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Abstract—P. Algoet and T. Cover characterized log-optimal for certain models with transaction costs, though withaut a
portfolios in a stationary market without friction. There i s no explicit construction or algorithm.
analogous result for markets with friction, of which a currency The present paper provides a framework which is pertinent
market is a typical example. In this paper we restrict oursees to a wide range of market models with or without transaction
to simple static strategies. The problem is then reduced tohe 9 . - : !
ana|ysis of products of random matricesl the top_Lyapunov costs. Pal’ame'[l’lzed fam'“e&)f Investment Stl‘ategles are
exponent giving the growth rate. New insights to products of considered and an algorithm for maximizing the logarithmic
random matrices will be given and an algorithm for optimizing growth rate of portfolios is presented. The results apply
top-Lyapunov exponents will be presented together with som  \yhenever the portfolio position at time+ 1 is computable

key steps of its analysis. Simulation results will also be gén. . o . .
Let X = (X,,) be a stationary process ofk x k real-valued from that of timet by multiplication with a random matrix

matrices, depending on some vector-valued parametet € R?, X:(0), whered is a parameter for a given class of strategies.
satisfying Elog™ || Xo(0)|| < oo for all 9. The top-Lyapunov  The sequenc&(6) is supposed to be strictly stationary for

exponent of X is defined as eachd. An algorithm will be proposed to maximize the top-
Lyapunov exponent with respect o
The structure of the paper is as follows: in section 2 we
We develop an iterative procedure for the optimization of present a simple example to motivate our line of thought,
A(0). In the case whenX is a Markov-process, the proposed and the basic operations of a currency portfolio are given.
procedure is formally within the class defined in [3]. Howeve |4 section 3 and 4 classical and new results on random

the analysis of the general case requires different techniges: . . . .
an ODE method defined in terms of asymptotically stationary matrix products are given. In Section 5 an algorithm for the

random fields. The verification of some standard technical Maximization of the top-Lyapunov exponent is presented. In
conditions, such as a uniform law of large numbers for the Section 6 the so-called state-dependent random produets ar

error process is hard. For this we need some auxiliary resu#t  introduced and the initial steps for their analysis are give
which are interesting in their own right. Finally, in Section 7 simulation results are presented.

A(0) = Tim 2 E log [| X - Xo_1... - Xol|.
n n

|. INTRODUCTION II. THE BASICS OF CURRENCY PORTFOLIOS

We consider the problem of maximizing the long-term e start with a simple case of the model given in [4] and
profit of an investor who is trading in a stock or currency2]. Suppose that an agent may invest in a bond and in a
market. Instead of maximizing the expected value of shorktock. For simplicity we assume that a unit of bond is worth
term returns the problem is to optimize the growth rate of; all the time (i.e. interest rate is 0), the price of one unit
the portfolio. This problem was studied in [4] for a simpleof stock at timet is denoted byS,, we haveS, = 1 and
stock market model where daily returns were supposedto e | — y;,, S, whereY; is a strongly stationary ergodic
independent and identically distributed. An algorithm wagequence of positive random variables with values close to
presented to determine the optimal constant proportion gf
wealth held in the assets, called the relative portfolio. A His overall wealth at time will be denoted byV;. An
shortcoming of this algorithm is that the distribution odekt  investor seeking long-term profit wants to find a strategy tha
returns should be known in advance. maximizes the logarithmic growth rate, which is defined as

This work has then been generalized in various wayshe limit of log V; /t, if it exists. If theY;-s are i.i.d. then it is
Algoet and Cover [2] proved the existence and asymptotignown that an optimal strategy is to keep a fixed proportion
optimality of “logoptimal” portfolios for stationary ergc () < o < 1 of the total wealth in the stock and the rest in the
stock returns, see [2], Algoet gave universal schemes grodipond. In other words theelative portfoliois kept constant.

ing an asymptotically optimal growth rate without a priori|n this case the dynamics of the wealth process is
knowledge of the stock’s distribution, see [1] and also [5]

and [7]. Existence of optimal portfolios was shown in [10] Vipr = (1 =)V +aliY = [1 —a+ a¥i]V;,
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There seems to be very little known about optimal strateexpressed in currenaywill be obtained from a scalar product
gies for more complex examples with stationg@Fy). How-  of the form
ever, the strategy of keeping a fixed proportivor o < 1 k
of the total wealth in the stock and the rest in the bond can Vi = Zpij,n¢n,j-
be also applied in the general case(®f). j=1
A _S|mple ext(_ansmn of Co_vers problem is obtained byThen the growth rate of the wealth will be
allowing proportional transaction costs. This is a muctdbar
problem, for which the optimal strategy has been found only 1
very recently. It is defined in terms of two fixed target relati A= nhj{}o n log Vi i
portfolios, sayas < ay. If the relative value of the stock
falls below o, then we re-balance our portfolio to bring it Which, under appropriate initialization, is equal to the-to
up exactly ton,. On the other hand if the relative value of thelLyapunov exponent ofXy,).
bond exceeds;, then we re-balance our portfolio to bring it Example 1.We include an adaptation of the example at the
down exactly tony,. We do nothing in the intermediate zone.beginning of this section to the case of currency markets.
The objective of this paper is to develop a general methdd he case of a stock market with transaction costs can be
for finding the log-optimal investment within a class oftreated in much the same way.) LEt be as in Example 1.
parametric models. Our focus will be on currency market$uppose that the investor wishes to keep a fixed proportion
which are markets with transaction costs. a of his or her wealth (computed in dollars) in dollars
Let us consider a currency portfolip= (¢,,) consisting and the rest in euros. Suppose that his current portfolio (in
of k currencies. Thu®,, = (¢;,,), i = 1,..,k, whereg, ,, ~ currency units) ig¢1, ®2). We have to distinguish two cases,
denotes the physical size of the portfolio held in thth  depending on the direction of the transaction :
currency at timen. At any time n the exchange ratesmre Case L.If
collected in al_c x k matrix P,. For any fixedP = P, b1/ > prada/(l — @), A3)
the entryp;; gives the amount of currency that can be

purchased for 1 unit of currengy It is reasonable to supposethen some wealth (sayi dollars) must be transferred from

pi = 1 for all i and dollars to euros. Thig should satisfy
PijPjt < P ¢ — B _ papr2 + p21fpia
for all 4, 5, 1. « 1-a '

A strategy at any time: for purchasing currencyj is a

vectorb, — (b;,), r = 1,...k such that From here one can easily computeas well as the new

positionse;, ¢ .
Case 2.If

k
bir =1, bi. > 0.
j; ! ! $1/a < praga/(1 —a), 4)

It gives the proportion of volume of currency that is  then some units (sayy) of euros must be converted into
converted into currencyj. The overall strategy is then yqjiars such that

represented by a matri® = (b;;).

If the current portfolio is¢p = (¢1,...,6%) then the ¢1+ P12 _ Pap12 — VP12
amount of currency at the next period will be @ l—a
N k Putting together these two cases and taking := pi2
¢ = Zpij bij¢;- @) andps; := po21+ We get a strictly stationary random transfor-
=1 mationsX;(«) which is piecewise linear. One can check that
Write for the matrix with elements;; = p;;b;; these transformations are linear if and onlyif, = 1/ps1,

i.e. if the market is frictionless.

X=POB. _ _ N . :
With the notation at the beginning of this section we may
Then the dynamics for the portfolio is write
¢n+l = (Pn+l © Bn+l)¢n = n+1¢n Xt(a) =P 0o Bt(a)a

where B,, is the strategy selected at time

We consider now parametric strategiés = (B, (9)),
which may depend on the past ¢f,). Assuming that Ia, (1= B/d1) + Ly Tpcy/ b2
oo < n < oo, and thatB = (B,,(#)) depends on the past of o(e) = < 14,8/¢1 Ia, +1Tpc(1— ~y/¢2)> '
(P,) in a stationary manner, the procgss,,) will become '
a strictly stationary process. and

The simplest case is a constant stratégyy(6) = B(0)
for all n. The wealth or the value of the portfolio at tinte A ={(¢1,¢2) €R*: ¢1/a > dopra/ (1 — )}

where



[1l. RANDOM MATRIX -PRODUCTS A SURVEY Let us now consider the corresponding decomposition of the
. . . . i i T T _ T T
In this section we describe some basic results on randggRlumn-indices ofV,", V. = (Vi,y, ..., V,,,.).

matrix products. LeX' = (X,,),n = 0,1,... be a stationary  proposition 3: Assume that the proces¥ = (X,,) de-
process oft x k real-valued matrices over some probabilityscrined above satisfies (5) and, in addition, it is ergodic.

space(Q2, 7, P), satisfying Then the linear subspaces spanned by the column-vectors
Elog™ || Xo|| < oo (5) of Vn?;n,m = 1,...,7 convergeP-almost surely in the gap-
N - _ metric whenn tends tooco.

wherelog™ = denotes the positive part dbg z. It is well- Assume now thah; > \,. Then the above result implies
known (see [6]) that under the above condition that the first column of’”, denoted byv?, convergesP-

1 almost surely to some limit that will be denoted by"

A =lim ~Elog|| X, - Xp_1 - Xol| (6)
n o n

) ] ] ) IV. RANDOM MATRIX PRODUCTS. NEW RESULTS
exists. Hereh = —oo is allowed. The following result is

fundamental in multiplicative ergodic theory (see [6]):

Proposition 1: Assume that the process = (X,,) de-
scribed above satisfies (5) and in addition it is ergodic.nThe = Xpoo X1 /|| X X1 || = o (X X1)
P-almost surely

A theoretical expression fak is given in [6] as follows.
Let us define the normalized products

1 where we setr,,,(A) = A/||A|| for a non-singular matrix
A =lim —log || X, - X1 -+ Xol]- A.

The number), the gxponemiad growth rate of the product A constructive result for computing is available if there

| X, - X0_1... - Xol|, is called thetop Lyapunov-exponeot is a gap between the first and second Lyapunov-exponent,

the processt = (X,,). Now we can ask what happens if wel.€. if the co-dimension o/ is 1.

apply the above random matrix products to a fixed vector. An Proposition 4: Assume that the proces¥ = (X,,) de-

answer is given by Oseledec's theorem (see [11] and [9]):q¢riheq anhove satisfies (5), it is ergodic, and> Ao. Then
Proposition 2: Under the conditions of Theorem 1 therefor somee > 0 we have forw € Q'

exists a subsef) C Q of probability 1 and a set of
deterministic numbers. = A\; > Ay > ... > \, > —o0, T (Xp. X1) = uj(0])" + O(e™), 9)

and a set of random subspaces of fixed dimension : . . .
where (u}) is a strictly stationary sequence of unit vectors,

RF =V, D Vi(w) D ... D Vpq(w) DV, =0, v is a fixed random unit vector, and the error term is a

) Tk -
with strict inclusion such that for alb € Q" andv € V(w)\ random variable bounded by (w)e with some finite

V; e have Cw).
i-1(w) w v Let us now take random vectof € R such that
lim110g|Xn(w)Xn_1(w)---Xl(w)v| =\ ¢ ¢ Vi(w) almost surely, say, fow € Q. E.g. take¢

independently of(X,,), having uniform distribution over
Sk = {v € R* |v| = 1}. Redefine®’ asQ’ N Q”. Assume
that A > —co. ThenX,, - X,,_1--- X1£ # 0 for all n and

The nurﬁbgrsxi are called Lyapunov-exponents. The theo
rem above implies that for ¢ V;(w) we have

.1 w € . Let us define afR*-valued process = (z,),n > 0

lim — log || Xy, (w) X p— - X =\ o=

a8 1n (w) 1(w) o(w)el as follows:zo = £/|¢|, and forn > 1

Following [9], let us consider the singular-value decom- X X1 X1€
position of the random product,, - X,,_1... - Xy, and write Zn = X, X1 Xif|
— T . : .
Xn - Xp—1...- Xo = UnDnVy @) Obviously,z = (z,) can be defined recursively as follows:

where U,,,V,, are orthogonak x k matrices, andD,, = Xnt12n
diag(dy;) is a diagonal matrix, withi,,; being the singular Fntl = 1 X120 = I (Xnt120) (10)

values in decreasing orded;,; > ... > d,k. In particular o N
o1 = || Xy - Xn_1... - Xo|| The following extension of the With initial condition zo = &/[¢|, where now
Furstenberg-Kesten theorem holds: () = y/|y|-

Theorem 1:Assume that the process = (X,,) described

Iti il that
above satisfies (5) and in addition it is ergodic. Then IS easlly seen tha

almost surely the following limit exists: n!
) 10g | Xy, - X1+ X1&| =Y log | Xpy12k] + log [€].
A = lim — 10g dp;. (8) k=0

To characterize the as;rllmgtotic behavior of the orthogondlhus Theorem 1 implies
matricesU,,, V,I' let us decompose the sét,....k} into o1
disjoint "intervals” I, .., I, such thatfor i, € I, A\; = \ — Jim ~ Zlog|Xk+1Zk|, (11)
Ay but for ¢ € Im,il € I, with m # m N > . n nk:O



for w € V. Let us now consider the case wheéf, = X, (0) is a
The following result immediately follows from 4, but in smooth function o) for 6 € D C RP, whereD is an open

fact, it is the statement below which should be proved firgfiomain.

and then one can deduce Theorem 4. Differentiating thek-th term of (11) and setting

Theorem 2:Assume that the process = (X,,) described Hi(X,z Xo.,20,) = H(X, 2 Xo,,z0,)
above satisfies (5) and in addition it is ergodic, and> \o. S s

Let ¢ ¢ V4 (w) almost surely, say for, € €', whereQ' was H(X,2,Xq,20) = (Hi(--.),-. Hp(...)) (14)

defined above. Then for some> 0 we have forw € ¢/ we get formally the following expression for the gradient of
(X X16) = uf + O(eF). (12) A denoted byls:

The above result indicates that for all initial conditichg =

V1(w) the processg X,, z,) is asymptotically stationary. A Mg = lim — Z H(Xkt1, 2k X0 k115 20.1)- (15)

stationary initialization can be constructed as follows: [y

Theorem 3:Assume that the proces$ = (X,,) satisfies It is assumed that the partial derivativesy, .. are

(L5e)t glt tl)seeurgi(f)c?rlfr;Isrzi(ij;%[ri)u)t\éaL:\:e‘ftrr:eavuenﬁos-s;:g?gsllgtnitlbeavailableeXplicmy' On the other hand the partial derivatives
independent fron{x,,) and define ' 29, Will be computed recursively, taking into account the

recursive definition ofz, given in (10). For this purpose

28 = lm I, (XoX_1 ... X_n&). consider the mapping @&*** x R* into R*** defined by
Thenz; is a stationary initialization for (10), i.e. defining f(X,2) = Xz2/|X~|
2 = (Xpi12), n>0, assuming thatXz # 0. Consider first a pair of smooth
_ _ curves (X (t),z(t)),t > 0 in R¥** and R¥, respectively,
the process X,,, z;) is stationary. Moreover, we have with X (0) = X, z(0) = 2. Then it is easy to see that
Elog| X125 = A1 d B - . o
The fact that the procesg,,) forgets its initial condition Ef(X(t)’ 2(t) = fxX + fo2 = 9(X, 2, X, 2),
exponentially fast can be expressed also in an infinitesimal
form: where
Theorem 4:Assume that the process = (X,,) satisfies ) ) tr (XzzTXT)) Py
(5), it is ergodic, and\; > \,. Assume thatf = z(w) ¢ fxX=|X-X X 2|2 1Xz|’
V1(w) for w e . Then
9 and
Zn —n X 1
=7 < Clw,§e™ = = (17— 2TXTX 3
e f22 X7 zz X2 Z

whereC'(w, £) is finite andy > 0 is constant. Applying the above notations we can express the deriva-

V. MAXIMIZATION OF THE TOP-LYAPUNOV EXPONENT V€S 26,.n(0) in @ recursive manner as follows:

Assume now that the matrices,,,n = 0, 1... depend on 20, n+1 = 9(Xnt1, 2n, X0;,n415 20,.n)-
a common parameter, s@y wheref € D C R?, and D is
an open domairt is considered as a control-parameter, and The iterative schemeissume, that at time we have al-
the top Lyapunov-exponent = A(6) will be a function of ready computed, and alsaX,,, Xo,,, z, andzy, . Observe
9, and will be called acontrolled Lyapunov-exponent. The Xn+1 = Xn11(6s) and Xg n11 = Xg n41(0,). Then set
problem that we consider is:

Zn+l = Xn+1zn/|Xn+lzn|
m;mx /\(9) (13) Z20,n+1 — g(XnJrh Zn, X9i,n+1a Zﬁi,n)
To compute the gradient of with respect tod consider Hy = H{Xni1, Xont1, 20, 20,n)
first a pair of smooth curveéX (t), z(t)),t > 0 in RF*F 01 = 0O+ iHn (16)
andR*, respectively, withX (0) = X, z(0) = z, such that n
Xz #0. Then it is easy to see that While the above method works well in simulation, its
d 1 S S convergence a_nalysis is yet incomp_lete. T_he a_llgorithm for-
7 log |X(t)z(t)] = W(z X Xz4+2' X' X2). mally falls within the class of recursive estimation metiod
described in [3] ifX is a Markov-process, e.g. () is i.i.d,
A shorthand notation will be but the application of the results of [3] does not seem to be

d ) . straightforward. In particular, the verification of Condits
= log [ X)) = H(X, 2, X, 2). A4 and A5 of Section 1.2 Part Il of [3] seems to be hard.



VI. STATE DEPENDENT RANDOM PRODUCTS VIl. SIMULATION RESULTS
Consider now the problem when the random malfixan We take the model of Example 1 in Section 2 and suppose

be written in the form thatpi2(t), p21(t) satisfy
Xn = X(Py, dn-1), pr2(t +1) == pr2(t)&11(1 — deggr),
where X (P, ¢) is a fixed function of P and ¢, which is pa(t+1):=—————(1—depy1),
p12(t)&e41

continuous inp, (P,,) is an strictly stationary ergodic random
matrix-process satisfying (5), ant), € R? is a sequence of where¢; are independent and identically distributed random

vectors computed recursively by variables with distribution
Gnt1 = X(Pn+17¢n)¢n- P(gt =c)= P(gt = 1/0) = 1/2’
A standard example we have in mind is and (e;) are independent and uniformly distributed random
variables on[0, 1]. Herec > 1 and0 < d < 1 are arbitrary
X =P o B(9) constants. The price evolution is supposed to be driven by

& while thee, are responsible for the marge of a dealer, i.e.
they are thought to represent transaction costs.

We remark that if we choosé = 0 (no transaction costs)
then the model reduces to Example 1 of Section 2. Choosing
¢ := 2 we know from the Example on p. 370 of [4] that the
optimal value of« is o* = 0.5 and this gives an asymptotic
logarithmic growth rate\(a*) = 0.0626.

where B(¢) is a redistribution matrix depending on the
current portfoliog. Assuming that all elements dp,, are
positive for alln, it follows that for any non-negative, non-
zero initial portfolio ¢y the portfolios ¢,, will be non-
negative and non-zero for at. Thus we can define the
normalized portfolio sequence

Zn = On/|onl. In our simulations we took := 2, d := 0.05 and found
) ) ) . that in this case the optimal value afis a* = 0.54. The
Note thatB(¢) is scale-invariant, thus we can writ&(¢n) = corresponding growth raté(a*) decreases t0.04861 due
B(zy). Thi_s will be a general assumption for state-dependegy ine presence of transaction costs. The growth Xats a
products, i.e. we assume that function of « is shown on Figure 1, in both cases. The thin
X(P,¢) = X(P,z) with == d/|d|. 17) line corresponds to the no—transacti_on case, while thio li
shows the result when 5% transaction cost is present. .
The processg,, satisfies the usual recursion Figure 2 shows the convergence of our algorithm for the
Xovi12m model with the above parameters, starting fram:= 0.3.

X o= IL, (X (Pri1, 2n)%n) (18) The horizontal axis shows the number of iterationanit
| Xnt12n] is worth noting that abowi0 iterationsalready gave a fairly

with initial condition zo = £/¢|. The the growth-rate can be good approximation of the optimal value.

Zn+1 =

expressed using the usual identity We may conclude that the algorithm converges fairly fast
- in a model class which could not be treated by previous
methods.
10g | Xy, - X1+ X1&| =Y log | Xpy12k] + log [€].
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