+1))

() IR
gl ).

_p(vt+1|ut+17x t+11%¢

Here the first term of the last line, jr)(vt_&_1 \ut_H, a:( '*1))

19
gives the posterior of v,Ele given ugﬁl and xi o)

this is the term used to sample 11&21 in Step 3, it cancels
out when computing the importance weights. Hence

follows the unbiasedness of the RB-SS-HS-SIR.

. Since

Sampling from p(veiq|ussr, @) is not necessarily
straightforward. Two exceptions are when the system
noise is Gaussian (in this case p(vet1|uet1, ) will still
be Gaussian) and when v, and w11 are independent
given z; and p(vy1|x:) assumes a form that is easy to
sample from (in this case p(viy1|uty1, ) = p(Vip1|xt)
and hence sampling from p(viyq|ugs1,z:) reduces to
sampling from p(vey1|zt)).
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Figure 3: Tracking error as a function of frame num-
ber. The individual curves were smoothed by plotting
them using gnuplot’s “bezier” style.

3 Experiments

In order to study the efficiency of the new algorithms
we carried out some vision based tracking experiments.
The results of these experiments are presented here.

We considered tracking an artificial object moving in
front of a camera in a normal office room environment
(see Figure 5). The object is represented by its con-
tour (using a spline based representation) and the task
was to estimate the object’s configuration (translation,
rotation, scale) on each frame. The resolution of the
images was set to 240 x 180. The dynamical model
was a second-order four-dimensional AR process (cf.
Equation (4)). The observation density is computed
by matching the contour to the image. Details of these
computations can be found in [7].

The output of a Gaussian color blob detector work-
ing on the original frames was used as the basis of
the proposal, just like in [3]. First, the output of
the blob detector was down-sampled to a resolution
of 24 x 18 pixels. Then spatial coordinates were
drawn from the appropriately re-scaled output of the
blob detector. These coordinates were then mapped
back to the original coordinate system of the im-
ages. The final coordinates were obtained by apply-
ing a random perturbation to the coordinates calcu-
lated so far, by adding a random “fine-scale” ran-
dom displacement vector drawn uniformly from the
set {—5,—4,...,5} x {-=5,—4,...,5}. Note that an-
other object with color and shape identical to that of
the object to be tracked was lying on the table. As a
consequence, the proposal keeps to draw “fake” posi-
tions that need to be “filtered out”, making the job of
the blob-detector based trackers more difficult.

For the sake of comparisons CONDENSATION (also
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Figure 4: Probability of losing the object. The indi-
vidual curves were smoothed by plotting them using
gnuplot’s “bezier” style.

known as N-IPS?*), Basic-SIR, and RB-SS-HS-SIR
were implemented and tried on a number of image se-
quences. A typical tracking scenario using RB-SS-HS-
SIR is presented in Figure 5. In one sequence of 5 sec-
onds of video sampled at 30Hz the configurations of the
object to be tracked were determined by careful visual
inspection (this is the sequence shown on Figure 5).
Each algorithm was then tested on this sequence with
100 different random seeds. Note that since the ac-
curacy of CONDENSATION depends heavily on the
variance of the system noise e; (cf. Equation (4)),
CONDENSATION was tested with a number of dy-
namics, where the variance of e; was varied. The three
values used as the variance of e; were 3,5 and 10. Ac-
cordingly, we write CONDENSATION(3), CONDEN-
SATION(5) and CONDENSATION(10) to denote the
respective algorithms. Tracking error and the proba-
bility of losing the object to be tracked were measured
as a function of frame number. Equivalent running
time experiments were considered on an Intel Pentium
IV 1.4GHz computer with 128MB RAM, i.e., the par-
ticle sizes were set so that the running time of the
various algorithms were the same (for CONDENSA-
TION we used CONDENSATION(5) to set the num-
ber of particles - it was CONDENSATION(5) that
gave the best results in the experiments). No attempt
was made to do any serious optimizations on any of
the algorithms. Respective particle set sizes are given
in Table 5. Tracking errors of the various algorithms
averaged over the 100 runs are shown in Figure 3.
The error is computed as the distance (in pixels) in
between the estimated position and the true position
of the object to be tracked. It should be clear from

“This algorithm is obtained as a special case of the SIR
algorithm described in Section 1 when the proposal is cho-
sen to be the dynamics of the system.



Algorithm # Particles
CONDENSATION 2000
Basic-SIR 3000
RB-SS-HS-SIR 400

Table 5: Particle sizes used in the experiments.

the figure that in terms of the errors: RB-SS-HS-SIR
~ CONDENSATION(5) « CONDENSATION(3) «
CONDENSATION(10) <« Basic-SIR, so that RB-SS-
HS-SIR and CONDENSATION(5) are the best. The
probability of losing the object as a function of frame
indeces is shown in Figure 4. This probability is esti-
mated by computing the fraction of cases (of the 100
runs) when the output of the tracker is outside of a
certain large neighborhood of the object to be tracked
(50 pixels).> Again, the ordering of the algorithms
remains the same: RB-SS-HS-SIR and CONDENSA-
TION(5) perform the best, whilst Basic-SIR performs
the worst.6

4 Discussion

These experiments indicate that under a wide range
of conditions the new algorithms do indeed overcome
the inefficiency of Basic-SIR. Although the results are
encouraging, one should bear in mind that the new
algorithms are computationally more expensive than
the original Basic-SIR algorithm: now one iteration
requires O(N?) evaluations of the density p(z;41|z;).”
Fortunately, however, the number of times the obser-
vation density needs to be evaluated still scales linearly
with the number of particles. Therefore the new algo-
rithms can be cheaper than Basic-SIR or CONDEN-
SATION when the cost of evaluating the observation
density for a larger number of particles is higher than
the cost of evaluating the density p(z¢i1]|z¢) O(N?)
times.® Note also that the experiments also revealed
that performance of CONDENSATION depends heav-

5In order to separate the effect of losing the object from
problems with accuracy when the object is tracked, when
the object is lost at a certain point in time, the correspond-
ing distances are not included in the computation of the
average error.

5According to the graphs CONDENSATION(5) looks
to perform slightly better then RB-SS-HS-SIR at the end
of the tracking sequence. However, since the variance of
these performance figures (not shown) is high, no signifi-
cant difference can be concluded. Of course, these compar-
isions can only be indicative since the actual performance
figures always depend on the actual implementations.

"Note that this is also the case for ICondensation [3].

81f the system noise e; is Gaussian, a substantial speed-
up of the current implementation can be realized when e.g.
a lookup-table is used to evaluate the underlying Gaussian
function.

ily on the accuracy of the estimate of the variance of
the dynamics. When the estimated variance is too
low or too high, the performance of CONDENSA-
TION degrades rapidly. Additional experiments (not
shown here) have shown that the performance degre-
dation of RB-SS-HS-SIR is much less pronounced. An-
other advantagous property of the new algorithms, not
shared by CONDENSATION, is the ability of these al-
gorithms to recover from gross tracking errors (loss of
object lock) - thanks to the independence of the pro-
posal from the process state.

What remains is the discussion of the relation of the al-
gorithms to ICondensation, the algorithm introduced
by Isard and Blake in [3]. At a first glance IConden-
sation looks very similar to Basic-SIR. However, let
us take a closer look at this algorithm. In Figure 1
of [3] in Step 2(a) the next state is sampled from the
proposal as normal. However, importance weights are
calculated with the formula used in RB-HS-SIR, (see
Step 2(b) and 3 of [3])? - possibly causing serious per-
formance deterioration.'® Note that if all the parti-
cles are concentrated into a relatively small portion
of the state space then the importance weights calcu-
lated as in RB-HS-SIR will be close to the “correct”
ones (cf. Equation (1)). The same applies when the
dynamics is close to the uniform distribution. Also,
note that ICondensation as described in [3] mixes sev-
eral algorithms: re-initialization, CONDENSATION
and Basic-SIR with the modification described above.
This “mix” can make ICondensation work under a
wide range of conditions. However, this is exactly the
reason why we have chosen to compare our new al-
gorithms with the building blocks of ICondensation
(Basic-SIR and CONDENSATION) instead of com-
paring them with it directly.

5 Conclusions

Motivated by problems that arise when particle filters
are applied for visual tracking, we considered sequen-
tial importance sampling algorithms under the con-
ditions that the proposal density is defined only for
the innovation part of the state space and depends
only on the last observation. We have argued that the
unmodified SIR algorithm can be very inefficient in
this case. Several new algorithms associating particles
and innovations in a separate computational step were
proposed. The new algorithms were shown to yield
unbiased estimates of the posterior and, by means of
some computer experiments a member of this family
was shown to yield performance superior than that of

9The same problem appears when they describe the de-
tails of the algorithm in Section 4.2.

ONote that “incorrect” weights do not necessarily cause
a problem, see e.g. Theorem 3.1 of [8].



Basic-SIR. Further, this algorithm was shown to per-
form at least as well as CONDENSATION, but with
fewer number of particles. Further, we have argued
that the new algorithms are generally more robust
than CONDENSATION, i.e., these algorithms recover
faster when the object is lost. One particularly inter-
esting avenue for future research would be to combine
CONDENSATION, LS-N-IPS (see [7]) and the algo-
rithms proposed here. With a clever combination that
adds up the advantages of these algorithms one hopes
be able to create an algorithm that outperforms all the
previous ones and under a wide range of conditions.
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Figure 5: A typical tracking sequence with RB-SS-HS-
SIR and 600-particles. Black contours show configura-
tions with high probabilities, while the white contour
represents the expected configuration. Note that there
is an object lying on the table that has the same char-
acteristics (e.g. is made of the same material of the
same color) as the object to be tracked, making the
tracking task more difficult.



