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Abstract
In this paper we consider an extension of the multi-
armed bandit problem. In this generalized setting,
the decision maker receives some side information,
performs an action chosen from a finite set and then
receives a reward. Unlike in the standard bandit
settings, performing an action takes a random pe-
riod of time. The environment is assumed to be sta-
tionary, stochastic and memoryless. The goal is to
maximize the average reward received in one unit
time, that is, to maximize the average rate of return.
We consider the on-line learning problem where
the decision maker initially does not know anything
about the environment but must learn about it by
trial and error. We propose an “upper confidence
bound”-style algorithm that exploits the structure
of the problem. We show that the regret of this al-
gorithm relative to the optimal algorithm that has
perfect knowledge about the problem grows at the
optimal logarithmic rate in the number of decisions
and scales polynomially with the parameters of the
problem.

1 Introduction
Multi-armed bandit problems find applications in various
fields, such as statistics, control, learning theory or eco-
nomics. They became popular with the seminal paper by
Robbins [1952] and since then they enjoy perpetual popular-
ity.

The version of the bandit problem we consider here is mo-
tivated by the following example: Imagine that a sequence
of tasks arrive for processing in a computer center that has
a single supercomputer. For each of the tasks a number of
alternative algorithms can be applied to. Some information
about the tasks is available that can be used to predict which
of the algorithms to try. The processing time depends on the
task at hand and also on the algorithm selected and may take
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continuous values, hence the time instants when the decisions
can take place take continuous values, too. The supercom-
puter has a fixed cost of running, whilst the centre’s income
is based on the quality of solutions delivered. At any given
time only a single task can be executed on the supercomputer.
Admittedly, this assumption looks absurd at the first sight in
the context of our example, however, we think that our results
can be extended to the more general case when the number of
algorithms that can run simultaneously is bounded by a con-
stant without much trouble. Hence we decided to stick to this
simplifying assumption.

An allocation rule decides, based on the side information
available about the task just received, which algorithm to use
for processing it, the goal being to maximize the return rate.
Note that this criterion is different from maximizing the total
reward. In fact, since processing a task takes some time dur-
ing which no other tasks can be processed, the rate maximiza-
tion problem cannot be solved by selecting the algorithm with
the highest expected payoff: Some tasks may look so difficult
to solve that the best thing could be to drop them, which re-
sults in no payoff, but in exchange the learner does not suffer
any loss due to not processing other, possibly more rewarding
tasks. (Note that this would not be possible without the pres-
ence of side information; in the latter case the problem would
simplify to the usual multi-armed bandit problem where one
needs to find the best option with highest reward rate.) This
example illustrates that a learner whose aim is to quickly learn
a good allocation strategy for rate maximization must solve
two problems simultaneously: Predicting the long-term val-
ues of the available algorithms given the information about
the task to be processed and balancing exploration and ex-
ploitation so that the loss due to selecting inferior options
(i.e., the regret) is kept at minimum. The problem we con-
sider can be thought of as a minimalistic example where the
learner faces these two problems simultaneously.

Bandit problems in continuous time have been studied ear-
lier by a number of authors (see e.g. [Kaspi and Mandel-
baum, 1998; Karoui and Karatzas, 1997] and the references
therein). These earlier results concern the construction of op-
timal allocation policies (typically in the form of Gittins in-
dexes) given some parametric form of the distributions of the
random variables involved. In contrast, here we consider the
agnostic case when no particular parametric form is assumed,



but the environment is supposed to be stationary and stochas-
tic. The agnostic (or non-parametric) case has been studied
extensively in the discrete time case. In fact, this problem
was first considered by Robbins [1952], who introduced a
certainty-equivalence rule with forcing. In the same article
Robbins showed that this rule is asymptotically consistent in
the sense that the frequency of the time instants when the best
arm is selected converges to one almost surely. More recently,
Agrawal [1995] suggested a number of simple sample-mean
based policies and showed that the resulting policies’ regret
after n decisions is O(log n). Since it is known that no al-
location rule can achieve regret lower than Cp log n for an
appropriate (problem dependent) constant Cp [Lai and Rob-
bins, 1985], Agrawals’ policies are unimprovable apart from
constant factors. Lately, Auer et al. [2002] strengthened
these results by suggesting policies that achieve logarithmic
regret uniformly over time, rather than just asymptotically.
An added benefit of their policies is that they are simple to
implement.

We base our algorithm on algorithm UCB1 from [Auer et
al., 2002] (see also [Agrawal, 1995]). We assume a stationary
memoryless stochastic environment, where the side informa-
tion is an i.i.d. process taking values in a finite set, the payoff-
delay sequences are jointly distributed for any of the options
and their distribution depends on the side information (the
precise assumptions will be listed in the next section). Like
UCB1, our algorithm decides which option to choose based
on sample-means corrected by upper confidence bounds. In
our case, however, separate statistics are kept for all option -
side-information pairs. Our main result shows that the result-
ing policy achieves logarithmic regret uniformly in time and
hence it is also unimprovable, apart from constant factors.

The paper is organized as follows: We define the problem
and the proposed algorithm in Section 2. Our main result, a
logarithmic regret bound on the algorithm’s performance is
presented in Section 3. Conclusions are drawn in Section 4.

2 The algorithm
The problem of the previous section is formalized as fol-
lows: Let K denote the number of options available, and let
X denote the set of possible values of the side information,
which is assumed to be finite. Let x1, x2, . . . , xt be a ran-
dom sequence of covariates representing the side information
available at the time of the t-th decision, generated indepen-
dently from a distribution p supported on X . At each deci-
sion point the decision maker may select an option It from
A = {1, . . . ,K} and receives reward rt = rIt,t(xt), where
rit(xt) is the reward the decision maker would have received
had it chosen option i. Unlike in classical bandit problems the
collection of the reward takes some random time. When op-
tion i is selected and the side information equals x, this time is
δit(x). We assume that for any fixed x and i, (rit(x), δit(x))
is an i.i.d. sequence, independent of {xt}. We further as-
sume that rit(x) ∈ [rmin, rmax], δit(x) ∈ [δmin, δmax] with
δmin > 0. (We expect that the boundedness assumptions can
be relaxed to δit(x) ≥ 0 and appropriate moment conditions
on δit(x) and rit(x).) Let

ri(x) = E [ri1(x)]

and
δi(x) = E [δi1(x)]

denote the expected reward and delay, respectively, when op-
tion i is chosen at the presence of the side-information x.

The exact protocol of decision making is as follows: De-
cision making happens in discrete trials. Let τ0 = 0 and
let τt denote the time of the beginning of the t-th trial. At
the beginning of the tth trial the decision maker receives the
side information xt. Based on the value of xt and all infor-
mation received by the decision maker at prior trials, the de-
cision maker must select an option It. Upon executing It,
the decision maker receives a reward rt = rIt,t(xt) and suf-
fers a delay δt = δIt,t(xt). That is, the next time point
available when the decision maker can select an option is
τt+1 = τt + δIt,t(xt).

The goal of the decision maker is to find a good allocation
policy. Formally, an allocation policy maps possible histories
to some index in the set A. The gain (average reward rate)
delivered by an allocation policy u is given by

λu = lim sup
n→∞

E [
∑n

t=1 ru
t ]

E [
∑n

t=1 δu
t ]

,

where {ru
t } is the reward sequence and {δu

t } is the delay se-
quence experienced when policy u is used. An optimal allo-
cation policy is one that maximizes this gain. Note that the
problem as stated is a special case of semi-Markov decision
problems [Puterman, 1994]. The theory of semi-Markov de-
cision problems furnishes us with the necessary tools to char-
acterize optimal allocation policies: Let us define the optimal
gain by

λ∗ = sup
u

λu.

A policy u is said to be optimal if it satisfies λ∗ = λu. It
follows from the generic theory that there exist determinis-
tic stationary policies that are optimal. An optimal action for
some x ∈ X can be determined by ordering the options by
their relative values. The relative value of option i upon ob-
serving x is the expected reward that can be collected minus
the expected reward that is not gained during the time it takes
to collect the reward:

q∗i (x) = ri(x) − δi(x)λ∗.

Intuitively it should be clear that a policy that always selects
options with best relative values should optimize the over-
all gain. In fact, it follows from the theory of semi-Markov
decision problems that this is indeed the case. A stationary
deterministic policy u : X → A is optimal if and only if it
obeys the constraints

ru(x)(x) − δu(x)(x)λ∗ = max
i∈A

[ri(x) − δi(x)λ∗] (1)

simultaneously for all x ∈ X .
The (total) regret of an allocation policy is defined as the

loss suffered due to not selecting an optimal option in each
time step. Since we are interested in the expected regret only,
our regret definition uses the optimal gain λ∗:

Rn = λ∗

n
∑

t=1

δt −
n
∑

t=1

rt.



The value of the first term is the maximum reward that could
be collected during the time of the first n decisions. The ex-
pected regret thus compares the expected value of the latter
with the expected value of the actual total payoffs received.
It follows that an allocation policy that minimizes the regret
will optimize the rate of return.

When δit(x) = 1, and X has a single element, the problem
reduces to the classical stochastic bandit problem. Since for
the stochastic bandit problems the regret is lower bounded by
O(log n), we are seeking policies whose regret grows at most
at a logarithmic rate.

The idea underlying our algorithm is to develop upper
estimates of the values q∗i (x) with appropriate confidence
bounds. Just like in [Auer et al., 2002], the upper confi-
dence estimates are selected to ensure that for any given x
with p(x) > 0 all options are ultimately selected infinitely
often, but at the same time suboptimal options are selected
increasingly rarely.

The algorithm is as follows: Let us consider the t-th deci-
sion. If we had a good estimate λt of λ∗, then for any given
x we could base our decision on the estimates of the relative
values q∗i (x) of the options given by rit(x) − δit(x)λt. Here
rit(x) denotes the average of rewards during the first n deci-
sions for those time points when the side information is x and
option i was selected, and δit(x) is defined analogously:

rit(x) =
1

Ti(x, t)

t
∑

s=1

I (Is = i, xs = x) rs,

δit(x) =
1

Ti(x, t)

t
∑

s=1

I (Is = i, xs = x) δs,

where Ti(x, t) denotes the number of times option i was
selected when side information x was present in trials
1, 2, . . . , t:

Ti(x, t) =

t
∑

j=1

I (It = i, xt = x) .

The plan is to combine appropriate upper bounds on ri(x)
and lower bounds on δi(x) based on the respective sample
averages rit(x), δit(x) and Ti(x, t), to obtain an upper es-
timate of q∗i (x). However, in order to have a sample based
estimate, we also need an appropriate lower estimate of λ∗.
This estimate is defined as follows:

Let U denote the set of stationary policies: U = {u|u :

X → A}. Pick any u ∈ U . Let λ
u

t denote the empirical
estimate of the gain of policy u:

λ
u

t =

∑t

s=1 I (Is = u(xs)) rs
∑t

s=1 I (Is = u(xs)) δs

and let Tu(t) denote the number of times when an option
‘compatible’ with policy u was selected:

Tu(t) =

t
∑

s=1

I (Is = u(xs)) .

Then λt, the estimate of λ∗ is defined by

λt = max
u∈U

(λ
u

t − ct,Tu(t)).

Here ct,s is an appropriate deterministic sequence that is se-
lected such that simultaneously for all policies u ∈ U , λ

u

t is
in the ct,Tu(t)-vicinity of λu with high probability. This se-
quence will be explicitly constructed during the proof where
we will also make sure that it depends on known quantities
only. In words, λn is the optimal gain that the decision maker
can guarantee itself with high probability given the data seen
so far.

Our proposed allocation policy, {uUCB
t }, selects the op-

tions It = uUCB
t (xt) by the rule

uUCB
t (x) = argmax

i∈A

{

rit(x) − δit(x)λt + ĉt,Ti(x,t)

}

,

where, similarly to ct,s, ĉt,s is an appropriate deterministic
sequence that will be chosen later.

3 Main result
Our main result is the following bound on the expected regret:
Theorem 1 Let the assumptions of the previous section hold
on rit, δit, xt. Let Rn be the n-step regret of policy uUCB.
Then, for all n ≥ 1,

E [Rn] ≤ L∗

(

(

2 +
2π2

3(|U| + 1)2

)

K|X | + 2K|X | log(n)

+
∑

i:∆i>0

∑

x∈X

a log(n(
√

|U| + 1))

∆i(x)2

)

,

where L∗ = δmaxλ
∗ − rmin,

∆i(x) = max
j∈A

q∗j (x) − q∗i (x) ≥ 0, i = 1, . . . ,K,

and the positive constant a is given by (7) in the proof of the
theorem.
The proof follows similar lines to that of Theorem 1 of [Auer
et al., 2002], with the main difference being that now we have
to handle the estimation error of λ∗. We prove the theorem
using a series of propositions.

The first proposition bounds the expected regret in terms of
the number of times when some suboptimal option is chosen:
Proposition 2 The following bound holds for the expected
regret of an arbitrary policy, u = (u1, u2, . . .):

E [Rn] ≤
∑

x∈X

p(x)L∗(x)E

[

n
∑

t=1

I (ut(x) 6∈ U∗(x))

]

, (2)

where

U∗(x) = {i ∈ A | q∗i (x) = max
j∈A

q∗j (x)}

denotes the set of optimal options at x, and

L∗(x) = max
j

(δj(x)λ∗ − rj(x))

is the loss for the worst choice at x. Further, by L∗(x) ≤ L∗,

E [Rn] ≤ L∗
∑

x∈X

p(x)E

[

n
∑

t=1

I (ut(x) 6∈ U∗(x))

]

= L∗
∑

x∈X

E

[

n
∑

t=1

I (ut(x) 6∈ U∗(x), xt = x)

]

.



Proof. Let us consider the t-th term, E [δtλ
∗ − rt],

of the expected regret. We have E [δtλ
∗ − rt] =

∑

i∈A E [(δtλ
∗ − rt)I (It = i)] . Using It = ut(xt) and that

ut depends only on the past, i.e., if Ft is the sigma algebra of
x1, r1, δ1, . . . , xt, rt, δt then It = i is Ft−1 measurable, we
get that

E [(δtλ
∗ − rt)I (It = i)]

= E [(δi,t(xt)λ
∗ − ri,t(xt))I (It = i)]

= E [E [(δi,t(xt)λ
∗ − ri,t(xt))I (It = i) |Ft−1, xt]]

= E [I (It = i) E [(δi,t(xt)λ
∗ − ri,t(xt))|Ft−1, xt]]

= E [I (It = i) E [(δi(xt)λ
∗ − ri(xt))|Ft−1, xt]]

= E [I (It = i) (δi(xt)λ
∗ − ri(xt))] .

Now, using again that ut does not depend on xt, we get

E [δtλ
∗ − rt]

=
∑

i∈A

E [I (ut(xt) = i) (δi(xt)λ
∗ − ri(xt))]

= −
∑

i∈A

∑

x∈X

p(x)q∗i (x)E [I (ut(x) = i) |xt = x]

= −
∑

i∈A

∑

x∈X

p(x)q∗i (x)E [I (ut(x) = i)] .

Then

E [δtλ
∗ − rt] = −

∑

x∈X

p(x)
∑

i∈U∗(x)

q∗i (x)E [I (ut(x) = i)]

−
∑

x∈X

p(x)
∑

i6∈U∗(x)

q∗i (x)E [I (ut(x) = i)] .

Let wt(i|x) = E [I (ut(x) = i)] if i ∈ U∗(x) and wt(i|x) = 0
otherwise, and let µt(i|x) = wt(i|x)/

∑

j∈A wt(j|x). Then
µt(i|x) ≥ wt(i|x) (since

∑

j∈A wt(j|x) ≤ 1), the first term
of the last expression can be upper bounded by

vt = −
∑

x∈X

p(x)
∑

i

q∗i (x)µt(i|x).

Since µt(i|x) = 0 if i is not optimal, µt defines an optimal
(stochastic) policy and hence, Bellman’s equation gives vt =
0. Therefore,

E [δtλ
∗ − rt] ≤ −

∑

x∈X

p(x)
∑

i6∈U∗(x)

q∗i (x)E [I (ut(x) = i)]

≤
∑

x∈X

p(x)L∗(x)
∑

i6∈U∗(x)

E [I (ut(x) = i)]

=
∑

x∈X

p(x)L∗(x)E [I (ut(x) 6∈ U∗(x))] .

Summing up this last expression over t gives the advertised
bound. ut

The next statements are used to prove that with high prob-
ability λt is a good estimate of λ∗. Here and in what follows

u∗ denotes an arbitrary (fixed) optimal policy and λ
∗

t = λ
u∗

t .

Proposition 3 Assume that the following conditions are sat-
isfied:

λu ≥ λ
u

t − ct,Tu(t), (3)

λ∗ ≤ λ
∗

t + ct,Tu∗ (t). (4)

where the first condition is meant to hold for all stationary
policies u ∈ U . Then

λ∗ ≥ λt ≥ λ∗ − 2ct,Tu∗ (t). (5)

Proof. Let u′ be the policy that maximizes λ
u

t − ct,Tu(t).

Since (3) holds for u′, we get that λt = λ
u

t − ct,T
u′(t)

≤
λu′ ≤ λ∗, proving the upper bound for λt. On the other hand,
because of the choice of u′, λt ≥ λ

∗

t − ct,Tu∗(t)
which can be

further lower bounded by λ∗ − 2ct,Tu∗(t)
using (4), proving

the lower bound for λt. ut
The following proposition shows that λt is indeed a lower

bound for λ∗ with high probability.
Proposition 4 Let

ct,s =

√

2c1 log(t
√

|U| + 1)

s

where

c1 = 2max

{

(rmax − rmin)2

δ2
min

,
r2
max(δmax − δmin)2

δ4
min

}

.

Then

P
(

λt < λ∗ − 2ct,Tu∗ (t)

)

+ P
(

λ∗ < λt

)

≤ 2

t
.

Proof. According to Proposition 3, if (3) holds for all station-
ary policies u and if (4) holds then λ∗ ≥ λt ≥ λ∗−2ct,Tu∗ (t).
Hence, in order λt < λ∗ − 2ct,Tu∗ (t) or λt > λ∗ to hold, we
must have that one of the conditions in Proposition 3 is vio-
lated. Using a union bound we get

P
(

λt < λ∗ − 2ct,Tu∗ (t)

)

+ P
(

λ∗ < λt

)

≤
∑

u

P

(

λu < λ
u

t − ct,Tu(t)

)

+ P

(

λ∗ < λ
∗

t + ct,Tu(t)

)

.

Fix u. By the law of total probability,

P

(

λu < λ
u

t −ct,Tu(t)

)

=

t
∑

s=1

P

(

λu < λ
u

t −cts, Tu(t) = s
)

.

Define

r̂u
t =

t
∑

s=1

I (Is = u(xs)) rs, ru =
∑

x∈X

p(x)ru(x)(x)

δ̂u
t =

t
∑

s=1

I (Is = u(xs)) δs, δu =
∑

x∈X

p(x)δu(x)(x).

Using elementary algebra, we get that

P

(

λu < λ
u

t − cts, Tu(t) = s
)

≤ P (ctsδmin/2 ≤ r̂u
t /s − ru, Tu(t) = s)

+P

(

ctsδ
2
min/rmax ≤ δu − δ̂u

t /s, Tu(t) = s
)

.



Exploiting that r̂u
t and δ̂u

t are martingale sequences and re-
sorting to a slight variant of the Hoeffding-Azuma bound
(see, e.g. [Devroye et al., 1996]), we get the bound 2/(|U| +
1)t−2. Summing over s and u and by an analogous argument

for P

(

λ∗ < λ
∗

t + ct,Tu(t)

)

, we get the desired bound. ut

Now we are ready to prove the main theorem. In the
proof we put a superscript ‘∗’ to any quantity that refers to
the optimal policy u∗. For example, r∗t (x) = ru∗(x),t(x),
δ∗t (x) = δu∗(x),t(x), T ∗(x, t) = Tu∗(x)(x, t), etc.

Proof of Theorem 1. Proposition 2 applied to uUCB shows
that it suffices if for any fixed x ∈ X and suboptimal choice
i 6∈ U∗(x) we derive an O(log n) upper bound on the ex-
pected number of times choice i would be selected by uUCB

when the side information is x. That is, we need to show

E

[

n
∑

t=1

I
(

uUCB
t (x) = i, xt = x

)

]

≤ O(log n). (6)

Let qit(x) = rit(x) − δit(x)λt. Using the definition of
uUCB

t , if uUCB
t (x) = i holds then qit(x) + ĉt,Ti(x,t) >

q∗t (x) + ĉt,T∗(x,t). Hence, for any integer A(n, x),

n
∑

t=1

I
(

uUCB
t (x) = i

)

≤ A(n, x)

+

n
∑

t=1

I
(

uUCB
t (x) = i, Ti(x, t − 1) ≥ A(n, x), xt = x

)

≤A(n, x) +

n
∑

t=1

I
(

uUCB
t (x) = i, Ti(x, t − 1) ≥ A(n, x)

)

.

We write the t-th term in the last sum as follows:

I
(

uUCB
t (x) = i, Ti(x, t − 1) ≥ A(n)

)

= I

(

qi,t−1(x) + ĉt,Ti(x,t−1) > q∗t−1(x) + ĉt−1,T∗(x,t−1),

Ti(x, t − 1) ≥ A(n)
)

=
∑

(s,s′)∈H(t)

I
(

qi,t−1(x) + ĉt−1,s′>q∗t−1(x) + ĉt−1,s

)

Zt(s, s
′),

where

H(t) = {(s, s′)|1 ≤ s ≤ t − 1, A(t) ≤ s′ ≤ t − 1},
Zt(s, s

′) = I (Ti(x, t − 1) = s′, T ∗(x, t − 1) = s) .

Fix any s, s′ ∈ H(t). Using the definition of qit(x),

I
(

qi,t−1(x) + ĉt−1,s′ > q∗t−1(x) + ĉt−1,s

)

≤ I

(

ri,t−1(x) − δi,t−1(x)λt−1 + ĉt−1,s′

> r∗t−1(x) − δ
∗

t−1(x)λt−1 + ĉt−1,s,

λ∗ ≥ λt−1 ≥ λ∗ − 2ct−1,Tu∗ (t−1)

)

+I
(

λt−1 < λ∗ − 2ct−1,Tu∗ (t−1)

)

+ I
(

λ∗ < λt−1

)

.

The expectations of the second two terms will be bounded
by Proposition 4. The first term, multiplied by Zt(s, s

′) is
bounded by

Zt(s, s
′)I
(

ri,t−1(x) − δi,t−1(x)λ∗ + ĉt−1,s′

> r∗t−1(x) − δ
∗

t−1(x)(λ∗ − 2ct,s) + ĉt−1,s

)

.

When this expression equals one then at least one of the fol-
lowing events hold:

At,s,s′ =

{r∗t−1(x)−δ
∗

t−1(x)λ∗≤r∗(x)−δ∗(x)λ∗−c′t−1,s, Zt(s, s
′)=1},

Bt,s,s′ =

{ri,t−1(x)−δi,t−1(x)λ∗≥ri(x)−δi(x)λ∗+ĉt−1,s′ , Zt(s, s
′)=1},

Ct,s,s′ = {r∗(x) − δ∗(x)λ∗ < ri(x) − δi(x)λ∗ + 2ĉt,s′}.
Here c′t−1,s = ĉt−1,s−2δ

∗

t ct−1,s. Now let us give the choices
for the confidence intervals. Define

uts =

√

log
(

t
√

|U| + 1
)

/s.

We have already defined cts in Proposition 4: cts =
√

2c1uts,
where c1 was defined there, too. We define ĉts implicitly,
through a definition of c′ts which is defined so as to keep the
probability of At,s,s′ small: Let

a0 =
√

8max{(rmax − rmin)2, r2
max(δmax − δmin)/δ2

min},

c′ts = a0uts. and a1 =
√

2δ2
maxc1. Define

a = (a0 + a1)
2, (7)

and ĉts = (a0 +a1)uts. Using these definitions we bound the
probabilities of the above three events. We start with At,s,s′ :

P (At,s,s′)≤ P (c′ts/2 ≤ r∗(x) − r∗t (x), Zt(s, s
′) = 1)

+P

(

c′ts/(2λ
∗) ≤ δ

∗

t (x) − δ∗(x), Zt(s, s
′) = 1

)

≤ exp
(

−c′2ts s/(2(rmax − rmin)2)
)

+exp
(

−c′2ts s/(2(λ∗)2(δmax − δmin)2)
)

Here we used that
∑t

s=1 I (It = i, xt = x) rt,
∑t

s=1 I (It = i, xt = x) δt are martingales for any x, i,
and the above-mentioned variant of the Hoeffding-Azuma
inequality. Plugging in the definition of c′ts we get that the
probability of event At,s,s′ is bounded by 2t−4(|U| + 1)−2.
The probability of Bt,s,s′ can be bounded in the same way
and by the same expression since ĉts > c′ts. Therefore

n
∑

t=1

∑

(s,s′)∈H(t)

[P (At,s,s′) + P (Bt,s,s′)]

≤
n
∑

t=1

∑

(s,s′)∈H(t)

4

t4(|U| + 1)2
≤ 2π2

3(|U| + 1)2
.

Moreover, define A(t, x) = a log(t(
√

|U| + 1))/∆i(x)2.
Now, if Ct,s,s′ holds then one must have ∆i(x) > 2ĉt,s′ ,



where s′ ≥ A(t, x). The above choice makes s′ large enough
so that ∆i(x) > 2ĉt,s′ cannot hold. Hence P (Ct,s,s′) = 0.
Gathering all the terms, we have

E

[

n
∑

t=1

I
(

uUCB
t (x) = i, xt = x

)

]

≤
n
∑

t=1

P
(

λt−1 < λ∗ − 2ct−1,Tu∗ (t−1)

)

+ P
(

λ∗ < λt−1

)

+
n
∑

t=1

∑

(s,s′)∈H(t)

[P (At,s,s′) + P (Bt,s,s′)] + A(n, x)

≤ 2(log(n)+1)+
2π2

3(|U|+1)2
+

a log
(

n(
√

|U|+1)
)

∆i(x)2
.

This finishes the proof of (6) and hence, by Proposition 2 we
get the desired bound, (2). ut

4 Conclusions and further work
We considered a generalization of the multi-armed bandit
problem, where performing an action (or collecting the re-
ward) takes a random amount of time. The goal of the de-
cision maker is to maximize the reward per unit time where
in each time step some side information is received before
the decision is made. In this setting one needs to consider
seriously the time needed to perform an action, since spend-
ing long times with less rewarding actions seriously limits the
performance of any algorithm in a given time period. There-
fore, efficient methods must predict simultaneously the ex-
pected rewards and durations of all actions, as well as to esti-
mate the long term optimal performance. The latter is essen-
tial as each action has a hidden cost associated with it: since
actions take time, for their correct evaluation their immedi-
ate payoffs must be decremented by the optimal reward lost
during the time it takes to execute the action.

In this paper we proposed an algorithm to solve this prob-
lem, whose cumulative reward after performing n actions is
only O(log n) less than that of the best policy in hindsight.
The algorithm is based on the upper confidence bound idea
of Auer et al. [2002]. Our algorithm, however, extends their
UCB1 algorithm proposed for the multi-armed bandit prob-
lem in two ways. First of all, it estimates the long term max-
imum reward per unit time. For this we proposed to adopt a
maximin approach: The estimate was chosen to be the opti-
mal gain that can be guaranteed in the worst-case, with high
probability, given all the data seen so far. Moreover, utilizing
the structure of the problem the algorithm chooses its actions
based on the sufficient statistics of the problem instead of con-
sidering each policy separately. Note that doing so would
lead to a constant factor in the regret bound that grows lin-
early with the number of possible policies, i.e., exponentially
in the size of the problem. On the other hand, because of the
specialized form of our algorithm, the constants in our bound
depend only polynomially on these parameters. However, we
expect that the explicit dependence of the bound on the num-
ber of possible side information values can be relaxed. Note
however, that we have not attempted any optimization of the

actual constants that appear in our bounds. Therefore, we ex-
pect that our constants can be improved easily.

One problem with the algorithm as presented is that it
needs to enumerate all the policies in order to compute the
estimate of the optimal gain. However, we would like to note
that the problem of computing this quantity is very similar
to computing the value of minimax Markov games. In fact,
the actual definition of δt is not that important: Any estimate
that satisfies the conclusion of Proposition 4 would do. We
speculate that since efficient methods are available for cer-
tain minimax Markov games (cf. [Szepesvári and Littman,
1999]), game theoretic techniques might yield an algorithm
that not only utilizes the available information effectively, but
is also computationally efficient.

In the present work we restricted ourselves to the case
when the side information is allowed to take values only in
a finite set. Assuming appropriate smoothness conditions on
the reward and delay functions, it seems possible to extend
the algorithm to the case of continuous valued side informa-
tion. The extension of the algorithm presented seems possi-
ble to certain semi-Markov models when there is a state that
is recurrent under all stationary policies. Another interest-
ing avenue for further research is to consider continuous time
bandit problems in non-stochastic environments.
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