
Universal Parameter Optimisation in Games Based on

SPSA

Levente Kocsis, Csaba Szepesvári
MTA SZTAKI, Kende u. 13-17, Budapest, Hungary-1111
e-mails: {kocsis,szcsaba}@sztaki.hu

Abstract. Most game programs have a large number of parameters that are crucial
for their performance. While tuning these parameters by hand is rather difficult,
efficient and easy to use generic automatic parameter optimisation algorithms are
known only for special problems such as the adjustment of the parameters of an
evaluation function. The SPSA algorithm (Simultaneous Perturbation Stochastic
Approximation) is a generic stochastic gradient method for optimising an objective
function when an analytic expression of the gradient is not available, a frequent case
in game programs. Further, SPSA in its canonical form is very easy to implement.
As such, it is an attractive choice for parameter optimisation in game programs,
both due to its generality and simplicity. The goal of this paper is twofold: (i) to
introduce SPSA for the game programming community by putting it into a game-
programming perspective, and (ii) to propose and discuss several methods that can
be used to enhance the performance of SPSA. These methods include using common
random numbers and antithetic variables, a combination of SPSA with RPROP, and
the reuse of samples of previous performance evaluations. SPSA with the proposed
enhancements was tested in some large-scale experiments on tuning the parameters
of an opponent model, a policy and an evaluation function in our poker program,
MCRAISE. Whilst SPSA with no enhancements failed to make progress using the
allocated resources, SPSA with the enhancements proved to be competitive with
other methods, including TD-learning; increasing the average payoff per game by as
large as 0.19 times the size of the amount of the small bet. From the experimental
study, we conclude that the use of an appropriately enhanced variant of SPSA for
the optimisation of game program parameters is a viable approach, especially if no
good alternative exist for the types of parameters considered.

Keywords: SPSA; Stochastic Gradient Ascent; Games; Learning; Poker

1. Introduction

Any reasonable game program has several hundreds or thousands of
parameters. These parameters belong to various components of the
program, such as the evaluation function or the search algorithm. The
performance of most game program depends strongly on the settings of
its parameters. While humans can make educated guesses about “good”
parameter values in certain cases, the hand-tuning of the parameters is
a difficult, cumbersome and rather time-consuming task. An alternative
approach is to find the “right” values of these parameters by means of
some automatic parameter tuning algorithm.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

mlj.tex; 3/01/2006; 11:53; p.1

2

The use of parameter optimisation methods for the performance
tuning of game programs is made difficult by the fact that the objective
function is rarely available analytically, hence those methods that rely
on the availability of an analytic form of the gradient cannot be used.
The reasons for the lack of the knowledge of such an analytic form
can be multiple. First, game program designs rarely take into account
the needs of parameter optimisation. As a result parameters are often
buried deeply into the code and the functional form of the performance
measure as a function of the parameters (if differentiable at all) will
rarely, if ever, be available analytically. Further, game designs evolve
constantly and thus keeping the analytic form of the gradient up-to-
date might be prohibitively expensive.

As an example consider the problem of optimising parameters of
some video game. For the sake of specificity, consider MMORPGs. In
an MMORPG a reasonable objective is to look for parameters that
achieve balance, i.e., ensuring that all character classes or skill sets
have roughly the same ‘power’. Formally, the optimisation problem
could be set up as the task of maximising f(θ) = −d(p(θ), u), where
p(θ) = (p1(θ), . . . , pN (θ))T is a vector whose ith component gives the
probability that character i wins given parameters θ, N is the number
of character classes, u = (1/N, . . . , 1/N) is the uniform distribution
and d is an appropriate distance function. The numerous parameters
include strength, speed, physical attacks, physical defenses, magic at-
tacks, magic defenses, various powerups and others. Unlike card and
board games, the rules of the game for an MMORPG change constantly
until the game is shipped, leaving little chance to the derivation of an
analytic expression for the gradient of the objective function.

Optimisation in card and board games, on the other hand, has its
own problems. Consider, for example, the problem of tuning search-
control parameters in board games. Certainly, such parameters may
have a strong influence on the performance of the program, hence their
tuning is critical for creating a strong player. Although these para-
meters are often real-valued, the resulting objective function is hard
to express analytically and, oftentimes, it is not even differentiable.
Another difficulty may arise in games when action selection is based on
some Monte-Carlo computations. In this case, even when the objective
function is differentiable, its analytic form, though it might be available
in a closed form, can be computationally intractable.

In order to facilitate the forthcoming discussion, let us formalise
some common properties of those game-parameter optimisation prob-
lems that we are interested in here. We postulate two assumptions. The
first is that the objective function is given in the form of the expected
value of some random payoff, or reward, whose distribution depends on

mlj.tex; 3/01/2006; 11:53; p.2

Universal Parameter Optimisation in Games Based on SPSA 3

the parameters to be optimised:

f(θ) = E [R(θ)] .

Second, we assume that by means of running some computer simu-
lations it is possible to generate independent random realisations of
R(θ).

Optimisation problems with the above characteristics are the sub-
ject of simulation optimisation. The best known tools for simulation
optimisation are infinitesimal perturbation analysis (IPA), sample path
optimisation and the likelihood ratio (LR) method (e.g., Andradóttir,
1998). IPA and LR are different ways to get unbiased estimates of
the gradient using a simple simulation run, which in turn can be used
in a stochastic gradient ascent (SGA) procedure. When IPA methods
are applicable they often yield better results than LR methods. Un-
fortunately, this class is rather limited. We note that policy-gradient
methods (Williams, 1992) developed in the reinforcement learning (RL)
community are in fact specialised LR methods (Baxter and Bartlett,
2001).

Many problems in games can be posed as the task of controlling the
learner’s environment in an optimal manner. These problems can be
attacked by value-functions based methods (Sutton and Barto, 1998).
State-value functions assign a value to each state which is then used e.g.
in 1-ply search to select the best controls (actions). Given an action-
value function, on the other hand, control is generated by selecting the
action with the highest value. Temporal-difference methods, one corner-
stone of RL, are designed for learning (optimal) value functions (Sutton,
1988).1 Note that TD-methods have their own objective function, sepa-
rate from f(θ). It follows that it is only when special conditions are met
that TD-methods automatically give rise to solutions that maximise f .
However, when such conditions are met, TD-methods are likely to be
the method of choice (Sutton and Barto, 1998).

Interest in policy-gradient methods have increased recently in the
RL community as researchers try to extend the scope of current algo-
rithms. As mentioned before, policy-gradient methods are ultimately
based on the LR method which, unfortunately, without no further
structural assumptions is well-known to scale badly with the length
of the simulated trajectories (the variance of the gradient estimates
is huge). Hence, the central topic of research on policy-gradient (and
LR) methods is to design methods that achieve variance reduction
(Kakade and Langford (2002) provides some examples when “pure”

1 From our perspective, we call a value function optimal if it gives rise to optimal
behaviour when control is generated by the above described methods.

mlj.tex; 3/01/2006; 11:53; p.3

4

policy-gradient methods are likely to fail). Recently, Baird and Moore
(1999) and Sutton et al. (2000) proposed ways to combine value-function
and policy-gradient methods. In particular, Baird and Moore (1999)
demonstrates by means of an example that the combined algorithm
(which they call VAPS) may have a considerable edge over methods
that are either entirely value-function based or use policy gradient
alone. By analysing the variance of the gradient estimates, Green-
smith et al. (2002) find also that using value-function estimates in the
gradient-estimates can indeed be beneficial. We know of no systematic
comparison of pure value-based (i.e., when the value-function is esti-
mated using TD-methods and the policy is defined purely from the
estimated value-function) and policy-gradient methods.

Returning to parameter optimisation in games, probably the best
known success story in learning to play uses TD-methods: Tesauro’s
TD-Gammon program was trained by TD(λ) and self-play where a
simple extension of the above outlined greedy-action selection was used.
TD-Gammon achieved a level of play that exceeds that of the best
human players (Tesauro, 1992). Another example that uses the value-
function based approach is KnightCap, where a variant of TD(λ) was
used to tune the parameters of the evaluation function of a chess
program (Baxter et al., 2000).

As mentioned previously, LR-methods are potentially advantageous
to value-based methods as they optimise for the objective function of
interest directly. Despite this, experience with using policy-gradient
methods in real-world games to date is scarce. Bowling and Veloso
(2002) demonstrated that the algorithm due to Sutton et al. (2000)
where value-functions were trained by Sarsa(0) “can learn” in the card-
game Goofspiel.

When the objective function is non-differentiable or an analytic
form of the gradient is unavailable then one possibility is to resort
to some general-purpose search procedure. Examples of such meth-
ods used in game parameter optimisation include the work of Kocsis
(2003) who considered several algorithms for parameter tuning, some
of them being adaptations of general-purpose gradient-free algorithms
(like tabu-search), whilst others were specifically designed to exploit the
properties of the particular optimisation problems. Another example
is the work of Chellapilla and Fogel (1999) who used genetic algo-
rithms to evolve neural-networks to play the game of checkers. Tuning
of search extension parameters in game-tree search was considered by
Björnsson and Marsland (2003), who suggested an algorithm that we
might view as a variant of the Finite-Difference Stochastic Approxi-
mations (FDSA), an algorithm that we will consider later. Despite all

mlj.tex; 3/01/2006; 11:53; p.4

Universal Parameter Optimisation in Games Based on SPSA 5

the work done so far, we think that automatic tuning of game program
parameters remains a largely unexplored area of game development.

The purpose of this article is to investigate the use of SPSA (Si-
multaneous Perturbation Stochastic Approximation), a gradient-free
stochastic hill-climbing algorithm, for tuning the parameters of game
programs. Being a gradient-free method that is extremely easy to im-
plement, SPSA is an appealing choice, especially if a tractable analytic
form of the objective function’s gradient is not available. Unfortu-
nately, in difficult problems such as, e.g., when the objective function
is observed in heavy noise, basic SPSA has little chance for producing
acceptable solutions or even just making progress. Hence, we propose
and discuss several methods to enhance SPSA.

In order to test the limits of the enhanced SPSA, we chose Omaha
Hi-Lo Poker, a game where payoffs are wildly random, as our test do-
main. Omaha Hi-Lo Poker is one of the most complex poker variants, at
least with regard to state-space complexity. A poker playing program,
MCRAISE was developed and the optimisation of various parts of it
were considered using the enhanced SPSA methods. Although MCRAISE

is still in the development phase and its performance has not been
tested extensively yet, preliminary results suggests that the program is
much stronger than amateur players, and is probably competitive with
professional players as well.

We have found that parameters obtained by the enhanced SPSA
yield programs that are competitive or better in their strength than
those whose parameters were obtained by other methods, including
TD-methods whilst utilising equivalent computational resources. The
enhancements include using common random numbers, antithetic vari-
ables, deck reuse and combining SPSA and RPROP (“resilient back-
propagation”) for adaptive step-size scheduling. RPROP, originally de-
veloped for the batch training of neural networks by Riedmiller and
Braun (1993), employs local (componentwise) step-size adaptation and
a sign-based scheme to eliminate possible harmful influences of the
derivatives’ magnitude on the weight updates.

The article is organised as follows: In Section 2 we give some back-
ground on stochastic gradient based optimisation. In particular, first
we consider methods that assume that an analytic expression for the
gradient is available: we describe the basic Robbins-Monro procedure,
followed by the description of the LR method. Next, we consider two
gradient-free methods, FDSA and SPSA. This section is closed by dis-
cussing the relative efficiencies of these methods and the description of
the method of common random numbers that can make them competi-
tive in terms of their asymptotic convergence-rates with gradient-based
methods. We also discuss options for parameter optimisation when

mlj.tex; 3/01/2006; 11:53; p.5

6

the parameters are discrete-valued or when the objective function is
non-differentiable.

Section 3 is devoted to the description of some further methods that
we propose to enhance the performance of SPSA. First, we show that
when the number of simulations for estimating the gradient is fixed then
the best estimate of the gradient in terms of the estimate’s variance is
given when the number of perturbations is kept at maximum. Next, we
describe RPROP and how it is combined with SPSA, along with the
potential advantages and disadvantages of the proposed combination. A
small numerical study is used to illustrate the point that the combined
algorithm can be more efficient than the canonical version of SPSA.
Experiments on our real-world game program, MCRAISE are described
in Sections 4 and 5. In particular, the rules of Omaha Hi-Lo Poker and
the algorithms underlying our game program, MCRAISE, are described
in Section 4, whilst experimental results with RSPSA are given in
Section 5. Here RSPSA is compared with (R)FDSA and some TD-
methods. Finally, we draw our conclusions and discuss future work in
Section 6.

2. Parameter Optimisation via Stochastic Gradient Ascent

2.1. Basic Setup

The purpose of this section is to give a brief review of stochastic gradi-
ent ascent methods and, in particular, introduce the SPSA algorithm.
Consider the task of finding a maximiser θ∗ ∈ Rd of some real valued
function f = f(θ). In our case f may measure the performance of a
player in some environment (e.g., against a fixed set of opponents),
or it may represent an auxiliary performance index of interest that is
used internally in the algorithm such that a higher value of it might
ultimately yield a better play. In all cases θ represents some parameters
of the game program.

We assume that the algorithm, whose task is to tune the parameters
θ, can query the value of f at any point θ, but the value received will
be corrupted by noise. This value is typically obtained by simulations
that involve randomness. In particular, the randomness can originate
from randomised decisions of the players or from the randomness of
the environment. In a card playing game the randomness of cards
represents a substantial source of randomness of the winning chance
of a strategy, though, obviously the randomness of the players’ actions
will also influence it. We shall assume that the value observed in the
tth step of the algorithm when the simulation is run with parameter

mlj.tex; 3/01/2006; 11:53; p.6

Universal Parameter Optimisation in Games Based on SPSA 7

θt is given by f(θt;Yt), where Yt is some random variable such that
the expected value of f(θt; Yt), conditioned on θt and given all past
information equals f(θt):

f(θt) = E [f(θt; Yt) | θt,Ft] .

Here Ft is the sigma-field generated by Y0, Y1, . . . , Yt−1 and the pre-
vious parameter values θ0, θ1, . . . , θt−1. The variables Yt represent the
randomness involved of the simulations. We shall call Yt the simulation
noise.

Stochastic gradient ascent (SGA) algorithms work by changing the
parameter θ in a gradual manner so as to increase the value of f on
average:

θt+1 = θt + αtĝt(θt). (1)

Here θt is the estimate of θ∗ in the tth iteration (time step), αt ≥ 0 is a
learning-rate or step-size parameter that governs the size of the changes
to the parameters and ĝt(θt) is some approximation to the gradient of
f . A typical assumption is that the expected value of ĝt(θt) given past
data is equal to the gradient g(θ) = ∂f(θ)/∂θ of f . Then, under some
additional regularity assumptions on the noise sequence {Yt} and f ,
and if αt converges to zero at an appropriate rate (in particular, if∑∞

t=1 αt = ∞ and
∑∞

t=1 α2
t < ∞) then the parameter sequence {θt}

converges to a local maximum of f with probability one.

2.2. The Robbins-Monro Algorithm

In the classical Robbins-Monro setup the main assumption is that
direct unbiased estimates of the gradient are available (Robbins and
Monro, 1951). Consider the simplest case first, when the random vari-
ables Yt entering f are independent, identically distributed and their
common underlying distribution is independent of θ. Then, the gradient
of f(θ) = E [f(θ;Yt)] can be computed as

ĝt(θt) = ∂f(θt;Yt)/∂θ, (2)

provided that expectation and differentiation can be exchanged and if
the partial derivative of f w.r.t. θ exists. In simulation optimisation ĝt

as defined by Equation 2 is called the IPA (infinitesimal perturbation
analysis) gradient estimate at θt.

When simulation noise depends on θ then the computation of the
gradient is less straightforward.2 Assuming that the distribution of Yt

2 Note that usually there exist multiple ways to write the objective function;
some forms may make the simulation noise dependent, whilst others may make it
independent of the optimised parameters. Which form to use is then a non-trivial
design question.

mlj.tex; 3/01/2006; 11:53; p.7

8

for any given θ admits some density, pθ, with respect to some fixed,
θ-independent measure, ν. Then f(θ) can be written as

f(θ) =
∫

f(θ; y)pθ(y)dν(y). (3)

In the special case when f in the integral does not depend on θ (e.g.,
f is a sort-of performance measure that depends only on the outcomes
of the game) and provided that integration and differentiation can be
exchanged, the gradient of f can be expressed as

f ′(θ) =
∫

f(y)
d

dθ
(ln pθ(y))pθ(y)dν(y).

Here s(θ) = d
dθ (ln pθ(y)) is called the score function corresponding to

pθ. An alternative form of the above equation is given by

f ′(θ) = E
[
f(Y)

d

dθ
(ln pθ(Y))

]
.

Hence, f(Y)(d/dθ)(ln pθ(Y)) provides an unbiased estimate of the gra-
dient. The method just described is called the likelihood-ratio (or score
function) method in the simulation optimisation literature (Andradóttir,
1998; Spall, 2003). Policy-gradient methods that became popular re-
cently in the RL community belong to this class. In RL pθ often involves
unknown terms; a case that arises, e.g., when Y is obtained through
interacting with an unknown environment (Williams, 1992). A crucial
observation is that despite this, the score function can still be expressed
with known quantities: the derivative of the logarithm of the product of
action-selection probabilities (actions serve as the input to the environ-
ment). Hence policy-gradient methods require the knowledge of (only)
the analytic forms of the action-selection probabilities. Although, in
some cases it is easy to satisfy this requirement in other cases, such
as when action selection is based on random search trees, the analytic
form of action-selection probabilities will be intractable. In fact, this is
the case for our poker playing program that basis its action selection
on evaluating the available actions by computing their values with a
Monte-Carlo procedure (cf. Section 5.1).

Another difficult case for LR methods is when Y represents a long
random trajectory. In this case pθ becomes a product of a large number
of terms and hence the variance of LR-based the gradient estimates,
f(Y)(d/dθ)(ln pθ(Y)), will become huge. This problem was well-known
since the early stages of simulation optimisation and it is the subject of
active research in both the simulation optimisation and RL communi-

mlj.tex; 3/01/2006; 11:53; p.8

Universal Parameter Optimisation in Games Based on SPSA 9

ties (see (Greensmith et al., 2002) and (Spall, 2003) and the references
therein).3

2.3. The FDSA Algorithm

An alternative to estimating the gradient by exploiting the structure
of the optimisation problem is to use methods that do not require
the knowledge of the analytic form of f . The earliest procedure that
does not require an analytic expression for the gradient is the Kiefer-
Wolfowitz procedure (Kiefer and Wolfowitz, 1952). Originally, this algo-
rithm was introduced for one-dimensional problems (i.e., when d = 1).
The multi-dimensional version, due to Blum (1954), is called the finite
difference stochastic approximation (FDSA) procedure and works by
approximating the ith component gi(θ) of the gradient of f with the
following two-sided difference:

ĝti(θt) =
f(θt + ctei; Y +

ti)− f(θt − ctei;Y −
ti)

2ct
. (4)

Here ei represents the ith unit vector in the d-dimensional Euclidean
space and ct is step-size. Since for any positive ct, the approximation
has a non-zero “bias”, in order to make the associated SGA procedure
convergent ct must converge to zero at an appropriate rate (such as, e.g.,
ct ∝ t−1/6). In the above equation Y +

ti and Y −
ti are random variables,

independent of each other. When the distribution of the simulation
noise, Yt, depends on the parameter vector then Y +

ti is obtained by
running the simulation with parameters θ + ctei, whilst Y −

ti is obtained
by running the simulation with parameters θ − ctei. It can be read-
ily observed that computing an estimate of the full gradient of f via
Equation (4) requires 2 d evaluations of the target function f .

2.4. SPSA

Simultaneous Perturbation Stochastic Approximation (SPSA) is a re-
cently proposed alternative to FDSA. The main observation leading to
SPSA is that FDSA may spend too much effort on getting an approx-
imation of all the components of the gradient. When measurements
are noisy, almost the same approximation accuracy to the gradient
can be obtained by just considering two two-sided perturbations of the
parameter vector. In order to represent all directions equally well, the
perturbation vector is chosen to be a random vector. Let ∆t ∈ Rd

3 Infinitesimal perturbation analysis (IPA) generally does not suffer from this
problem. However, IPA methods are generally unsuitable for parameter optimisation
in games, as noted previously.

mlj.tex; 3/01/2006; 11:53; p.9

10

be this perturbation vector. Then the SPSA based estimate of the ith
component of the gradient is given by

ĝti(θt) =
f(θt + ct∆t; Y +

t)− f(θt − ct∆t; Y −
t)

2ct∆ti
. (5)

Note that the numerator of this expression does not depend on index i
and hence SPSA requires running two simulations only to estimate the
gradient. Despite this, SPSA provides a relatively good approximation
to the gradient. In particular, the following results were proved by Spall
(1992). Assume that the followings holds for any finite t:

(A1) the random perturbations ∆t are independent of the past of the
process,

(A2) {∆ti}i is an i.i.d. sequence,

(A3) the distribution of ∆ti is symmetric around zero,

(A4) |∆ti| is bounded with probability one, and

(A5) E
[
∆−1

ti

]
is finite.

Then, assuming that f is sufficiently smooth, it holds that the bias
of estimating the gradient, g(θt), by ĝt(θt) is of order O(c2

t). Fur-
ther, if the step-sizes satisfy αt, ct > 0, limt→∞ ct = 0,

∑∞
t=0 αt = ∞

and
∑∞

t=0 α2
t /c2

t < ∞ then the associated gradient ascent procedure
converges to a local optimum of f with probability one (Spall, 1992).4

A simple way to satisfy the conditions on ∆t is to choose its com-
ponents to be independent, ±1-valued, unbiased, Bernoulli-distributed
random variables. Under certain conditions on the objective function, f ,
this choice was claimed to be optimal in an asymptotic sense under the
mean square error and probability criteria (Sadegh and Spall, 1997).
By means of a heuristic argument, Spall also concludes that under
‘reasonably general conditions’ SPSA needs d times less evaluations
of the objective function than FDSA (d is the dimensionality of the
parameter space) to achieve the same asymptotic statistical accuracy
(Spall, 1992). This claim was also backed up by some simulations in
the same article.

The above claims are asymptotic by their nature. In this paper, on
the other hand, we are primarily interested in the transient behaviour

4 The independence assumptions on the components of ∆t make SPSA funda-
mentally different from the method of random directions stochastic approximation,
RDSA, where the perturbation vector is sampled uniformly in the d-dimensional
unit sphere and the two-sided differences are multiplied by ∆ti, unlike in SPSA
where they are multiplied by ∆−1

ti .

mlj.tex; 3/01/2006; 11:53; p.10

Universal Parameter Optimisation in Games Based on SPSA 11

of the algorithms. This is because we do not expect them to converge
within the allocated time-frame to a small neighbourhood of a station-
ary point, due to the inherent complexity of the optimisation task and
the long running times that are typical for game-simulations.

In the transient regime, according to some authors, FDSA might
actually perform better than SPSA. For example, Dippon (2003) writes
that “although randomized and/or higher order methods can outper-
form the standard methods in their asymptotic behavior, it is to be
expected that for a small or moderate number n of iteration steps
the standard methods may be superior” (the standard method means
FDSA here). Also, Kushner and Yin (1997, pp. 318) discusses at some
length the non-asymptotic properties of some deterministic methods in
comparison to their randomised counterparts.

Another interesting feature of SPSA is that it is known to converge
even when the objective function is non-differentiable (He et al., 2003).
For parameter optimisation in games when the parameters to be op-
timised are discrete-valued, a variant of SPSA due to Gerencsér et al.
(1999) could be used, though the analysis given by the authors there
is limited to convex functions (just like for the previously cited work).
Actually, in games defined over discrete structures, often the parame-
ters are themselves continuous-valued, but the objective function is
discontinuous, e.g., piecewise constant. This is the case for some of the
objective functions in the poker domain that we consider later in this
paper. One option then is to use the noise injection method due to
Gerencsér et al. (1998).

Formally, if f(θ) is the objective function then instead of optimising
f , the function f(θ) = E [f(θ + U)] is optimised. Here U is a random
variable that is assumed to admit a continuous density. The advantage
of noise-injection is that the smoothness properties of the smoothed
objective function will depend on the smoothness of the density un-
derlying U only. Although this method alters the objective function,
this change can be made as small as desired by making U “small”.
When the measurement noise of f (or that of the gradient) is big then
one expects that the noise injected would have negligible effect on the
finite-sample behaviour. Hence, in our experiments we did not care to
inject noise.

2.5. Efficiency

It is well known that methods that rely on an analytic form of the
gradient can converge substantially faster than either FDSA or SPSA.
Asymptotic convergence rate results provide a firm theoretical back-
ground to this observation: the Robbins-Monro procedure converges at

mlj.tex; 3/01/2006; 11:53; p.11

12

the rate O(t−1/2), whilst SPSA and FDSA both converge at the rate
O(t−1/3) provided that f is three times differentiable and a decreasing
learning rate of αt = α/t is used with a sufficiently large α > 0.
In fact, Chen (1988) and Polyak and Tsybakov (1990) showed that
for randomised Kiefer-Wolfowitz procedures and the class of p-times
differentiable objective functions with p ≥ 2, the optimal rate in the
minimax sense is O(t−(p−1)/(2p)). Hence, for p = 3, SPSA, FDSA and,
by a recent result due to Dippon (2003), also RDSA attain the optimal
rate of convergence.

Besides the asymptotic rate of convergence, the asymptotic variance
of the appropriately normalised mean square error is also of consid-
erable interest. A result of Fabian (1968) can be used to show that
this asymptotic variance is proportional to the variance of gradient
estimates. Hence methods that reduce the variance of the gradient’s
estimate have the potential to improve the rate of convergence to θ∗.

When the objective function is evaluated by means of running some
computer simulation then it has been observed that the method of
Common Random Numbers (CRN) can be used to decrease the variance
of the gradient’s estimate (Glasserman and Yao, 1992; L’Ecuyer and
Yin, 1998; Kleinman et al., 1999). In fact, if this method is employed,
the convergence rate is improved to O(t−1/2). This was shown for FDSA
by Glasserman and Yao (1992) and L’Ecuyer and Yin (1998) and later
extended to SPSA by Kleinman et al. (1999).

The basic observation that leads to CRNs is that in both FDSA and
SPSA the ith gradient is estimated as the difference ∆Fi = F+

i − F−
i .

Since

Var
(
F+

i − F−
i

)
= Var

(
F+

i

)
+ Var

(
F−

i

)
− 2Cov

(
F+

i , F−
i

)
,

there is an opportunity to decrease the variance of the difference ∆i

by increasing the covariance of F+
i and F−

i , provided that the change
does not alter the variance of F+

i and F−
i . In the case of SPSA F±

i ∝
f(θ± c∆;Y ±) and so when Y + and Y − are independent, we see5 that

Cov
(
F+

i , F−
i

)
= 0.

The same equality holds for FDSA. Hence, if F±
i are redefined to

depend on the same random value Y : F±
i ∝ f(θ±c∆;Y), then the vari-

ance of F+
i −F−

i will decrease when Cov (f(θ + c∆; Y), f(θ − c∆;Y)) >
0. The larger this covariance is, the larger the decrease of the variance of

5 Here, expressions involving expectations are conditioned on ∆. In fact, with
Z = F+

i − F−i , the identity Var (Z) = E [Var (Z|∆)] + Var (E [Z|∆]) can be used to
complete the argument. Here Var (Z|∆) = E

[
(Z − E [Z|∆])2|∆

]
.

mlj.tex; 3/01/2006; 11:53; p.12

Universal Parameter Optimisation in Games Based on SPSA 13

the estimate of the gradient will be. A stronger statement giving condi-
tions when variance is minimised under CRNs was given by Rubinstein
et al. (1985) (see also, Spall, 2003, Proposition 14.2).

In order to gain some further insight of how CRNs work, consider a
simple example when f is given by f(θ; Y) = θY . In this case, (f(θ +
c∆;Y)− f(θ− c∆;Y))/(2c∆) = Y . Hence, denoting the variance of Y
by V , we get that the variance of the estimate that uses CRNs is V . On
the other hand, the variance of (f(θ+ c∆; Y +)−f(θ− c∆;Y −))/(2c∆)
(conditioned on ∆) is equal to (θ2/(2c2∆2) + 1/2)V . Hence, in this
second case variance grows as c approaches zero,6 whilst in the first
case it stays bounded independent of c.

When samples of f are obtained by means of some simulations
that use pseudorandom numbers and if the distribution of Y is in-
dependent of the parameter vector to be optimised, then F±

i = f(θ ±
c∆;Y)/(2c∆i) can be computed by saving the seed of the random num-
ber generator (RNG) before running the simulation to compute F−

i ,
and then resetting the seed to the saved value before computing F+

i .
When the distribution of the simulation noise, Y , is not independent
of the parameter vector, but can be separated into two parts so that
the distribution of the variables in the first part is independent of θ,
whilst the distribution of the variables that belong to the second part
depends on θ, then it is recommended to use two independent RNGs.
The first RNG is used with previous procedure to produce samples
from variables of the first kind, whilst the second RNG should be
used in computing the values of the random variables of the second
type. This will still yield some variance reduction. The technique just
described is termed the method of Partial Common Random Numbers
(PCRN). Some experimental results comparing SPSA and FDSA with
and without (P)CRN are given by Kleinman et al. (1999).

In order to see how PCRNs might be used in practice, consider a
card game. Assume that the parameters of a player’s strategy are to
be optimised. The random deck (causing typically a large proportion
of the variance of the payoffs) can be viewed as a variable of the first
type, whilst actions generated and situations encountered by the play-
ers during a game can be viewed as random variables of the second
kind. If the action-selection procedure is near-deterministic then even
the action-situation trajectories generated will often remain aligned,
resulting possibly in a further reduction of variance.

Note, however, that often it is possible to use CRNs (and eliminate
non-aligned variables) by changing the way randomness in the simu-

6 Because αt → 0 sufficiently fast, the SPSA iterate converges despite that the
variance of the gradient estimate diverges as O(c−2

t).

mlj.tex; 3/01/2006; 11:53; p.13

14

lations is modelled. Actually, as it turns out, CRNs can be used in a
surprisingly large class of problems. To see how this is done, consider
imperfect information, alternating Markov games with the total reward
criterion. Assume for the sake of simplicity that rewards are determin-
istic and that a game lasts for at most T steps. Certainly many card
and board games fit this description, including poker. Consider opti-
mising the payoff of Player 1 as a function of some parameters, θ, of its
policy. Let Y = (U1, . . . , UT , U ′

1, . . . , U
′
T) be a collection of independent,

uniformly distributed random variables. It should be obvious that the
payoff of Player 1 can be written in the form f(θ; Y), though f , in
general, will be a very complicated function of its arguments.7 What is
important for us, however, is that since distribution of Y is independent
of θ, the CRN method applies. Note also that more often than not,
f(θ;Y) will not be differentiable w.r.t. θ, whilst f(θ) = E [f(θ; Y)] will
be (e.g., LR-based gradient-estimates, based on an alternative repre-
sentation, can be computed). We note in passing that there are cases
when the variance of the SPSA-difference based gradient estimate will
be smaller than that of the LR-based gradient estimate, showing that
there is no easy rule of thumb to decide if LR-based or SPSA based
methods should be used (Spall, 2003, pp. 420 gives a related example).

The (P)CRN method is not the only way to improve the performance
of SPSA. In what follows we will describe several other techniques that
are potentially useful for decreasing the variance of gradient estimates
and hence for increasing the convergence rate. We note that antithetic
random variables work on principles similar to those underlying CRNs.
We shall discuss the relationship of CRNs and antithetic variables in
Section 3.3.

3. SPSA Implementation Issues

In this section we consider several ways to enhance the performance of
SPSA. In particular, in the next section (Section 3.1) we consider how
to select the number of evaluations per perturbation. An expression for
the mean square error is derived that will be used to show that, in fact, a
single evaluation per perturbation is preferable. Next, in Section 3.2, we
introduce RPROP, a method that is known to enhance the performance

7 To see how f is constructed, notice that state transitions can be written in the
form Xt+1 = g(Xt, At, Ut) with appropriate g. Further, for stationary policies, the
t action can be written as At = π(Xt, U

′
t). The construction is finished by noting

that the reward at step t is a deterministic function of Xt, At. The idea extends
trivially to non-stationary, observation-based policies, as well as to other classes of
sequential problems.

mlj.tex; 3/01/2006; 11:53; p.14

Universal Parameter Optimisation in Games Based on SPSA 15

of training neural networks. Here we propose a way to combine SPSA
with RPROP. The behaviour of the combined algorithm, RSPSA, will
be illustrated on a synthetic task. We close the section by discussing
how the method of antithetic variables can be used in conjunction with
SPSA.

3.1. Multiple Evaluations vs. Multiple Perturbations

In this section we investigate the issue of how many simulations to
run per perturbation when computing SPSA differences. Here, for the
sake of simplicity, we assume that the distribution of the simulation
noise term, Y , entering the objective function is independent of the
parameter to be optimised.

If the variance of the evaluations is high then the estimate of the
gradient as given by Equation (5) will posses an equally high variance.
A natural idea is to average the results of a few simulations to increase
the precision of the estimate of the gradient before iterate θt is updated.
In the terminology of the neural-network literature this is called the
technique of using mini-batches. When the perturbations are kept fixed
the resulting estimate is as follows:

ĝq,i(θ) =
1

2c ∆i


1

q

q∑

j=1

f(θ + c∆; Y +
j)− 1

q

q∑

j=1

f(θ − c∆; Y −
j)




=
1
q

q∑

j=1

f(θ + c∆; Y +
j)− f(θ − c∆; Y −

j)
2c∆i

.

Since we assumed that the distributions of the random variables Y ±
j

do not depend on the respective parameter vectors, we may employ the
idea of CRNs. Using Y +

j = Y −
j = Y , we arrive at

ĝq,i(θ) =
1
q

q∑

j=1

f(θ + c∆;Yj)− f(θ − c∆; Yj)
2c ∆i

. (6)

In the limit, as the number of simulations q grows to infinity, the
estimate will tend to ∂i,c∆f(θ) = (f(θ + c∆)− f(θ− c∆))/(2c∆i) with
probability one. Hence, ultimately, the variance that can be attributed
to the simulation noise disappears and the final approximation error
becomes equal to the numerical error associated with the error of the
two-sided difference, ∂i,c∆f(θ). It should be clear that due to this error,
a very large sample size q will hardly ever pay off.

By taking the average of r independent samples, {ĝ(j)
q,i (θ)}j=1,...,r, of

ĝq,i(θ), we may further reduce the error of approximation. Denoting

mlj.tex; 3/01/2006; 11:53; p.15

16

the resulting average by ĝr,q,i(θ), it follows by the law of large numbers
that ĝr,q,i(θ) converges to f ′i(θ) + O(c2) as r → +∞ with probability
one (i.e., the estimate’s ultimate bias is of the order O(c2)). After a
certain point, increasing p

def= rq will not necessarily improve the rate of
convergence and/or the finite-sample performance of the optimisation
algorithm. This is because although increasing p increases the quality
of approximation of the gradient, at the same time, it also decreases
the frequency of parameter updates.8

In order to gain further insight into the best choice of p, q and r, let
us consider the mean squared error of approximating the ith component
of the gradient by ĝr,q,i: Mr,q,i = E

[
(ĝr,q,i(θ)− f ′i(θ))

2
]
. The following

expression is derived for Mr,q,1 in Appendix A:

Mr,q,i =
1
r
E

[
∆2

1

]
E

[
1/∆2

1

]

·
d∑

j=2

{(
1− 1

q

)
E

[
f ′j(θ, Y1)2

]
+

1
q
E

[
f ′j(θ, Y1)

]2}
(7)

+
1
rq
E

[
(f ′1(θ, Y1)− f ′1(θ))

2
]
+ O(c2).

Here f ′i(θ; Y) is the partial derivative of f w.r.t. θi:

f ′i(θ; Y) =
∂f(θ; Y)

∂θi
.

It follows from Equation (7) that for a fixed budget of p = qr function
evaluations, the smallest mean squared error is achieved by taking q = 1
and r = p (disregarding the O(c2) bias term which we assume to be
“small” as compared to the other terms). Under mild conditions on f
and Y1 (ensuring that the expectation and the partial derivative oper-

ators can be exchanged),
∑d

j=2 E
[
f ′j(θ, Y1)

]2
=

∑d
j=2 f ′j(θ)

2. Hence, in
this case with the choices q = 1, r = p, the mean square error becomes
equal to

1
p



E

[
∆2

1

]
E

[
1/∆2

1

] d∑

j=2

f ′j(θ)
2 + E

[
(f ′1(θ, Y1)− f ′1(θ))

2
]


 + O(c2),(8)

8 Spall (1992) gives a heuristic calculation that shows that using decreasing gains
of the form αt = a/tα and ct = c/tγ with β = α − 2γ > 0, 0 < α ≤ 1, 0 < γ, the
optimal choice of p is a minimiser of an function, η(p), of the form pβ−1A+pβB. Here
A, B > 0 are some, generally unknown, system parameters. Note that η has a unique
minimum at p = (1 − β)A/(βB). However, since A, B are unknown, this result is
of little practical use, except that it shows the nature of the tradeoffs involved in
selecting p.

mlj.tex; 3/01/2006; 11:53; p.16

Universal Parameter Optimisation in Games Based on SPSA 17

which is composed of two terms in addition to the bias term O(c2). The
first term, which contains the sum

∑d
j=2 f ′j(θ)

2, represents the contribu-
tion of the “cross-talk” of the derivatives of f to the estimation error of
the gradient, whilst the second term, E

[
(f ′1(θ, Y1)− f ′1(θ))2

]
gives the

mean square error of approximating f ′1(θ) with f ′1(θ, Y1) (which is equal
to the variance of f ′1(θ, Y1) in this case). The first term can be large
when θ is far from a stationary point of f , whilst the size of the second
term depends on the amount of noise in the evaluations of f ′1. When
the magnitude of these two terms is larger than that of the bias term
O(c2) then increasing p will increase the efficiency of the procedure, at
least until 1/p becomes comparable to O(c2). Hence, as another general
rule of thumb, we conclude that it can be beneficial to increase p as c
is decreased, i.e., near equilibrium points.

3.2. Resilient SPSA: Combining SPSA and RPROP

SPSA, like other stochastic approximation algorithms has a number of
parameters that need to be tuned by the user. These parameters are the
gain sequences αt, ct, the batch-size parameter, p and the common dis-
tribution underlying the perturbations ∆t. When function evaluations
are expensive, small sample behaviour becomes important. Tuning the
SPSA parameters to optimise the transient performance is a non-trivial
task.

Consider, e.g., selecting the perturbation size, c. It should be clear
that if the magnitude of ∆ = c∆ is large then the numerical error due
to the use of two-sided differences will dominate the overall estimation
error. On the other hand, when the magnitude of ∆ is small then in
order to let the variance of the estimate match the size of the asymptotic
bias term (whose order is of O(c2)), larger batches should be used, as
suggested previously. However, large batch-sizes may slow down the
rate of convergence. Hence, selecting good perturbation-sizes is highly
non-trivial.

It is likely that performance can be substantially improved if com-
ponentwise step-sizes are introduced. In all previous works on SPSA
known to us it was assumed that the d components of the perturba-
tions, ∆t, have identical distributions. When different coordinates have
different scales (which might be very common in practice) then it makes
sense to let each component has its own perturbation size parameter.9

9 Actually, having different scales for the different axes is a special case of
when the problem is anisotropic, in which case one might also want to consider
distributions of ∆ that are not even aligned with the coordinate system. In this
article, however, we restrict ourselves to the task of finding good componentwise
perturbation-sizes.

mlj.tex; 3/01/2006; 11:53; p.17

18

The problem of selecting the ‘right’ scales arises in deterministic
gradient methods, too. Classically, second and higher-order methods
are suggested as the natural way to approach this issue. Gradient-free
counterparts of such methods (e.g., 2SPSA) have been investigated
both theoretically and empirically by Spall (2000) and later by Dippon
(2003). The excessive computational complexity and memory require-
ments of these methods, however, make them less attractive for practi-
tioners. Further, although these methods (e.g., 2SPSA) are guaranteed
to achieve higher asymptotic convergence-rates, their superiority is less
clear in the small sample-size case.

Hence, we looked for options that avoid the excessive computa-
tional complexity of gradient-free, higher order methods. The RPROP
(“resilient backpropagation”) algorithm due to Riedmiller and Braun
(1993) and its variants have low computational complexity and are
amongst the best performing first-order batch neural-network gradient
training methods. Recently, Igel and Hüsken (2003) conducted an em-
pirical comparison of RPROP and its variants with alternative, gradient
ascent algorithms such as BFGS, CG and others. They have found
RPROP methods to be generally very fast, accurate, robust to the
choices of their parameters and scale well with the dimensionality of
the parameter vector. Additional advantages of RPROP are that it is
easy to implement, and since the updates are dependent only on the
sign of the partial derivatives of the objective function10 and not on
the magnitude of these partial derivatives, RPROP is thought to be
well suited to applications where the gradient is numerically estimated
and/or is noisy. We shall discuss these matters after the description of
the algorithm.

3.2.1. RPROP
We shall consider here a variant of RPROP, called iRprop−, due to
Igel and Hüsken (2000) in a form when it is applied to maximising an
objective function f = f(θ). iRprop−’s update equation is as follows:

θt+1,i = θt,i + δti sign(gti), i = 1, 2, . . . , d, t = 1, 2,

Here δti ≥ 0 is the step-size for the ith component and gti is a gradient-
like quantity:

gti = I(gt−1,if
′
i(θt) ≥ 0)f ′i(θt). (9)

In words, gti equals to the ith partial derivative of f at θ except when
a sign reversal is observed between the current and the previous partial

10 RPROP, though it was originally worked out for the training of neural net-
works, is applicable to any optimisation task where the gradient can be computed
or approximated.

mlj.tex; 3/01/2006; 11:53; p.18

Universal Parameter Optimisation in Games Based on SPSA 19

derivative, in which case gti is set to zero. Here I(·) is a {0, 1}-valued
function working on Boolean values and I(L) = 1 if and only if L is
true, and I(L) = 0, otherwise.

The individual step-sizes, δti, are updated in an iterative manner
based on the sign of the product pt,i = gt−1,if

′
i(θt):

ηti = I(pt,i > 0)η+ + I(pt,i < 0)η− + I(pt,i = 0), (10)
δti = P[δ−,δ+] (ηtiδt−1,i) , (11)

where 0 < η− < 1 < η+, 0 < δ− < δ+, and P[a,b] clamps its argument
to the interval [a, b].

Igel and Hüsken (2000) proposed another rule, iRprop+, and demon-
strated experimentally that it performs slightly better than the rule
just described. The difference between iRprop+ and iRprop− is that
when a sign change is observed and if the objective function decreases
then iRprop+ backtracks to the previous value of the given parameter.
This is called blocking in stochastic search (Spall, 2003). If the objective
function is observed in noise then the utility of blocking will be limited
– hence we omitted it from our implementation.11

Now, let us discuss one claim of Igel and Hüsken (2000); namely,
that the sign-based approach is well suited for applications where the
precise value of the gradient is unavailable, e.g., when the gradient is
observed in noise. Let us approach this claim by comparing how closely
the trajectories of the noisy updates simulate that of the respective
trajectories with noise-free updates.

First, notice that in both cases the size of the mini-batches, p, can
be used to control the ‘simulation-error’. Consider first the unmodified
gradient-ascent update rule, Equation 1. After several steps of sim-
plification, we get that after t steps the expected root mean squared
difference between the trajectories is of the order

√
tσ2

p. Here σ2
p is

the variance of the gradient estimates with a mini-batch of size p.
For the sign-based rule, the difference is

√
t2δp(1− δp). Here δp is the

probability that the sign of the estimated gradient is different from that
of the “true” gradient. Now, by the independence of measurements,
σ2

p = 1/pσ2
1. If G is a positive lower bound on the (true) gradient in

the neighbourhood of the current iterate, then δp ∼ exp(−pG2/(2σ2
1)).

Hence, the difference scales with 1/
√

p in the first case, whilst it scales
like exp(−p const) in the second case: The non-linear sign function is

11 In some weak form, blocking still exists in our code: In practice the performance
is typically monitored during the search procedure, i.e, time-to-time the parameters
are evaluated. It is then natural to keep at the end those parameters that were
observed to result in the best performance.

mlj.tex; 3/01/2006; 11:53; p.19

20

very effective at suppressing noise.12 Although this argument is far
from being rigourous, we think that it still provides a nice intuitive
explanation of why RPROP (or a sign-based update rule) might be
more successful.

Notice that the above reasoning is critically dependent on the as-
sumption that the parameter vector is not close to the stationary point
of the objective problem (hence the gradient can be bounded away from
zero). As pointed out by Schraudolph (1999), one problem with RPROP
is that it can behave badly near the stationary points. This is because
the sign function does not commute with the expectation and hence
the zero-mean property of the gradient estimates at equilibrium will
not transfer to that of the sign of the gradient estimates. In fact, this
may cause the step-sizes to converge to suboptimal values (divergence
of the step-sizes is prevented as they are bound to [δ−, δ+] by the update
rule).13 Although this is a valid point, we think that the problem will
likely turn up only close to the equilibrium points, whilst our interest
here lies in the transient behaviour. Hence, in the present context, we do
not see the problem a serious limitation of the method. Further, when
equilibrium behaviour is important, the problem can be mitigated by
increasing the size of mini-batches (as we saw beforehand, for optimal
performance, the size of the mini-batches should be increased near
equilibrium points anyway). Yet another possibility might be to adopt
a variant of RPROP that renders it globally convergent, such as, e.g.,
the GRPROP algorithm due to Anastasiadis et al. (2005).

3.2.2. RSPSA
We call the combined SPSA-iRprop− algorithm RSPSA (“resilient
SPSA”). The simplest combined algorithm works by replacing f ′i(θt)
in the iRprop− equations with its noisy estimate, ĝp,1,i(θt). By virtue
of the previous discussion, we speculate that the performance of RSPSA
might often surpass that of SPSA.

However, there is an extra potential that arises from the combination
of RPROP and SPSA, that we discuss now. Assuming that |f ′i(θ)| > G,
Markov’s inequality14 gives the following bound:

P(sign(ĝp,1,i(θ)) 6= sign(f ′i(θ))) ≤ P(|ĝp,1,i(θ))− f ′i(θ)| ≥ G) ≤ Mp,1,i

G2
.

12 In a rigourous derivation, Bernstein’s inequality could be used to derive a bound
on δp.

13 Note that another source of non-convergence of RPROP is that typically δ− > 0
in which case, near equilibriums, at best it will behave as a constant gain stochastic
gradient ascent procedure.

14 We could use here a tighter tail inequality, e.g., Hoeffding’s or Bernstein’s.
However, the bounds would not change as far as their scaling behaviour is concerned
with respect to the mean square error and G.

mlj.tex; 3/01/2006; 11:53; p.20

Universal Parameter Optimisation in Games Based on SPSA 21

Hence the performance of RSPSA will be bound by the mean square
error Mp,1,i. As discussed previously, the distribution of the perturba-
tions ∆ti may influence this quantity strongly and it is not reasonable
to expect that the same scales will work well for all coordinates.

Obviously, there is no way to decide a priori the ‘best’ scales. In fact,
in flat areas (with a smaller average gradient magnitudes) larger scales
are desirable, whilst where the objective function varies a lot, smaller
scales could be more beneficial. Thus, ideally, the perturbations should
fit the local characteristics of the objective function.

An attractive idea then is to couple the SPSA perturbation para-
meters ∆ti and the step-sizes of RPROP. This is motivated by the
observation that the step-sizes, δti, of RPROP are expected to grow
in “flat areas” where the sign of appropriate partial derivatives does
not change, whilst they are expected to decay in areas where the sign
of the partial derivatives varies a lot. A simple way to couple the two
step-sizes is to set

∆ti = ρ δti,

where ρ is some positive constant, to be selected by the user.

3.2.3. Empirical Results on a Synthetic Task
In order to gain some experience with RSPSA and compare its perfor-
mance to that of SPSA, we have tested it on a toy problem, the 10-5-10
encoder, used by Riedmiller and Braun (1993) and others. The problem
is to tune the weights of a neural network so as the trained network
maps specific binary inputs to outputs that are exactly identical to
the inputs. The 10 input patterns have the form (0, 0, . . . , 1, . . . , 0)
such that the ith pattern has exactly one non-zero value at its ith
position. The task is non-trivial as the number of neurons in the hidden
layer is less than that in the input layer. The objective function to be
maximised is written as

f(θ) = E [f(θ;Y)] = −E
[

10∑

i=1

‖h(xi; θ)− Yi(xi)‖2

]
, (12)

where xi goes through the 10 input patterns and Yi(xi) is the noise-
corrupted output pattern corresponding to xi. Some details of these
experiments, such as the definition of the outputs, Yi(xi), or the choice
of the various step-sizes used in the algorithms are given in Appendix B.

The research questions investigated here were as follows:

− How does SPSA perform on this simple problem? In particular, we
were interested in the dependence of its performance on parameter
c and on the size of the mini-batches.

mlj.tex; 3/01/2006; 11:53; p.21

22

− How does RSPSA perform as a function of the above two parame-
ters? Does coupling help to improve RPSA’s performance?

We also experimented with SMD, another local step-size adaptation
rule due to Schraudolph (1999). However, no results are presented here
for SMD, as they showed that, in this case at least, SMD is not effective
in improving performance (it did not prove to be competitive with
either SPSA or RSPSA).

Each experiment was repeated 15 times. The performance of a net-
work is defined as its mean square error (MSE) over the 10 patterns.
The curves in the figures show the smallest errors obtained until a given
moment. This somewhat unconventional measure is motivated by cur-
rent practice of parameter tuning in game programs: since parameter
tuning takes a long time, one typically monitors performance during
learning, if not for other reasons than to make sure that things work
normally. At the end of training, since performance measurements are
available for many parameter settings, it is natural to keep the best
parameter settings encountered. The values shown in the figures below
are the average of these values over 15 runs, whilst the error bars shown
are computed as the minimum and maximum of the ‘middle’ 13 values
of the 15 values (i.e., the error bars correspond roughly to 0.05 and
0.95 percentiles). In all figures, three curves are plotted, each curve
corresponding to the performance after a specific number of function
evaluations (1000, 10, 000 and 50, 000, marked respectively by 1k, 10k
and 50k there).

When testing SPSA, we used constant step- and perturbation-sizes
in these experiments in line, optimised to the task. Further, a momen-
tum term was added so as to further improve performance (the gain
of the momentum term was also tuned to the task). Figure 1 shows
the results obtained for SPSA when there is no gradient averaging (the
size of mini-batches is 1). The figure shows performance as a function
of the size of SPSA perturbations (c). The exact values of the step-
sizes are given in Appendix B). As it can be observed from the figure,
performance is not very sensitive to the value of the perturbation size,
at least when the perturbation size is above a certain critical value.
However, convergence is slow. We believe that this is caused by the
large noise of the output patterns, which, in turn, is inherited by the
gradient estimates.

Next, we investigated how the number of samples in the mini-batches
effect performance. Results indicated that batch-sizes around 25-50 are
optimal for this task. Accordingly, in the next figure (Figure 2) the size
of the mini-batches is increased to 50 samples. Note that in the figures
performance is given as a function of the number of samples drawn from

mlj.tex; 3/01/2006; 11:53; p.22

Universal Parameter Optimisation in Games Based on SPSA 23

3.0

2.0

1.0

0.8

0.6

0.5

0.4

0.3
 0 0.2 0.4 0.6 0.8 1

m
ea

n
sq

ua
re

 e
rr

or

spsa delta (c)

1k
10k
50k

Figure 1. Mean square error of SPSA as a function of the size of SPSA perturbations.
The size of mini-batches is 1. The three curves correspond to performance after a
specific number of objective function evaluations (1k, 10k and 50k mean 1, 000,
10, 000 and 50, 000 evaluations, respectively).

f(θ;Y), as opposed to the number of updates of the parameters. Thus,
compared with the previous figure, the number of updates for a given
curve here is 50 times less than that for the corresponding curve of the
previous experiment. Despite this, we see that performance improves at
least when comparing the best results. In fact, for the best results, the
conclusion holds for all the sample-sizes shown, indicating an overall
speedup of convergence.

Next, we investigated the performance of the RPROP+SPSA combi-
nation. Initially, the combination was tested with no coupling between
the SPSA perturbation-sizes and the SPSA step-sizes. The batch-size
was kept at 50. (Experiments with other batch-sizes showed that, in
line with our expectations, performance gets worse faster than for
SPSA as the batch-size is decreased. For larger batch-sizes the two
algorithms seem to behave qualitatively in the same manner.) Results
shown in Figure 3 indicate a significant performance improvement for
the respective best perturbations.

Finally, Figure 4 shows the performance of RSPSA when SPSA step-
sizes are coupled to RPROP step-sizes. In contrast to previous figures,
performance here is shown as a function of the coupling factor. The
parameters of RPROP were kept the same as those found to perform
the best in the previous experiment.

mlj.tex; 3/01/2006; 11:53; p.23

24

3.0

2.0

1.0

0.8

0.6

0.5

0.4

0.3
 0 0.2 0.4 0.6 0.8 1

m
ea

n
sq

ua
re

 e
rr

or

spsa delta (c)

1k
10k
50k

Figure 2. Mean square error of SPSA as a function of the size of SPSA perturbations.
The size of mini-batches is 50. The three curves correspond to performance after
a specific number of objective function evaluations (1k, 10k and 50k mean 1, 000,
10, 000 and 50, 000 evaluations, respectively).

Notice that coupling is very effective: For a wide range of the cou-
pling factors convergence is faster with coupling than without it. Fur-
ther, (i) the performance curve seems to be more-or-less convex as a
function of the coupling parameter and (ii) optimal performance is
achieved for a wide range of the coupling factors. We also note that the
shapes of the three curves in Figure 3 are roughly identical: As a result,
in this case at least, it looks possible to find good coupling factors
by testing a few selected values while keeping the sample size small.
These observations suggest that simple methods might work well for
identifying a near-best coupling factor in an efficient manner (a similar
conclusion seems to hold for the perturbation-size parameter, as well;
cf. Figures 1 and 2). On another note let us remark that compared with
the standard RPROP parameter values the parameters that we found
to perform well for these tasks are less extreme. This is indeed what can
be expected taking into account the noise in the gradient estimates.

In summary, the investigated problem illustrates that having some-
what larger mini-batches and using RSPSA with coupling can indeed
be beneficial in improving the performance of SPSA. Further, at least
in this simple problem, it is possible to find good values of the coupling
factor in an efficient manner.

mlj.tex; 3/01/2006; 11:53; p.24

Universal Parameter Optimisation in Games Based on SPSA 25

3.0

2.0

1.0

0.8

0.6

0.5

0.4

0.3
 0 0.2 0.4 0.6 0.8 1

m
ea

n
sq

ua
re

 e
rr

or

spsa delta (c)

1k
10k
50k

Figure 3. Mean square error of RSPSA as a function of the size of SPSA perturba-
tions with no coupling between the RPROP step-sizes and the SPSA perturbation
sizes. The size of mini-batches is 50. The three curves correspond to performance
after a specific number of objective function evaluations (1k, 10k and 50k mean
1, 000, 10, 000 and 50, 000 evaluations, respectively).

3.3. Antithetic Variables

Suppose that one wishes to compute the expected value, I, of a random
variable R: I = E [R]. The variance of the straightforward Monte-Carlo
estimate,

In =
1
n

(R1 + . . . + Rn) ,

is (1/n)Var (R). Here R1, . . . , Rn are i.i.d. and share the distribution of
R. Now, assume that n is even, say n = 2k, and consider the estimate

IA
n =

1
k

k∑

i=1

R+
i + R−

i

2
,

where now it is assumed that E
[
R+

i

]
= E

[
R−

i

]
= I (thus E

[
IA
n

]
= I)

and that {R+
1 , . . . , R+

k } are i.i.d., just like {R−
1 , . . . , R−

k }. Note that no
assumption is made on the independence of R+

i and R−
j . Since

Var

(
R+

i + R−
i

2

)
=

Var
(
R+

i

)
+ Var

(
R−

i

)
+ 2Cov

(
R+

i , R−
i

)

4
,

we see that

Var
(
IA
n

)
= (1/k)Var

(
(R+

1 + R−
1)/2

)

mlj.tex; 3/01/2006; 11:53; p.25

26

3.0

2.0

1.0

0.8

0.6

0.5

0.4

0.3
 0 2 4 6 8 10

m
ea

n
sq

ua
re

 e
rr

or

coupling factor

1k
10k
50k

Figure 4. Mean square error of RSPSA as a function of the parameter that cou-
ples SPSA perturbation-sizes to RPROP step-sizes. The size of mini-batches is 50.
The three curves correspond to performance after a specific number of objective
function evaluations (1k, 10k and 50k mean 1, 000, 10, 000 and 50, 000 evaluations,
respectively).

= (1/4k)
(
Var

(
R+

i

)
+ Var

(
R−

i

)
+ 2Cov

(
R+

i , R−
i

))

≤ Var (In) ,

provided that Var
(
R+

i

)
+Var

(
R−

i

)
≤ 2Var (Ri) and Cov

(
R+

i , R−
i

)
≤

0. When R+
i , R−

i share a common distribution, but Cov
(
R+

i , R−
i

)
< 0

then we say that R+
i and R−

i are antithetic. It follows then that if R+
i

and R−
i are antithetic and the common distribution of R±

i is identical to
the distribution of R then the estimated variance of IA

n will be smaller
than that of In. Notice the similarity to the CRN method introduced
in Section 2.5: In both cases introducing correlation helps decreasing
the variance of some estimates. Actually, however, the two methods
work in a complementary way. The CRN method introduces positive
correlation between random variables that are subtracted from each
other, whilst the method of antithetic variables introduces negative
correlation between random variables that are added together, whilst
in both cases the random variables share a common distribution.

As an example on how to use antithetic variables (AVs) in SPSA, or
more generally, in game parameter optimisation, consider the perfor-
mance of a player in a non-deterministic game. Let us collect all random
choices external to the players into a random variable Y and let f(Y ; W)

mlj.tex; 3/01/2006; 11:53; p.26

Universal Parameter Optimisation in Games Based on SPSA 27

be the performance of the player in the game. Here W collects the
random choices of the players. For example, in back-gammon variable
Y would collect the outcomes of dice-rolls, whilst in a card-game, such
as poker, Y can be chosen to represent the cards of the shuffled deck.

Assuming that the player’s play reasonably well, the influence of
the random choices Y on the outcome of the game will be strong.
By this we mean that the value of f(Y ; W) is largely determined by
the value of Y . For example, it may happen that in backgammon the
dices roll in favour of one of the players. Another example is in poker
when one player gets a strong hand, whilst the others get weak ones.
Staying with this example and assuming two-players, a natural idea to
mitigate the influence of Y on the measured performance is to reverse
the hands of the players: the hand of the first player becomes that of
the second and vice versa (the community cards are kept the same).
Denoting the cards in this new scenario by Y ′, it is expected that
Cov (f(Y ; W1), f(Y ′; W2)) < 0 (here W1 represents the random choices
in the first play with cards Y and W2 represents the random choices in
the play with cards Y ′; W1 and W2 are assumed to be independent of
each other). Since the distribution of Y and Y ′ are identical (the map-
ping between Y and Y ′ is a bijection), if the players play “perfectly”,
the same will hold for the distribution of f(Y ;W1) and −f(Y ′; W2).
Hence f(Y ; W1) and f(Y ;W2) will be antithetic. When the random
choices Y influence the outcome of the game strongly then we often
find that f(Y ;W1) ≈ −f(Y ′; W2). More generally, this is the case then
Cov (f(Y ; W1), f(Y ′; W2)) ≈ −Var (f(Y ; W)) and thus Var

(
IA
n

)
≈ 0.

Of course, f(Y ; W1) = −f(Y ′; W2) will rarely, if ever, hold and hence
the variance of IA

n will of course remain positive. Nevertheless, the ar-
gument shows that we can expect to achieve sizeable variance reduction
by using this method.

This method can be used in the estimation of the gradient or when
the performance of the players is evaluated. A simple way to introduce
AVs in the case of gradient estimation using SPSA is to replace the
SPSA gradient estimate defined by Equation (5) with15

ĝti(θt) =
1

4ct∆ti

(
(f(θt + ct∆t; Yt) + f(θt + ct∆t;Y ′

t))

−(f(θt − ct∆t; Yt) + f(θt − ct∆t; Y ′
t))

)
.

In our poker experiments we measured a reduction of the variance
by a factor of ca. 20 in game evaluations. We expect that similar

15 Note that the same technique can be used to reduce the variance of FDSA
gradient estimates.

mlj.tex; 3/01/2006; 11:53; p.27

28

improvements are possible in other games when ‘external randomness’
influences the outcome of the game strongly.

4. Test Domain: Omaha Hi-Lo Poker and MCRAISE

Let us now turn to the description of our test domain. We start by
the description of the rules of Omaha Hi-lo Poker. Next, we discuss
topics that arise when measuring relative strengths of players. The
game program, MCRAISE, used in the experiments is introduced in
Section 4.2.

4.1. The Rules

Omaha Hi-Lo is an N -person, zero-sum, alternating Markov game with
imperfect information. It is played by 2 − 10 players, who place their
betting actions sequentially in clockwise order.

A game begins with two forced bets, the small blind and the big
blind. After the blinds, four hole (private) cards are dealt to each player,
followed by the first round of betting. In a betting round, the player
on turn (usually) has three options: fold, check/call, or bet/raise. On
fold, the player becomes inactive, not having the possibility of further
bets, nor winning a share of the pot. On check/call, the player levels his
contribution to the pot with the outstanding bet level. On bet/raise,
the player increases the bet level. A maximum of four bets or raises are
allowed per betting round. A betting round terminates when all active
players matched the current bet level. After the first betting round,
three community cards are dealt face up (the flop). This is followed by
a second betting round. On the turn a fourth community card is dealt,
followed by the third betting round. A fifth community card is dealt
on the river, followed by the final (fourth) betting round.

After the last betting round, at showdown, the pot is split among
the active players depending on the strength of their cards. The players
form a high hand and (if possible) a low hand, each consisting of exactly
two hole cards and three community cards. The high side of the pot is
won by the best high hand according to the usual ranking of poker
hands. For the low side, a hand with five cards with different numerical
values from Ace to eight has to be constructed. The winning low hand
is the one with the lowest high card. If more players have the same
high card, the second highest will decide, and so on. Ties are possible
for both sides of the pot. In this case that side is split. If there is at
least one low hand then both sides equal half of the pot, otherwise the
whole pot goes to the high side.

mlj.tex; 3/01/2006; 11:53; p.28

Universal Parameter Optimisation in Games Based on SPSA 29

There are several rules for limiting the amount that can be raised
by a player. We use the fixed-limit stake structure, which in the first
two betting rounds sets this amount to a value termed small bet, and
in the next two rounds to the big bet. The big bet is twice the value of
the small bet.

A natural performance measure of a player’s strength is the average
amount of money won per hand divided by the value of the small bet
(sb/h). Typical differences between players are in the range of 0.05
to 0.2 sb/h. For showing that a 0.05 sb/h difference is statistically
significant in a two player game, one has to play up to 20,000 games.
This number was estimated by means of extensive simulations.

To illustrate the difficulty of obtaining reliable performance esti-
mates, let us consider some bounds on the number of games sufficient
for detecting a difference of 0.05 sb/h with an error probability lim-
ited to 5%. (In fact, these were the actual design parameters of our
experiments.)

Without any further information about the distribution of the pay-
offs, the best bound is obtained by Hoeffding’s inequality. Unfortu-
nately, the resulting number comes out to be very large: with δ denoting
the error probability and K denoting the maximum gain/loss per player
in a single game, we get that m(δ) = 2 ln(2/δ) (K/0.05)2 games are
required, which, for the case considered, is about 1, 700, 000, even if
only two-player games are considered. This huge number is the result
of the conservative nature of Hoeffding’s inequality that relies only on
the maximum gain/loss per player, which, in two-player games can be
as large as 24 sb in a single game.16 When the variance of the reward
distribution is known, then Bernstein’s inequality gives tighter bounds
than Hoeffding’s. In fact, in our case the variance of the rewards is esti-
mated to be about 36 (sb/h)2. Plugging this into Bernstein’s inequality
yields the bound of 107, 420 games. (This number is just about the same
as the number that can be obtained from the central-limit theorem.)17

Fortunately, we can do even better by introducing AVs. As suggested
in Section 3.3, in every second game each player is dealt his/her oppo-
nents’ cards of the previous game, while the community cards are kept
the same. As we will see, such antithetic dealing results in a drastic re-
duction of the number of required games. We note that this is crucially
important, since running 20,000, let alone 100,000 simulations every
time a player’s strength needs to be measured would be prohibitive.
(Simulating a single game takes ca. 1 second on average on an AMD

16 All these figures get substantially larger when the number of players is larger
than two.

17 That according to our extensive Monte-Carlo simulations 20,000 games proved
to be sufficient is caused by the significant non-normality of the payoff-distribution.

mlj.tex; 3/01/2006; 11:53; p.29

30

Opteron, 2GHz machine. Hence playing 20,000 games lasts ca. 5 and a
half hours.)

With antithetic dealing, variance per play drops to 1.44 sb/h. Plug-
ging this into Bernstein’s inequality gives the modest bound of 5, 430
games, a reduction by a factor of about 20. Compared with playing
20, 000 games, the reduction factor is still considerable (4) and anti-
thetic deals have the added benefit of stronger theoretical guarantees.
Of course, antithetic dealing assumes that players do not exploit this
specific dealing strategy. This holds, of course, for our computer pro-
grams, by their design.18 Given the huge variance reduction it buys,
in all of our experiments described below we used antithetic dealing.
In fact, when we report some player’s strength, then this is always
the empirical mean of the payoffs of 20,000 antithetic games. During
learning, for monitoring purposes, however, the number of antithetic
deals is kept at 5,000.

4.2. McRaise

Let us now describe our poker programs’, MCRAISE’s, action-selection
mechanism. Our program, MCRAISE, borrows several ideas from other
poker playing programs developed for another variant of poker, Texas
Hold’em (Billings et al., 2002; Billings et al., 2003; Billings et al.,
2004). The name of the program originates from the use of Monte-Carlo
simulations and the program’s aggressive style.

MCRAISE, as used in the experiments employs a rather simple 1-ply
search. Although the program is capable of looking further ahead, the
resulting gain in performance is small, whilst the computation time can
easily double. Hence, in the experiments we restricted ourselves to the
simple, 1-ply search variant that we describe now.

4.2.1. Basic Principles of MCRAISE’s Action-selection Strategy
Probably the most important element in poker play is to estimate one’s
winning chances, or more precisely to predict how much share one will
get from the pot. In order to succeed at this task, a player has to eval-
uate correctly the strength and potential of his/her own cards, which,
however, can be done only in light of his/her opponents’ (unknown)
hole cards. One approach to this is to guess the opponents’ cards based
on their betting actions of the current, and possibly previous games.
Betting actions encountered in previous games can be used to adjust
a model of the opponent (human players do something like this when

18 When playing against humans, antithetic dealing can still be used by making
assumptions on the number of games a human can remember and then mixing ‘well’
a large number of pairs of antithetic decks.

mlj.tex; 3/01/2006; 11:53; p.30

Universal Parameter Optimisation in Games Based on SPSA 31

categorising their opponent into categories like ‘tight-passive’, ‘loose-
passive’, ‘tight-aggressive’, and ‘loose-aggressive’). Given an opponent
model, the player might try to ‘deduce’ his/her opponents’ hole cards,
given the betting actions of the current game. Obviously, guessing the
opponent’s private cards should result in no particular hand, but a
probability distribution over the possible hands.

This is exactly MCRAISE’s approach: The opponents’ betting models
are used to derive a probability distribution over the possible hands,
taking into account all previous information, namely MCRAISE’s private
cards, the community cards and the betting history. Ideally, one would
like to know the full probability distribution over all possible hands,
as it was done in Poki by Billings et al. (2002). Unfortunately, this is
clearly infeasible to achieve, especially when playing against multiple
opponents: Whilst in Texas Hold’em (Poki’s domain) every player has
two hole cards, in Omaha Hi-Lo the number of private cards is four.
MCRAISE’s solution to this is to represent the distribution by a weighted
random sample. Given such a weighted sample, MCRAISE computes
the expected payoff, Q(s, a), for each of the available actions a (here
s denotes the information available to MCRAISE). Given Q(s, a), the
action with the highest value is selected:

a(s) = argmax
a

Q(s, a).

4.2.2. Estimating Action Values under the “Everyone’s Checking”
Assumption

Consider a game situation when it is MCRAISE’s turn to act. Let s be
the corresponding game history known to MCRAISE.

We define the value of action a given history s, Q(s, a), as MCRAISE’s
expected payoff provided that MCRAISE’s next action is a, and assuming
that subsequently it plays optimally against its opponents (it follows
that we assume here that the opponents’ strategies are fixed). If R
denotes the pot size at the end of the game, when MCRAISE’s total
contribution to the pot is R1, then Q(s, a) = E [w(C, I)R−R1|s, a].
Here C is a random card configuration and R, R1 and I are random
variables whose distribution depends on s and a. In particular, I is the
index-set of the active players at the end of the game and for any such
index set and card configuration c, w(c, I) is the percentage of pot won
by MCRAISE.

Computing Q(s, a) obviously requires looking ahead in the game
tree. Since the variance of future payoffs can be very high, one may
want to opt for an alternative, lower variance estimate. An option, that
from the point of view of computational efficiency looks particularly

mlj.tex; 3/01/2006; 11:53; p.31

32

appealing, is to estimate Q(s, a) under the assumption that every player
checks (including MCRAISE) from the current point of the game until
showdown. We call this the “Everyone’s Checking” (EC) Assumption.
In what follows we shall denote by Q̂(s, a) the corresponding value. Let
us now discuss the consequences of adopting EC.

First, note that since Q̂(s, fold) = Q(s, fold), the discussion can be
restricted to the case when the action considered is either ‘raise’ or
‘check’. Clearly, the pot size obtained under EC will never be larger
than R except when some player folds before he/she would match
the current bet level. Note that the pot-size under EC, denoted by
Π(s, a), can be computed from s and a alone. Further, the expected
proportional payoff (EPP) under EC, which we denote by w(s, a) =
EEC [w(C, I)|s, a], is always lower than the EPP without EC. This is
because if no opponent folds then these two values are the same. On
the other hand, when some opponents fold then the winning chance of
MCRAISE increases. Hence, w(s, a) is a lower bound on the proportion
of the pot won. In summary, unless some of the opponents folds before
the end of the current betting round, the value computed under EC
will be a lower bound on the true value. Further, for the fold action the
two values are equal.

Let us now look at the problem of computing Q̂(s, a). Under EC
game-tree search can be avoided altogether:

Q̂(s, a) = EEC [w(C, I)R−R1|s, a]
= w(s, a)Π(s, a)−B(s, a). (13)

Here B(s, a) = EEC [R1|s, a] is the total contribution of MCRAISE to
the pot, assuming EC. It is easy to see that B(s, a) can be computed
from s and a alone.

In particular, when a is the fold action then B(s, a) = −B0(s) and
w(s, a) = 0 and therefore Q̂(s, a) = −B0(s). Here B0(s) represents
MCRAISE’s current contribution to the pot. When a is not the fold
action then B(s, a) = B0(s) + D(s, a), where D(s, a) is MCRAISE’s
contribution to the pot when action a is selected. Further, Π(s, a) =
Π0(s) + (P1(s) − P2(s))(D(s, a) − D(s, check)) + P2(s)D(s, a), where
Π0(s) is the pot-size in s, P1(s) is the number of active players and P2(s)
is the number of players who have not yet matched the current bet level
in the current betting round (before MCRAISE’s turn). Note that the ac-
tion selected by MCRAISE can be expressed as a function of D(s, raise),
D(s, check), P1(s), P2(s), Π0(s), and w(s, raise) = w(s, check), alone.
The exact the functional form of action selection can be found after
some straightforward algebra. What is perhaps surprising at the first
glance, at least, is that B0(s), MCRAISE’s current contribution to the
pot, does not enter the action-selection function. We note in passing

mlj.tex; 3/01/2006; 11:53; p.32

Universal Parameter Optimisation in Games Based on SPSA 33

that this will be true for any action-selection procedure that is based
on estimates of the future payoffs.

4.2.3. Estimating the Expected Proportional Payoff
The only remaining undefined term in the definition of Q̂(s, a) is w(s, a).
Obviously, if a is the fold action then this quantity equals zero. Other-
wise, under EC, we have I = I(s) and thus

w(s, a) = E [w(C, I(s))|s, a] =
∑

c

w(c, I(s))p(c|s).

Here c goes through all the card configurations and p(c|s) denotes the
probability of a card configuration given history s:

p(c|s) =
p(s|c)p(c)

p(s)
.

MCRAISE estimates w(s, a) by weighted importance sampling (WIS)
by sampling random card configurations. Before going into how this is
done, it will be beneficial to discuss how WIS works. Consider the prob-
lem of estimating the expected value E [f(X)] =

∑
x f(x)p(x). Assume

that we can draw independent samples Y1, . . . , Yn from a distribution
q whose support includes that of p (i.e., q(y) 6= 0 whenever p(y) 6= 0
holds for any y). The WIS-estimate of E [f(x)] is given by

Sn =
∑n

i=1 f(Yi)λ(Yi)∑n
i=1 λ(Yi)

,

where λ(Yi) = p(Yi)/q(Yi) are the so-called importance weights. Since
E [f(Yi)p(Yi)/q(Yi)] = E [f(X)] and E [p(Yi)/q(Yi)] = 1, it follows by
the law of large numbers that the WIS estimate will converge to E [f(X)]
with probability one as n →∞. A crucial property of WIS-based esti-
mation is that for computing Sn the values of the importance weights,
λ(Yi), are needed only up to a constant factor. Note that the ‘missing’
constant factor can depend on anything except the random variables
themselves.

Accordingly, when computing the importance weights of a card con-
figuration, it follows that it is sufficient to compute p(s|c) (or a value
that is proportional to it up to a constant factor, independent of c).
Clearly, since the history s contains the actions of the opponents, p(s|c)
will depend on these actions and the action-selection strategies of the
opponents. Assume for the sake of specificity that the total number of
actions in s is m. Let i1, i2, . . . , im be the playing order of the players
in s, and let at(s) denote the tth action in s. By Bayes’ law and since
all players must base their decisions on information available to them,

mlj.tex; 3/01/2006; 11:53; p.33

34

we arrive at

p(s|c) = p(π1(s)|c)
m∏

t=1

pit(at(s)|st, cit(c)).

Here π1(s) denotes the private cards of MCRAISE, pi is the action-
selection model of player i, st is the public history up to stage t (in-
cluding actions and known community cards, but excluding π1(s)) and
πi(c) denotes the private cards of player i given the card configuration
c. When computing the value of p(s|c), MCRAISE replaces pit with its
own models of the other players’ respective action-selection strategies.
In order to simplify the notation, we do not introduce new symbols for
these functions.

Note that p(π1(s)|c) ∝ I(π1(s) = π1(c)). Of course, in practice,
sampling will take into account this: MCRAISE will only sample card
configurations that satisfy the compatibility relation π1(s) = π1(c).

Now, let r(s) denote the number of betting rounds in s. Fix r and i
and collect those t time indexes that belong to actions of round r and
player i. Denote the set of these time indeces by T (r, i). Reordering the
terms in the above product yields19

p(s|c) ∝ I(π1(s) = π1(c))
n∏

i=1

r(s)∏

r=1

∏

t∈T (r,i)

pi(at(s)|st, ci(c)).

Notice that when computing the importance weights, the product of
action-selection probabilities corresponding to MCRAISE’s own actions
(i = 1) need not be calculated as p1(at(s)|st, c1(c)) = p1(at(s)|st, c1(s))
is independent of c.

Since complex opponent models are hard to tune, we chose a simple
one where the action probabilities for a given history and opponent
depend only on a small number of quantities, such as the a priori
strength of the opponent’s cards, the actual bet size, pot level, and
simple statistics of the action histories of the opponent’s opponents
like the maximum of the opponent’s opponents’ discounted empirical
raise probabilities. In particular, we decided that the opponent’s own
previous actions should not influence these action-probabilities directly.
However, if such an opponent model is plugged into the above equation
then it will fail to capture that players typically try to balance their
actions throughout the game. Our solution is to take into account
the dependency among the actions at the level of betting rounds, by
modelling the joint probability of an action sequence, up to a constant

19 The empty product is defined as 1.

mlj.tex; 3/01/2006; 11:53; p.34

Universal Parameter Optimisation in Games Based on SPSA 35

factor by the following equation:20

∏

t∈T (r,i)

pi(at(s)|st, ci(c)) ∝ 1
|T (r, i)|

∑

t∈T (r,i)

q(at(s)|φ(st, ci(c)))
q(at(s))

. (14)

Here φ(st, πi(c)) are features extracted from history st and the private
card configuration, πi(c), of player i, q(a|φ) is the probability of action
a as a function of φ and q(a) is the probability of seeing action a.
In words, this equation says that the probability of seeing a sequence
of actions of opponent i in a given round is proportional to the av-
erage of the excess probabilities of the individual actions. Compared
with the values that would be obtained by invoking the independence
assumption, this equation will weight those action sequences where
q(at(s)|φ(st, πi(c))) > q(at(s)) substantially heavier. This means that
those card configurations will get larger weights for which these excess
opponent-model probabilities are large. In order to get a better under-
standing of this equation let us assume that q in (14) does not depend
on the features, φ, but just on the card configuration. Now assume
that for some card configuration the ratio of the probability of raise
to its a priori probability is smaller than the same ratio for check (the
considered hand is ‘weak’). Consider a sequence of two actions. Assume
that the first action of the sequence is raise. Using Equation (14) it is
then possible to show that the probability that the second action is raise
is smaller than it was in the first round. Conversely, the probability
of check is larger than its probability in the first round. Hence, the
equation indeed balances the action-selection procedure. Although this
equation is admittedly ad-hoc, we have found it to work pretty well in
practice.

5. Experiments

We tested RSPSA by optimising two components of MCRAISE, the
opponent model and the action selection. For both cases, we compare
the performance gain achieved using RSPSA with that of obtained by
some competing algorithms.

For the opponent model we consider the tuning of the parameters
of the opponent models (denoted by q(a|φ) above). In the case of op-
timising action selection two options were considered: (i) optimising
the parameters of an after-state value function that is then used in
a 1-ply search, and (ii) introducing and optimising an action-network

20 Implicitly, we are assuming therefore that players’ actions belonging to different
betting rounds are independent of each other.

mlj.tex; 3/01/2006; 11:53; p.35

36

that directly assigns scores to the actions, that is used in turn to define
a probability distribution over the actions. The experiments for the
opponent-model optimisation are described in Section 5.1, whilst those
for action-selection optimisation are given in Section 5.2.

5.1. Tuning the Opponent Model

The opponent model of MCRAISE assigns probabilities to the opponent’s
actions given some features φ. The current opponent model uses in total
six parameters. The a priori values of these parameters were obtained
by tuning them to some game databases. Here, we consider if RSPSA
is able to improve the tuning of these parameters of MCRAISE whilst
playing against MCRAISE with the default parameters. Before describ-
ing the experiments, however, let us look at the differentiability of the
objective function, and, in connection to this, the potential of using the
LR (or policy-gradient) method described earlier in Section 2.2 for this
problem.

The objective function can be written as

f(θ) = E [Rθ(C)] ,

where Rθ(C) is the payoff of the MCRAISE given the card configuration
C. Denoting the sequence of actions of the players by U and the set
of players that are active at the end of the game by I(U), it should
be clear that (i) the distribution of U depends on C and θ, and (ii)
Rθ(C) = r(U,C) for some (deterministic) function r. Hence, f(θ) can
be written in the form

f(θ) =
1
N

∑
c

∑
u

w(c, I(u))r(u, c)pθ(u|c).

Here N is the number of card configurations and pθ(u|c) is the prob-
ability of an action sequence given card configuration c. Hence, the
objective function takes the form of Equation (3) in Section 2.2. There-
fore, in theory, the LR method can be used to estimate the gradient
of f . As discussed previously, for this we need to calculate the score
function (∂/∂θ) ln pθ(u|c), which in turn boils down to the calculation
of the score functions associated with the action-selection probability
functions, pθ(a|s). By construction, the action probability pθ(a|s) can
be written in the form P (Fa(WM,θ(s, a)) ≥ 0) for some smooth function
Fa (see Section 4.2.2). Here WM,θ(s, a) is the estimate of w(s, a), com-
puted by sampling M card configurations, C1, . . . , CM , and weighted
importance sampling, as described in the previous section. Denoting
by λθ(Ci, s) the importance weight calculated for card configuration Ci

mlj.tex; 3/01/2006; 11:53; p.36

Universal Parameter Optimisation in Games Based on SPSA 37

and assuming that a is not the fold action, we get

pθ(a|s) =

(
1

Nπ1(s)

)M ∑

c1,...,cM s.t.π1(ci)=π1(s)

Ψθ(c1, . . . , cM , s, a),

where Nπ1(s) is the number of card configurations c that satisfy π1(c) =
π1(s) and where

Ψθ(c1, . . . , cM , s, a) = χ

(
Fa

(∑M
i=1 w(ci, I(s))λθ(ci, s)∑M

j=1 λθ(cj , s)

))
.

Here χ(s) = I(s ≥ 0) is the characteristic function of [0,∞). Hence,
in general pθ(a|s) will not be differentiable w.r.t. θ (as noted in Sec-
tion 2.4, the non-differentiability of the objective function does not need
to create any major difficulties for SPSA). One possible remedy is to
smooth the characteristic function in the above expression. Still, in this
case, exact differentiation of the action-selection probability function
would be computationally intractable. One idea to overcome this is to
use sampling. In particular, it looks natural to reuse the same card
configurations that define the value of WM,θ(s, a). Unfortunately, this
would result in an intolerably large bias. This is because for an action
that is actually selected, by construction, Ψθ(C1, . . . , CM , s, a) = 1.
This means that the score function value estimates based on C1, . . . , CM

alone would always be severely biased towards zero. When another
single card configuration set, say C ′

1, . . . , C
′
M , were used, then the vari-

ance of the resulting estimate would be huge.21 Hence, although it is
certainly possible to use the LR method and there are other possibilities
to make it work besides the one considered here, we remain dubious
regarding the potential of LR-methods in this special case.

Let us now return to the description of the experiments. For prob-
lems where the number of parameters is small, FDSA is a natural
competitor to SPSA. Therefore, we have tested SPSA and FDSA with
and without RPROP (we shall call the combination of FDSA and
RPROP ‘RFDSA’). Despite all efforts early experiments with SPSA
and FDSA (without RPROP) failed to produce acceptable results:
Hence, we give only the results for RSPSA and RFDSA here.

In the process of estimating the derivatives we employed antithetic
dealing and CRNs. Further, the following deck reuse procedure was

21 Consider the case when χ is replaced by a sigmoid, σ(x) = 1/(1 + exp(−γx)),
γ controlling the approximation error. Since σ′(x)/σ(x) = γ(1 − σ(x)), we get
that the score function scales with γ. In fact, when C′1, . . . , C

′
M is such that

Ψθ(C
′
1, . . . , C

′
M , s, a) = 0, then the value of the score function will scale with γ,

making the estimate’s variance large when γ is big. Sampling a large number of card
configurations is not feasible, either, due to the increase in computational complexity.

mlj.tex; 3/01/2006; 11:53; p.37

38

implemented: Remember that the CRN principle dictates using the
same decks when evaluating the two opposite perturbations. As a result,
many of the decks will produce zero SPSA differences, thus producing
zero contribution to the estimate of the gradient. Therefore, those rela-
tively infrequent decks that resulted in non-zero differences were saved
for reuse. In subsequent steps, half of the decks used for a new perturba-
tion were taken from those previously stored, whilst the other half was
generated randomly. Reuse was based on recency, so as to ensure that
no decks persist for longer periods.22 We note that the reuse method
obviously introduces bias in the gradient estimates. Though, in theory,
we could correct for this bias, it turns out that the bias introduced
is sufficiently benign so that we do not care about it. This is because
under reasonable conditions the bias introduced can be modelled as
the multiplication of the SPSA differences by a positive constant factor
(larger than 1) that depends on the probability of observing non-zero
SPSA differences given a random card configuration. Hence, when this
factor is constant or varies slowly as a function of the optimised para-
meters, we expect that its effect on the optimisation will be negligible.
Actually, in the case of the RPROP based updates where the update
depends only on the sign of the gradient multiplying the gradient by a
positive factor larger than one is actually beneficial.

The parameters of the algorithms that were hand-tuned by running
some tests for each algorithm considered, are given in the first two
lines of Table I (rows labelled by RSPSA(OM) and RFDSA(OM)).
Attention was paid to allocate the same amount of time to the tuning of
the parameters of the various algorithms (including SPSA and FDSA).
The experiments were conducted on a cluster of 16 computers that
were used previously in the development of MCRAISE. Since during
this development the most time consuming task was the evaluation of
the new variants against the previous ones (remember that simulating
5,000 games takes ca. one hour and 20 minutes on a single machine), a
software-library was developed that parallelised the evaluation process.
This library was reused in the experiments presented here. One unfor-
tunate consequence of this design is that we had to use more than one
evaluation per perturbation in the SPSA experiments, too. Actually,
in order to reduce communication overhead, the number of evaluations
per perturbation was kept above 100 in all the experiments. As men-

22 The decision to use half of the saved decks for reuse is admittedly ad-hoc.
Obviously, no reuse increases variance for reasons described previously and full reuse
introduces serious bias. Hence reusing half of the saved decks looked like a natural
idea. The recency-based strategy is preferred to random resampling from the saved
decks for the same reason that in particle filters residual resampling is preferred to
random resampling. For a discussion of these issues see (Douc et al., 2005).

mlj.tex; 3/01/2006; 11:53; p.38

Universal Parameter Optimisation in Games Based on SPSA 39

Table I. Learning parameters of RSPSA and RFDSA for opponent model
(OM), RSPSA and TD for evaluation function (EF) and RSPSA for policy
(POL) learning. η+, η−, δ0 (the initial value of δti), δ− and δ+ are the
RPROP parameters; ρ is the RSPSA (or RFDSA) coupling factor, λ is
the parameter of TD; batchsize is the number of performance evaluations
(games) within an iteration which, for RSPSA and RFDSA, is equal to the
product of the number of perturbations (r), the number of directions (2)
and the number of evaluations per perturbation (q).

η+ η− δ0 δ− δ+ ρ(λ) batchsize

RSPSA (OM) 1.1 0.85 0.01 1e-3 1.0 1 40 × 2× 250

RFDSA (OM) 1.1 0.85 0.01 1e-3 1.0 1 6 × 2× 1500

RSPSA (EF) 1.2 0.8 0.05 1e-3 1.0 10/7 100× 2× 100

RSPSA (POL) 1.1 0.9 0.01 1e-3 1.0 10/3 100× 2× 100

TD (EF) 1.2 0.5 0.1 1e-6 1.0 0.9 10000

tioned earlier, 5, 000 games were used to measure the performance of
the iterates. The parameters of the opponent model were initialised to
the parameter settings used in MCRAISE.

The evolution of the performance for the two algorithms is plotted
in Figure 5 against the number of iterations. The best performance
obtained for RSPSA was +0.170 sb/h, whilst it was +0.095 sb/h in
the case of RFDSA. Since the performance of the program that uses
the RSPSA-tuned parameters is almost twice as good as that of the
program that uses the parameters tuned by RFDSA, we conclude that
despite the small number of parameters, RSPSA is the better choice
here. This is a somewhat surprising result, especially in light of the
discussion of the transient behaviour of FDSA and SPSA (Section 2.5).

5.2. Learning Policies and Evaluation Functions

As described previously, MCRAISE selects the action that has the best
estimated value. This can be cast as a 1-ply search w.r.t. the so-
called after-state evaluation function, V , defined as follows. Let s′ =
T (s, a) be the situation right after action a is executed from situa-
tion s (and before the opponents would bet). Then V (s′) is defined
by −D(s, a) + V (s′) = Q(s, a). Here D(s, a) is the cost of executing
action a from s. Note that V is well-defined by the definition of Q. In
the first set of experiments described here, V is replaced by a neural
network, Vθ. The optimisation task is to tune the weights of this ‘value-

mlj.tex; 3/01/2006; 11:53; p.39

40

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100 120 140

pe
rf

or
m

an
ce

 (
sb

/h
)

iteration

RSPSA
RFDSA

Figure 5. Learning curves for RSPSA and RFDSA as a function of the number
of iteration. The graphs are obtained by smoothing the observed performance in
windows of size 15. The error bars were obtained by dropping the smallest and
largest values within the same windows centred around their respective ordinates.

network’ so as to yield an increase in the average payoff per game.
Action selection is implemented via argmaxa [−D(s, a) + Vθ(T (s, a))],
both during learning and when evaluating the learnt value-function.
Note that due to the highly stochastic nature of poker, introducing
explicit exploration seemed to be unnecessary. This approach proved
to be successful earlier in learning to play backgammon (Tesauro, 1992).

Learning evaluation functions is by far the most studied learning
task in games. One of the most successful algorithms for this task is
TD(λ) (Sutton, 1988) and the best known example of successfully train-
ing an evaluation function is TDGammon (Tesauro, 1992). By some, the
success of TD-learning in backgammon can mostly be attributed to the
highly stochastic nature of this game. As poker is similarly stochastic,
TD-algorithms might enjoy the same benefit in this domain, too. We
note in passing that temporal-difference learning had some success in
deterministic games as well, for example, TD-based parameter tuning
contributed significantly to the success of the world champion Lines of
Action program, MIA (Winands et al., 2002). In our experiment we
use a similar design, combining TD(λ) with RRPOP, as the one that
was the highly successful for tuning the evaluation function of MIA. (In
fact, the idea of combining RPROP and SPSA was partly motivated
by this earlier success.)

In the second set of experiments, action selection is done in a prob-
abilistic manner as follows: a neural network (“action network”) with

mlj.tex; 3/01/2006; 11:53; p.40

Universal Parameter Optimisation in Games Based on SPSA 41

three outputs, each associated with one action computes the scores
for the three actions. These are then normalised to yield a probability
distribution over the set of available actions (when raise is not available,
then it is left out in this step). The next action is then sampled from this
distribution. Tuning the weights of the action-network can be thought
thus implements a form of policy search.

Inputs to the neural networks include the estimate of the expected
proportional payoff, the strength of the player’s hand (i.e., the a priori
chance of winning), the position of the player within the round, the
pot size, the current bet level and some statistics about the recent
betting actions of the opponent. After some initial experimentation,
the network architectures were fixed at 12-10-1 and 12-10-3 for the
value- and the action-networks, respectively.

When the parameters of the action network are optimised, the objec-
tive function will be differentiable and the LR method applies, though,
again, since the EPP-estimate, WM,θ(s, a), is an input of the net-
work, the exact computation of the score functions is intractable. We
leave it for future work to compare the efficiency of LR-based policy-
gradient methods to the methods tested here. In the case when the
after-state value function is represented by a neural-network, we face
the same difficulties as those encountered in the previous section, as far
as the differentiability of the objective function is concerned. Note that
TD-methods avoid differentiability issues as they optimise for another
criterion.

The parameters of the algorithms are given in the second half of
Table I. Again, these parameters were obtained by experimenting with
the algorithms and selecting the best parameters found. Attention was
paid to dedicate the same amount of time for the tuning of the vari-
ous algorithms. For RSPSA the same enhancements as those given in
Section 5.1 were used. We tested four algorithms:

(1) RSPSA for tuning the parameters of the after-state evaluation
function (RSPSA(EF)),

(2) RSPSA for tuning the action-network (RSPSA(POL)),
(3) TD for tuning an evaluation function (TD(EF)), and
(4) TD for evaluation function tuning with a supervised start-up

(spvTD(EF)).
For the latter, before TD-learning, a simple supervised algorithm was
used to tune the weights of the value-network to match values estimated
by MCRAISE at a set of states sampled using self-play.

The learning curves of the four algorithms are given in Figure 6.
The best performance obtained for RSPSA(EF) was +0.194 sb/h, for
RSPSA(POL) it was +0.152 sb/h, for TD(EF) it was +0.015 sb/h, and

mlj.tex; 3/01/2006; 11:53; p.41

42

for spvTD(EF) it was +0.220 sb/h. It is fair to say that TD performed
better than RSPSA, which is a result one would expect given that TD
uses more information about the gradient. However, we observe that for
TD it was essential to start from a good set of weights, those obtained
by supervised learning. When started from random weights, the initial
policy is probably too bad and learning gets stuck at a local minimum.
This is in contrast to TDGammon that was able to learn starting from
random weights (Tesauro, 1992).

We note that although the two RSPSA algorithms did not reach
the performance obtained by the combination of supervised and TD-
learning, they did give a considerable performance gain even though
they were started from scratch. As noted earlier, a difference of 0.2
sb/h represents a significant difference in player-strength. Hence, given
that MCRAISE is thought to be competitive with professional players,
we think that the performance improvement achieved by RSPSA(EF)
is noteworthy. Of course, since these results are obtained by training
against a fixed opponent (though, a strong one), the resulting player
should be tested against a wide range of players before making any defi-
nite conclusion about its playing strength. Even better, the experiments
could be repeated by playing against a larger set of opponents.

We note in passing that we have also experimented with SPSA
without the enhancements proposed here. Even if all the enhancements,
except the combination with RPROP were used, no parameter settings
were found using which SPSA could produce acceptable results in this
case.

6. Conclusions and Future Work

This article investigated the value of a general purpose optimisation
algorithm, SPSA, for the automatic tuning of game parameters. Several
theoretical and practical issues were analysed, which in turn led to
the design of a new variant of SPSA that we called RSPSA. RSPSA
combines the strengths of RPROP and SPSA: SPSA is a gradient-free
stochastic hill-climbing method that requires only function evaluations,
while RPROP is a first order method that is known to improve the tran-
sient behaviour of gradient ascent. The proposed combination couples
the perturbation parameter of SPSA and the step-size parameters of
RPROP. It was argued that this coupling is natural. By means of some
preliminary experiments, it was shown that the combined method can
indeed improve the convergence rate.

For achieving a good performance in our test domain, it proved
to be essential to employ a number of other enhancements that aim at

mlj.tex; 3/01/2006; 11:53; p.42

Universal Parameter Optimisation in Games Based on SPSA 43

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 20 40 60 80 100 120 140 160 180

pe
rf

or
m

an
ce

 (
sb

/h
)

iteration

spvTD (EF)
RSPSA (EF)

RSPSA (POL)
TD (EF)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 20 40 60 80 100 120 140 160

Figure 6. Learning curves for RSPSA and TD as a function of the number of
iteration. The graphs are obtained by smoothing the observed performance in win-
dows of size 15. The error bars were obtained by dropping the smallest and largest
values within the same windows centred around their respective ordinates. For an
explanation of the symbols see the text.

reducing the variance of the gradient estimates. The effect of performing
a larger number of perturbations was analysed. An expression for the
mean square error of the estimate of the gradient was derived as the
function of the number of (noisy) evaluations of the objective function
per perturbation (q) and the number of perturbations (r). It was found
that to optimise the mean square error with a fixed budget p = qr, the
number of perturbations should be kept at maximum.

We suggested that besides using the method of Common Random
Numbers, antithetic variables should be used for a further reduction
of the variance. In addition, a method for reusing decks that produced
non-zero differences was proposed for the same purpose. In our test
domain, these methods together are estimated to yield a speed-up by
a factor larger than ten (since with the proposed methods a smaller
number of function evaluations is enough to achieve the same level
of accuracy in estimating the gradient). It was the overall effect of
these enhancements that made it possible to apply SPSA-techniques for
tuning the parameters of several variants of our poker playing program,
MCRAISE.

In our experiments the optimisation of two components of MCRAISE

were attempted: the opponent model and the action-selection algo-

mlj.tex; 3/01/2006; 11:53; p.43

44

rithm. The latter task was attempted both directly, when the policy was
represented explicitly, and indirectly via the tuning of the parameters
of an after-state value function. In addition to testing RSPSA, for both
components an alternative optimiser was tested (resp., RFDSA, and
TD(λ)). On the task of tuning the parameters of the opponent model,
RSPSA resulted in a significantly better performance as compared to
that obtained by using RFDSA. This confirms some of the previous
findings such as those of Spall, Kleinman et al. (1992, 1999), whilst it
contradicts some expectations published elsewhere, such as in (Kush-
ner and Yin, 1997; Dippon, 2003). In the case of policy optimisation,
RSPSA was competitive with TD-learning, although the combination
of supervised learning followed by TD-learning outperformed RSPSA.
Nevertheless, the performance of RSPSA was encouraging on this sec-
ond task, as well. In fact, using RSPSA, it was possible to achieve
an impressive improvement of 0.194 sb/h in the case of tuning the
action-network while playing against MCRAISE.

There are several lines of future research that look important. Ex-
tensive numerical studies would be needed to gain more insight into
the behaviour of SPSA (and RSPSA) as a function of its parameters.
In particular, we believe that the coupling of the RPROP step-size and
the SPSA perturbation size can be improved by using more information
such as the learning “stage” and the variance of the gradient. Also, our
theoretical results indicate that p, the size of mini-batches should be
selected to match the scale of the perturbation step-sizes. The optimi-
sation of the size of the mini-batches was not attempted here, although
we think that optimised batch-sizes may result in further performance
improvements.

In connection to this let us note that there exist results that show
that it is possible to use SPSA with deterministic perturbation se-
quences and with such sequences, in fact, it is possible to improve the
transient behaviour (Xiong et al., 2002). It would be interesting to
see if performance can be further improved using this technique. In
this article, we have not compared the performance of the SPSA-based
methods with that of LR (a.k.a., policy-gradient) methods. In cases
when LR methods are applicable, they might have an advantage over
SPSA-based methods as they use more information. Nevertheless, as
we have discussed it extensively, LR methods are not without problems
either. At present, it is largely unclear how LR methods would fare
when compared with SPSA-based methods on the tasks considered
here.

There exist other opportunities to enhance the convergence rate
of SPSA. In fact, any adaptive step-size method could be used that
is designed to enhance the performance of stochastic gradient ascent.

mlj.tex; 3/01/2006; 11:53; p.44

Universal Parameter Optimisation in Games Based on SPSA 45

One particularly appealing such algorithm extends conjugate gradient
to a stochastic settings (Schraudolph and Graepel, 2002). Recently,
Anastasiadis et al. (2005) introduced a globally convergent version of
RPROP. It is an interesting open question if their modifications are
effective in a stochastic settings, as well.

In order to get a better understanding of the behaviour and utility
of RSPSA for game-program parameter tuning, it should be tested in
several other games. A first indication that RSPSA can be successful
in other games than poker is given in (Kocsis, 2005) where RSPSA is
used for tuning the realisation probability weights of MIA in Lines of
Action.

Regarding the poker environment, several components of MCRAISE

could be improved. The opponent model, for example, could be made
adaptive (or replaced entirely). Preliminary results where bandit al-
gorithms are used to select the best opponent model from a fixed
pool given past plays are reported in (Kocsis and Szepesvári, 2005).
As we mentioned earlier, our experience so far suggests that deep
searches do not yield a sizeable performance gain. However, foreseeing
the future betting of the opponents plays an important role in human
play, suggesting that higher gains should be attainable by an improved
search algorithm. Currently an important weakness of the program
might be its predictability. A potential solution to this problem is
the game-theoretic approach (i.e., attempting to find Nash-equilibrium
strategies) that proved successful in Texas Hold’em (Billings et al.,
2003).

From the point of view of poker play another significant deficiency
of the the experiments of the present paper is that training happened
whilst playing against a single opponent. Such an approach may re-
sult in strategies that perform very poorly against some opponents.
Training against a larger set of opponents would be a simple-minded
and expensive solution. Ideas from bandit problems or active learning
could be borrowed to improve the performance of this approach. We
believe that substantially more work would be desirable to explore this
exciting area.

Acknowledgements

The authors wish to thank the reviewers for their many useful sugges-
tions and remarks. Specifically, we would like to acknowledge one of
the reviewers for suggesting the parameter optimisation example for
MMORPGs that was described in the introduction.

mlj.tex; 3/01/2006; 11:53; p.45

46

We would like to acknowledge support for this project from the
Hungarian National Science Foundation (OTKA), Grant No. T047193
(Cs. Szepesvári) and from the Hungarian Academy of Sciences (Cs.
Szepesvári, Bolyai Fellowship).

Appendix

A. Multiple Perturbations vs. Multiple Evaluations

In this section we provide a derivation of Equation (7). Let

δf(θ, Y, c∆) = f(θ + c∆; Y)− f(θ − c∆; Y).

Using elementary analysis, it can be shown that if f is three times
continuous differentiable in a sufficiently large neighbourhood of θ then

δf(θ, Y, c∆)
2c∆i

= f ′i(θ;Y) +
d∑

j=1

j 6=i

f ′j(θ; Y)
∆j

∆i
+ O(c2). (15)

Without the loss of generality we will consider the approximation of
f ′1 only. Consider

Aq =
1
q

q∑

i=1

{
δf(θ, Yi, c∆)

2c∆1
− f ′1(θ)

}
,

where ∆ ∈ Rd is a random variable such that its components are i.i.d.,
Yi are i.i.d. random variables, and ∆ is independent of {Y1, . . . , Yq}.
We assume just like Spall (1992) that ∆i is symmetrically distributed
around zero. We shall further assume that |f ′j(θ; Y)|, |∆i| and 1/|∆i|
are bounded by some common deterministic upper bound K > 0 with
probability one.23

Let A
(1)
q , . . . , A

(r)
q be independent realisations of Aq. Defining

Ar,q = ĝr,q,1(θ)− f ′1(θ)

it is clear that Ar,q = (1/r)
∑r

j=1 A
(j)
q . Hence,

E
[
A2

r,q

]
= 1/r2




r∑

j=1

E
[
(A(j)

q)2
]
+

∑

j 6=j′
E

[
A(j)

q A(j′)
q

]



= (1/r)E
[
(A(1)

q)2
]
+ O(c2),

23 With some more work the condition on the boundedness on |1/∆ij | could be
replaced by E [|1/∆ij |] < K.

mlj.tex; 3/01/2006; 11:53; p.46

Universal Parameter Optimisation in Games Based on SPSA 47

where we have used that by Lemma 1 of (Spall, 1992) E
[
A

(j)
q

]
= O(c2)

(this follows from Equation (15)).
Therefore it suffices to consider E

[
A2

q

]
. Using Equation (15) we get

Aq =
1
q

q∑

i=1

d∑

j=2

f ′j(θ, Yi)
∆j

∆1
+

1
q

q∑

i=1

(
f ′1(θ, Yi)− f ′1(θ)

)
+ O(c2).

Denoting the first and second terms on the right hand side by Vq and
Wq, respectively, we get E

[
A2

q

]
= E

[
V 2

q

]
+ E

[
W 2

q

]
+ O(c2), where

the cross term E [VqWq] cancels because ∆j is independent of {Yi} and
E [∆j] = 0. Now, standard calculations give

E
[
W 2

q

]
= (1/q)E

[
(f ′1(θ, Y1)− f ′1(θ))

2
]

and

E
[
V 2

q

]
= D

d∑

j=2

{(
1− 1

q

)
E

[
f ′j(θ, Y1)2

]
+

1
q
E

[
f ′j(θ, Y1)

]2
}

+ O(c2),

where D = E
[
∆2

1

]
E

[
1/∆2

1

]
. Therefore

E
[
A2

r,q

]
= D

d∑

j=2

{(
1
r
− 1

rq

)
E

[
f ′j(θ, Y1)2

]
+

1
rq
E

[
f ′j(θ, Y1)

]2
}

+

1
rq
E

[
(f ′1(θ, Y1)− f ′1(θ))

2
]
+ O(c2).

This shows that if p = r q is fixed then choosing r = p yields the
smallest mean square error since in this case the term multiplied by
(1/r−1/(rq)) cancels, whilst the other terms do not change. In this case
the mean squared error of the approximation of the gradient becomes

1
p
E

[
∆2

1

]
E

[
1/∆2

1

]




d∑

j=2

E
[
f ′j(θ, Y1)

]2
+ E

[
(f ′1(θ, Y1)− f ′1(θ))

2
]


+O(c2),

which is the same as the expression given in Equation (8).

B. Details of the Experiments on the Synthetic Task

In this section we describe some of the details of the experiments on
the 10-5-10 encoder problem (cf. Section 3.2.3). The architecture of the

mlj.tex; 3/01/2006; 11:53; p.47

48

neural network is fixed by the problem. Noise was injected in the out-
puts as follows: For input (0, . . . , 0, 1, 0, . . . , 0), we used (Z1, . . . , Zi−1, 1−
Zi, Zi+1, . . . , Z10), where the random variables Zi are independent and
uniformly distributed in the interval [0,0.5]. Network weights were ini-
tialised using the same fixed seeds to small random weights.

In the experiments reported the following parameter values were
used:
− Figure 1, SPSA, update rule step-size is 0.1, momentum 0.5
− Figure 2, SPSA, update rule step-size is 0.01, momentum 0.5
− Figure 3, RSPSA with no coupling, η+ = 1.05, η− = 0.95, δ0 = 0.5,

δ− = 1e− 6, δ+ = 1.0
− Figure 4, RSPSA with coupling, η+ = 1.05, η− = 0.95, δ0 = 0.5,

δ− = 1e−6, δ+ = 1.0 (same values as used when RSPSA was used
with no coupling).

References

Anastasiadis, A. D., G. D. Magoulas, and M. N. Vrahatis: 2005, ‘New Globally
Convergent Training Scheme Based on the Resilient Propagation Algorithm’.
Neurocomputing 64, 253–270.

Andradóttir, S.: 1998, ‘A review of simulation optimization techniques’. In:
Proceedings of the 1998 Winter Simulation Conference. pp. 151–158.

Baird, L. and A. W. Moore: 1999, ‘Gradient Descent for General Reinforcement
Learning’. In: Advances in Neural Information Processing Systems 11. pp. 968–
974, MIT Press, Cambridge MA.

Baxter, J. and P. L. Bartlett: 2001, ‘Infinite-Horizon Policy-Gradient Estimation’.
Journal of Artificial Intelligence Research 15, 319–350.

Baxter, J., A. Tridgell, and L. Weaver: 2000, ‘Learning to Play Chess using Temporal
Differences’. Machine Learning 40(3), 243–263.

Billings, D., N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D.
Szafron: 2003, ‘Approximating Game-Theoretic Optimal Strategies for Full-scale
Poker’. In: Proceedings of Eighteenth International Joint Conference on Artificial
Intelligence. pp. 661–668.

Billings, D., A. Davidson, J. Schaeffer, and D. Szafron: 2002, ‘The Challenge of
Poker’. Artificial Intelligence 134, 201–240.

Billings, D., A. Davidson, T. Shauenberg, N. Burch, M. Bowling, R. Holte, J.
Schaeffer, and D. Szafron: 2004, ‘Game Tree Search with Adaptation in Sto-
chastic Imperfect Information Games’. In: Proceedings of Computers and Games
(CG’04).

Björnsson, Y. and T. A. Marsland: 2003, ‘Learning Extension Parameters in Game-
Tree Search’. Journal of Information Sciences 154, 95–118.

Blum, J. R.: 1954, ‘Multidimensional stochastic approximation methods’. Annals of
Mathematical Statistics 25, 737–744.

Bowling, M. and M. Veloso: 2002, ‘Scalable learning in stochastic games’. In: AAAI
Workshop on Game Theoretic and Decision Theoretic Agents.

Chellapilla, K. and D. B. Fogel: 1999, ‘Evolving Neural Networks to Play Checkers
without Expert Knowledge’. IEEE Transactions on Neural Networks 10(6),
1382–1391.

mlj.tex; 3/01/2006; 11:53; p.48

Universal Parameter Optimisation in Games Based on SPSA 49

Chen, H.: 1988, ‘Lower rate convergence for locating a maximum of a function’.
Annals of Statistics 16, 1330–1334.

Dippon, J.: 2003, ‘Accelerated randomized stochastic optimization’. Annals of
Statistics 31(4), 1260–1281.

Douc, R., O. Cappé, and E. Moulines: 2005, ‘Comparison of Resampling Schemes
for Particle Filtering’. In: In 4th International Symposium on Image and Signal
Processing and Analysis (ISPA).

Fabian, V.: 1968, ‘On asymptotic normality in stochastic approximation’. Annals of
Mathematical Statistics 39, 1327–1332.

Gerencsér, L., S. D. Hill, and Z. Vágó: 1999, ‘Optimization over discrete sets via
SPSA’. In: Proceedings of the 1999 Winter Simulation Conference. pp. 466–470.

Gerencsér, L., G. Kozmann, and Z. Vágó: 1998, ‘Non-smooth optimization via
SPSA’. In: Proceedings of the Conference on the Mathematical Theory of
Networks and Systems, MTNS 98. pp. 803–806.

Glasserman, P. and D. D. Yao: 1992, ‘Some guidelines and guarantees for common
random numbers’. Management Science 38, 884–908.

Greensmith, E., P. L. Bartlett, and J. Baxter: 2002, ‘Variance Reduction Techniques
for Gradient Estimates in Reinforcement Learning’. In: Advances in Neural
Information Processing Systems 14. pp. 1507–1514.

He, Y., M. C. Fu, and S. I. Marcus: 2003, ‘Convergence of simultaneous perturbation
stochastic approximation for nondifferentiable optimization’. IEEE Transactions
on Automatic Control 48, 1459–1463.

Igel, C. and M. Hüsken: 2000, ‘Improving the Rprop Learning Algorithm’. In:
H. Bothe and R. Rojas (eds.): Proceedings of the Second International ICSC
Symposium on Neural Computation (NC 2000). pp. 115–121, ICSC Academic
Press.

Igel, C. and M. Hüsken: 2003, ‘Empirical evaluation of the improved Rprop learning
algorithm’. Neurocomputing 50(C), 105–123.

Kakade, S. and J. Langford: 2002, ‘Approximately Optimal Approximate Reinforce-
ment Learning’. In: Proceedings of the Nineteenth International Conference on
Machine Learning (ICML 2002). pp. 267–274.

Kiefer, J. and J. Wolfowitz: 1952, ‘Stochastic Estimation of the Maximum of a
Regression Function’. Annals of Mathematical Statistics 23, 462–466.

Kleinman, N. L., J. C. Spall, and D. Q. Neiman: 1999, ‘Simulation-based op-
timization with stochastic approximation using common random numbers’.
Management Science 45(11), 1570–1578.

Kocsis, L.: 2003, ‘Learning Search Decisions’. Ph.D. thesis, Universiteit Maastricht,
The Netherlands.

Kocsis, L. and C. Szepesvári: 2005, ‘Reduced-Variance Payoff Estimation in Ad-
versarial Bandit Problems’. In: Proceedings of the ECML’05 workshop on
Reinforcement Learning in Non-Stationary Environments. (in print).

Kocsis, L., S. C. W. M. H. M.: 2005, ‘RSPSA: Enhanced Parameter Optimisation in
Games’. In: Proceedings of the 11th Advances in Computer Games Conference
(ACG-11). in press.

Kushner, H. J. and G. G. Yin: 1997, Stochastic Approximation Algorithms and
Applications. Springer, New York.

L’Ecuyer, P. and G. Yin: 1998, ‘Budget-Dependent Convergence Rate of Stochastic
Approximation’. SIAM J. on Optimization 8(1), 217–247.

Polyak, B. T. and A. B. Tsybakov: 1990, ‘Optimal orders of accuracy for search
algorithms of stochastic optimization’. Problems of Information Transmission
26, 126–133.

mlj.tex; 3/01/2006; 11:53; p.49

50

Riedmiller, M. and H. Braun: 1993, ‘A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm’. In: E. H. Ruspini (ed.): Proceedings
of the IEEE International Conference on Neural Networks. pp. 586–591, IEEE
Press.

Robbins, H. and S. Monro: 1951, ‘A stochastic approximation method’. Annals of
Mathematical Statistics 22, 400–407.

Rubinstein, R. Y., G. Samorodnitsky, and M. Shaked: 1985, ‘Antithetic Vari-
ables, Multivariate Dependence and Simulation of Complex Stochastic Systems’.
Management Sciences 31, 66–77.

Sadegh, P. and J. C. Spall: 1997, ‘Optimal Random Perturbations for Stochastic
Approximation Using a Simultaneous Perturbation Gradient Approximation’. In:
Proceedings of the American Control Conference. Albuquerque, NM, pp. 3582–
3586.

Schraudolph, N.: 1999, ‘Local Gain Adaptation in Stochastic Gradient Descent’. In:
Proc. 9th International Conference on Artificial Neural Networks. Edinburgh,
pp. 569–574, IEE, London.

Schraudolph, N. N. and T. Graepel: 2002, ‘Towards Stochastic Conjugate Gradi-
ent Methods’. In: Proceedings of the 9th International Conference on Neural
Information Processing. pp. 1351–1358.

Spall, J. C.: 1992, ‘Multivariate stochastic approximation using a simultaneous per-
turbation gradient approximation’. IEEE Transactions on Automatic Control
37, 332–341.

Spall, J. C.: 2000, ‘Adaptive Stochastic Approximation by the Simultaneous
Perturbation Method’. IEEE Transactions on Automatic Control 45, 1839–1853.

Spall, J. C.: 2003, Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. Hoboken, NJ: Wiley.

Sutton, R. and A. Barto: 1998, ‘Reinforcement Learning: An Introduction’. Bradford
Book.

Sutton, R. S.: 1988, ‘Learning to predict by the methods of temporal differences’.
Machine Learning 3, 9–44.

Sutton, R. S., D. McAllester, S. Singh, and Y. Mansour: 2000, ‘Policy Gradient
Methods for Reinforcement Learning with Function Approximation’. In: Ad-
vances in Neural Information Processing Systems 12. pp. 1057–1063, MIT Press,
Cambridge MA.

Tesauro, G.: 1992, ‘Practical Issues in Temporal Difference Learning’. Machine
Learning 8, 257–277.

Williams, R. J.: 1992, ‘Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning’. Machine Learning 8, 229–256.

Winands, M. H. M., L. Kocsis, J. W. H. M. Uiterwijk, and H. J. van den Herik:
2002, ‘Temporal Difference Learning and the Neural MoveMap Heuristic in the
Game of Lines of Action’. In: Proceedings of 3rd International Conference on
Intelligent Games and Simulation (GAME-ON 2002). pp. 99–103.

Xiong, X., I.-J. Wang, and M. C. Fu: 2002, ‘Randomized-direction stochastic ap-
proximation algorithms using deterministic sequences’. In: Proceedings of the
2002 Winter Simulation Conference. San Diego, CA, pp. 285–291.

mlj.tex; 3/01/2006; 11:53; p.50

