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Abstract— P. Algoet and T. Cover characterized log-optimal
portfolios in a stationary market without friction. There i s no
analogous result for markets with friction, of which a currency
market is a typical example. In this paper we restrict ourselves
to simple static strategies. The problem is then reduced to the
analysis of products of random matrices, the top-Lyapunov
exponent giving the growth rate. New insights to products of
random matrices will be given and an algorithm for optimizing
top-Lyapunov exponents will be presented together with some
key steps of its analysis. Simulation results will also be given.

Let X = (Xn) be a stationary process ofk × k real-valued
matrices, depending on some vector-valued parameterθ ∈ R

p,
satisfying E log+ ||X0(θ)|| < ∞ for all θ. The top-Lyapunov
exponent ofX is defined as

λ(θ) = lim
n

1

n
E log ||Xn · Xn−1... · X0||.

We develop an iterative procedure for the optimization of
λ(θ). In the case whenX is a Markov-process, the proposed
procedure is formally within the class defined in [3]. However
the analysis of the general case requires different techniques:
an ODE method defined in terms of asymptotically stationary
random fields. The verification of some standard technical
conditions, such as a uniform law of large numbers for the
error process is hard. For this we need some auxiliary results
which are interesting in their own right.

I. I NTRODUCTION

We consider the problem of maximizing the long-term
profit of an investor who is trading in a stock or currency
market. Instead of maximizing the expected value of short-
term returns the problem is to optimize the growth rate of
the portfolio. This problem was studied in [4] for a simple
stock market model where daily returns were supposed to be
independent and identically distributed. An algorithm was
presented to determine the optimal constant proportion of
wealth held in the assets, called the relative portfolio. A
shortcoming of this algorithm is that the distribution of stock
returns should be known in advance.

This work has then been generalized in various ways:
Algoet and Cover [2] proved the existence and asymptotic
optimality of “logoptimal” portfolios for stationary ergodic
stock returns, see [2], Algoet gave universal schemes produc-
ing an asymptotically optimal growth rate without a priori
knowledge of the stock’s distribution, see [1] and also [5]
and [7]. Existence of optimal portfolios was shown in [10]
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for certain models with transaction costs, though without an
explicit construction or algorithm.

The present paper provides a framework which is pertinent
to a wide range of market models with or without transaction
costs. Parametrized familiesof investment strategies are
considered and an algorithm for maximizing the logarithmic
growth rate of portfolios is presented. The results apply
whenever the portfolio position at timet + 1 is computable
from that of timet by multiplication with a random matrix
Xt(θ), whereθ is a parameter for a given class of strategies.
The sequenceXt(θ) is supposed to be strictly stationary for
eachθ. An algorithm will be proposed to maximize the top-
Lyapunov exponent with respect toθ.

The structure of the paper is as follows: in section 2 we
present a simple example to motivate our line of thought,
and the basic operations of a currency portfolio are given.
In Section 3 and 4 classical and new results on random
matrix products are given. In Section 5 an algorithm for the
maximization of the top-Lyapunov exponent is presented. In
Section 6 the so-called state-dependent random products are
introduced and the initial steps for their analysis are given.
Finally, in Section 7 simulation results are presented.

II. T HE BASICS OF CURRENCY PORTFOLIOS

We start with a simple case of the model given in [4] and
[2]. Suppose that an agent may invest in a bond and in a
stock. For simplicity we assume that a unit of bond is worth
$1 all the time (i.e. interest rate is 0), the price of one unit
of stock at timet is denoted bySt, we haveS0 = 1 and
St+1 = Yt+1St where Yt is a strongly stationary ergodic
sequence of positive random variables with values close to
1.

His overall wealth at timet will be denoted byVt. An
investor seeking long-term profit wants to find a strategy that
maximizes the logarithmic growth rate, which is defined as
the limit of log Vt/t, if it exists. If theYt-s are i.i.d. then it is
known that an optimal strategy is to keep a fixed proportion
0 ≤ α ≤ 1 of the total wealth in the stock and the rest in the
bond. In other words therelative portfolio is kept constant.
In this case the dynamics of the wealth process is

Vt+1 = (1 − α)Vt + αVtYt = [1 − α + αYt]Vt,

and the logarithmic growth rate is

lim
t→∞

log Vt

t
= E log(αY1 + 1 − α), (1)

by the strong law of large numbers. To find the value of
α an algorithm has been proposed by Cover in [4] for the
case when the distribution of theYt is known. This algorithm
requires the the computation of an expectation in each step.



There seems to be very little known about optimal strate-
gies for more complex examples with stationary(Yt). How-
ever, the strategy of keeping a fixed proportion0 ≤ α ≤ 1
of the total wealth in the stock and the rest in the bond can
be also applied in the general case of(Yt).

A simple extension of Cover’s problem is obtained by
allowing proportional transaction costs. This is a much harder
problem, for which the optimal strategy has been found only
very recently. It is defined in terms of two fixed target relative
portfolios, sayαs < αb. If the relative value of the stock
falls below αs then we re-balance our portfolio to bring it
up exactly toαs. On the other hand if the relative value of the
bond exceedsαb then we re-balance our portfolio to bring it
down exactly toαb. We do nothing in the intermediate zone.

The objective of this paper is to develop a general method
for finding the log-optimal investment within a class of
parametric models. Our focus will be on currency markets,
which are markets with transaction costs.

Let us consider a currency portfolioφ = (φn) consisting
of k currencies. Thusφn = (φi,n), i = 1, .., k, whereφi,n

denotes the physical size of the portfolio held in thei-th
currency at timen. At any time n the exchange ratesare
collected in ak × k matrix Pn. For any fixedP = Pn

the entrypij gives the amount of currencyi that can be
purchased for 1 unit of currencyj. It is reasonable to suppose
pii = 1 for all i and

pijpjl ≤ pil

for all i, j, l.
A strategy at any timen for purchasing currencyj is a

vectorbj = (bjr), r = 1, . . . k such that

k
∑

j=1

bjr = 1, bjr ≥ 0.

It gives the proportion of volume of currencyr that is
converted into currencyj. The overall strategy is then
represented by a matrixB = (bij).

If the current portfolio isφ = (φ1, . . . , φk) then the
amount of currencyi at the next period will be

φ+

i =

k
∑

j=1

pijbijφj . (2)

Write for the matrix with elementsxij = pijbij

X = P � B.

Then the dynamics for the portfolio is

φn+1 = (Pn+1 � Bn+1)φn =: Xn+1φn

whereBn is the strategy selected at timen.
We consider now parametric strategiesB = (Bn(θ)),

which may depend on the past of(Pn). Assuming that
∞ < n < ∞, and thatB = (Bn(θ)) depends on the past of
(Pn) in a stationary manner, the process(Xn) will become
a strictly stationary process.

The simplest case is a constant strategyBn(θ) = B(θ)
for all n. The wealth or the value of the portfolio at timet

expressed in currencyi will be obtained from a scalar product
of the form

Vn,i =
k

∑

j=1

pij,nφn,j .

Then the growth rate of the wealth will be

λ = lim
n→∞

1

n
log Vn,i,

which, under appropriate initialization, is equal to the top-
Lyapunov exponent of(Xn).
Example 1.We include an adaptation of the example at the
beginning of this section to the case of currency markets.
(The case of a stock market with transaction costs can be
treated in much the same way.) LetPt be as in Example 1.
Suppose that the investor wishes to keep a fixed proportion
α of his or her wealth (computed in dollars) in dollars
and the rest in euros. Suppose that his current portfolio (in
currency units) is(φ1, φ2). We have to distinguish two cases,
depending on the direction of the transaction :
Case 1.If

φ1/α > p12φ2/(1 − α), (3)

then some wealth (say,β dollars) must be transferred from
dollars to euros. Thisβ should satisfy

φ1 − β

α
=

φ2p12 + p21βp12

1 − α
.

From here one can easily computeβ as well as the new
positionsφ+

1 , φ+

2 .
Case 2.If

φ1/α < p12φ2/(1 − α), (4)

then some units (say,γ) of euros must be converted into
dollars such that

φ1 + γp12

α
=

φ2p12 − γp12

1 − α
.

Putting together these two cases and takingp12 := p12,t

andp21 := p21,t we get a strictly stationary random transfor-
mationsXt(α) which is piecewise linear. One can check that
these transformations are linear if and only ifp12 = 1/p21,
i.e. if the market is frictionless.

With the notation at the beginning of this section we may
write

Xt(α) = Pt � Bt(α),

where

Bt(α) =

(

IAt
(1 − β/φ1) + IAC

t
IAC

t
γ/φ2

IAt
β/φ1 IAt

+ IAC
t
(1 − γ/φ2)

)

,

and

At = {(φ1, φ2) ∈ R
2 : φ1/α > φ2p12/(1 − α)}.



III. R ANDOM MATRIX -PRODUCTS. A SURVEY

In this section we describe some basic results on random
matrix products. LetX = (Xn), n = 0, 1, ... be a stationary
process ofk × k real-valued matrices over some probability
space(Ω,F ,P), satisfying

E log+ ||X0|| < ∞ (5)

where log+ x denotes the positive part oflog x. It is well-
known (see [6]) that under the above condition

λ = lim
n

1

n
E log ||Xn · Xn−1 · · ·X0|| (6)

exists. Hereλ = −∞ is allowed. The following result is
fundamental in multiplicative ergodic theory (see [6]):

Proposition 1: Assume that the processX = (Xn) de-
scribed above satisfies (5) and in addition it is ergodic. Then
P -almost surely

λ = lim
n

1

n
log ||Xn · Xn−1 · · ·X0||.

The numberλ, the exponential growth rate of the product
||Xn ·Xn−1... ·X0||, is called thetop Lyapunov-exponentof
the processX = (Xn). Now we can ask what happens if we
apply the above random matrix products to a fixed vector. An
answer is given by Oseledec’s theorem (see [11] and [9]):

Proposition 2: Under the conditions of Theorem 1 there
exists a subsetΩ′ ⊂ Ω of probability 1 and a set of
deterministic numbersλ = λ1 > λ2 > ... > λp ≥ −∞,
and a set of random subspaces of fixed dimension

R
k = V0 ⊃ V1(ω) ⊃ ... ⊃ Vp−1(ω) ⊃ Vp = 0,

with strict inclusion such that for allω ∈ Ω′ andv ∈ Vi(ω)\
Vi−1(ω) we have

lim
n

1

n
log |Xn(ω)Xn−1(ω) · · ·X1(ω)v| = λi.

The numbersλi are called Lyapunov-exponents. The theo-
rem above implies that forv /∈ V1(ω) we have

lim
n

1

n
log ‖Xn(ω)Xn−1(ω) · · ·X0(ω)v‖ = λ.

Following [9], let us consider the singular-value decom-
position of the random productXn ·Xn−1... ·X0, and write

Xn · Xn−1... · X0 = UnDnV T
n (7)

where Un, Vn are orthogonalk × k matrices, andDn =
diag(dni) is a diagonal matrix, withdni being the singular
values in decreasing order:dn1 ≥ ... ≥ dnk. In particular
dn1 = ||Xn · Xn−1... · X0||. The following extension of the
Fürstenberg-Kesten theorem holds:

Theorem 1:Assume that the processX = (Xn) described
above satisfies (5) and in addition it is ergodic. ThenP -
almost surely the following limit exists:

λi = lim
n

1

n
log dni. (8)

To characterize the asymptotic behavior of the orthogonal
matricesUn, V T

n let us decompose the set{1, ..., k} into
disjoint ”intervals” I1, .., Ir such thatfor i, i′ ∈ Im λi =
λi′ but for i ∈ Im, i′ ∈ Im′ with m 6= m′ λi > λi′ .

Let us now consider the corresponding decomposition of the
column-indices ofV T

n , V T
n = (V T

n1, ..., V
T
nr).

Proposition 3: Assume that the processX = (Xn) de-
scribed above satisfies (5) and, in addition, it is ergodic.
Then the linear subspaces spanned by the column-vectors
of V T

nm, m = 1, ..., r convergeP -almost surely in the gap-
metric whenn tends to∞.

Assume now thatλ1 > λ2. Then the above result implies
that the first column ofV T

n , denoted byvT
n1 convergesP -

almost surely to some limit that will be denoted byv∗T
1

IV. RANDOM MATRIX PRODUCTS. NEW RESULTS

A theoretical expression forλ is given in [6] as follows.
Let us define the normalized products

Zk = Xk...X1/||Xk...X1|| = πm(Xk...X1)

where we setπm(A) = A/||A|| for a non-singular matrix
A.

A constructive result for computingλ is available if there
is a gap between the first and second Lyapunov-exponent,
i.e. if the co-dimension ofV1 is 1.

Proposition 4: Assume that the processX = (Xn) de-
scribed above satisfies (5), it is ergodic, andλ1 > λ2. Then
for someε > 0 we have forω ∈ Ω′

πm(Xk...X1) = u∗

k(v∗1)T + O(e−εk), (9)

where(u∗

k) is a strictly stationary sequence of unit vectors,
v∗1 is a fixed random unit vector, and the error term is a
random variable bounded byC(ω)e−εk with some finite
C(ω).

Let us now take random vectorξ ∈ R
k such that

ξ /∈ V1(ω) almost surely, say, forω ∈ Ω”. E.g. takeξ
independently of(Xn), having uniform distribution over
Sk = {v ∈ R

k, |v| = 1}. RedefineΩ′ as Ω′ ∩ Ω”. Assume
that λ > −∞. ThenXn · Xn−1 · · ·X1ξ 6= 0 for all n and
ω ∈ Ω′. Let us define anRk-valued processz = (zn), n ≥ 0
as follows:z0 = ξ/|ξ|, and forn ≥ 1

zn =
Xn · Xn−1 · · ·X1ξ

|Xn · Xn−1 · · ·X1ξ|
.

Obviously,z = (zn) can be defined recursively as follows:

zn+1 =
Xn+1zn

|Xn+1zn|
= Πv(Xn+1zn) (10)

with initial condition z0 = ξ/|ξ|, where now

Πv(y) = y/|y|.

It is easily seen that

log |Xn · Xn−1 · · ·X1ξ| =

n−1
∑

k=0

log |Xk+1zk| + log |ξ|.

Thus Theorem 1 implies

λ = lim
n

1

n

n−1
∑

k=0

log |Xk+1zk|, (11)



for ω ∈ Ω′.
The following result immediately follows from 4, but in

fact, it is the statement below which should be proved first
and then one can deduce Theorem 4.

Theorem 2:Assume that the processX = (Xn) described
above satisfies (5) and in addition it is ergodic, andλ1 > λ2.
Let ξ /∈ V1(ω) almost surely, say for,ω ∈ Ω′, whereΩ′ was
defined above. Then for someε > 0 we have forω ∈ Ω′

πm(Xk...X1ξ) = u∗

k + O(e−εk). (12)
The above result indicates that for all initial conditionsξ /∈
V1(ω) the process(Xn, zn) is asymptotically stationary. A
stationary initialization can be constructed as follows:

Theorem 3:Assume that the processX = (Xn) satisfies
(5), it is ergodic, andλ1 > λ2. Let V1 have co-dimension 1.
Let ξ be uniformly distributed over the unit sphere, let it be
independent from(Xn) and define

z∗0 = lim
n

Πv(X0X−1 . . . X−nξ).

Thenz∗0 is a stationary initialization for (10), i.e. defining

z∗n+1 = Πv(Xn+1z
∗

n), n ≥ 0,

the process(Xn, z∗n) is stationary. Moreover, we have

E log |X1z
∗

0 | = λ1.
The fact that the process(zn) forgets its initial condition
exponentially fast can be expressed also in an infinitesimal
form:

Theorem 4:Assume that the processX = (Xn) satisfies
(5), it is ergodic, andλ1 > λ2. Assume thatξ = z0(ω) /∈
V1(ω) for ω ∈ Ω′. Then

‖
∂zn

∂ξ
‖ ≤ C(ω, ξ)e−γn

whereC(ω, ξ) is finite andγ > 0 is constant.

V. M AXIMIZATION OF THE TOP-LYAPUNOV EXPONENT

Assume now that the matricesXn, n = 0, 1... depend on
a common parameter, sayθ, whereθ ∈ D ⊂ R

p, andD is
an open domain.θ is considered as a control-parameter, and
the top Lyapunov-exponentλ = λ(θ) will be a function of
θ, and will be called acontrolled Lyapunov-exponent. The
problem that we consider is:

max
θ

λ(θ). (13)

To compute the gradient ofλ with respect toθ consider
first a pair of smooth curves(X(t), z(t)), t ≥ 0 in R

k×k

and R
k, respectively, withX(0) = X, z(0) = z, such that

Xz 6= 0. Then it is easy to see that

d

dt
log |X(t)z(t)| =

1

|Xz|2
(zT XT Xż + zT XT Ẋz).

A shorthand notation will be

d

dt
log |X(t)z(t)| = Ḣ(X, z, Ẋ, ż).

Let us now consider the case whenXn = Xn(θ) is a
smooth function ofθ for θ ∈ D ⊂ R

p, whereD is an open
domain.

Differentiating thek-th term of (11) and setting

Hi(X, z, Xθi
, zθi

) = Ḣ(X, z, Xθi
, zθi

)

H(X, z, Xθ, zθ) = (H1(. . . ), . . . , Hp(. . . )) (14)

we get formally the following expression for the gradient of
λ, denoted byλθ:

λθ = lim
n

1

n

n−1
∑

k=0

H(Xk+1, zk, Xθ,k+1, zθ,k). (15)

It is assumed that the partial derivativesXθi,k+1 are
availableexplicitly. On the other hand the partial derivatives
zθik will be computed recursively, taking into account the
recursive definition ofzn given in (10). For this purpose
consider the mapping ofRk×k × R

k into R
k×k defined by

f(X, z) = Xz/|Xz|

assuming thatXz 6= 0. Consider first a pair of smooth
curves (X(t), z(t)), t ≥ 0 in R

k×k and R
k, respectively,

with X(0) = X, z(0) = z. Then it is easy to see that

d

dt
f(X(t), z(t)) = fXẊ + fz ż = g(X, z, Ẋ, ż),

where

fXẊ =

(

Ẋ − X
tr (ẊzzT XT ))

|Xz|2

)

z

|Xz|
,

and

fz ż =
X

|Xz|

(

I − zzT XT X
1

|Xz|2

)

ż.

Applying the above notations we can express the deriva-
tives zθi,n(θ) in a recursive manner as follows:

zθi,n+1 = g(Xn+1, zn, Xθi,n+1, zθi,n).

The iterative scheme. Assume, that at timen we have al-
ready computedθn and alsoXn, Xθ,n, zn andzθi,n. Observe
Xn+1 = Xn+1(θn) andXθ,n+1 = Xθ,n+1(θn). Then set

zn+1 = Xn+1zn/|Xn+1zn|

zθin+1 = g(Xn+1, zn, Xθi,n+1, zθi,n)

Hn = H(Xn+1, Xθ,n+1, zn, zθ,n)

θn+1 = θn +
1

n
Hn. (16)

While the above method works well in simulation, its
convergence analysis is yet incomplete. The algorithm for-
mally falls within the class of recursive estimation methods
described in [3] ifX is a Markov-process, e.g. if(Pn) is i.i.d,
but the application of the results of [3] does not seem to be
straightforward. In particular, the verification of Conditions
A4 and A5 of Section 1.2 Part II of [3] seems to be hard.



VI. STATE DEPENDENT RANDOM PRODUCTS

Consider now the problem when the random matrixX can
be written in the form

Xn = X(Pn, φn−1),

where X(P, φ) is a fixed function ofP and φ, which is
continuous inφ, (Pn) is an strictly stationary ergodic random
matrix-process satisfying (5), andφn ∈ R

p is a sequence of
vectors computed recursively by

φn+1 = X(Pn+1, φn)φn.

A standard example we have in mind is

X = P � B(φ)

where B(φ) is a redistribution matrix depending on the
current portfolioφ. Assuming that all elements ofPn are
positive for alln, it follows that for any non-negative, non-
zero initial portfolio φ0 the portfolios φn will be non-
negative and non-zero for alln. Thus we can define the
normalized portfolio sequence

zn = φn/|φn|.

Note thatB(φ) is scale-invariant, thus we can writeB(φn) =
B(zn). This will be a general assumption for state-dependent
products, i.e. we assume that

X(P, φ) = X(P, z) with z = φ/|φ|. (17)

The processzn satisfies the usual recursion

zn+1 =
Xn+1zn

|Xn+1zn|
= Πv(X(Pn+1, zn)zn) (18)

with initial conditionz0 = ξ/|ξ|. The the growth-rate can be
expressed using the usual identity

log |Xn · Xn−1 · · ·X1ξ| =

n−1
∑

k=0

log |Xk+1zk| + log |ξ|.

Note, however, that we can not directly apply the results
of the previous section, since the sequence of matrices
X(Pn+1, φn) is not necessarily a stationary sequence. How-
ever, by a basic result of Has’minskii (see [8]) we get:

Proposition 5: Let Xn = Pn � B(φn−1), where the
process(Pn) is stationary, ergodic and satisfies

E log+ ||P0|| < ∞,

and B(φ) is bounded and continuous inφ. Then there
exists an initializationz∗0 such that the resulting sequence
(Pn+1, z

∗

n) defined by (18) is stationary.
Since(X∗

n, z∗n−1) is stationary, ergodic we have

lim
n

1

n
log |X∗

n · X∗

n−1 · · ·X
∗

1 z∗0 | = λ′ = Elog |X∗

1z∗0 |

almost surely. A key open problem is to find conditions under
which the support of the marginal distribution ofz∗0 , say
µ(dξ) is the full sphere.

VII. S IMULATION RESULTS

We take the model of Example 1 in Section 2 and suppose
that p12(t), p21(t) satisfy

p12(t + 1) := p12(t)ξt+1(1 − dεt+1),

p21(t + 1) :=
1

p12(t)ξt+1

(1 − dεt+1),

whereξt are independent and identically distributed random
variables with distribution

P (ξt = c) = P (ξt = 1/c) = 1/2,

and (εt) are independent and uniformly distributed random
variables on[0, 1]. Herec > 1 and0 ≤ d < 1 are arbitrary
constants. The price evolution is supposed to be driven by
ξt while theεt are responsible for the marge of a dealer, i.e.
they are thought to represent transaction costs.

We remark that if we choosed = 0 (no transaction costs)
then the model reduces to Example 1 of Section 2. Choosing
c := 2 we know from the Example on p. 370 of [4] that the
optimal value ofα is α∗ = 0.5 and this gives an asymptotic
logarithmic growth rateλ(α∗) = 0.0626.

In our simulations we tookc := 2, d := 0.05 and found
that in this case the optimal value ofα is α∗ = 0.54. The
corresponding growth rateλ(α∗) decreases to0.04861 due
to the presence of transaction costs. The growth rateλ as a
function of α is shown on Figure 1, in both cases. The thin
line corresponds to the no-transaction case, while thick line
shows the result when 5% transaction cost is present. .

Figure 2 shows the convergence of our algorithm for the
model with the above parameters, starting fromα0 := 0.3.
The horizontal axis shows the number of iteration onα. It
is worth noting that about30 iterationsalready gave a fairly
good approximation of the optimal value.

We may conclude that the algorithm converges fairly fast
in a model class which could not be treated by previous
methods.
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