
Proceedings of the 2002 IEEE 
International Conference on Robotics 8 Automation 

Washington, DC * May 2002 

Improbability Filtering for Rejecting False Positives 
Brett Browning, Michael Bowling, Manuela Veloso 

School of Computer Science, Carnegie Mellon University 
{brettb, mhb, mmv}@cs.cmu.edu 

Abstract-In this paper we describe a novel approach, called 
improbability filtering, to rejecting false-positive observations 
from degrading the tracking performance of an Extended 
Kalman-Bucy fdter. False-positives, incorrect observations 
reported with a high confidence, are a form of non-Gaussian 
white noise and therefore degrade the tracking performance of 
an Extended Kalman-Bucy Filter. Improbability fdtering 
removes false-positives by rejecting low likelihood observations 
as determined by the model estimates. It offers a computationally 
fast and robust method for removing this form of white noise 
without the need for a more advanced filter. 

We describe an application of the improbability fdter 
approach to Extendend Kalman-Bucy filters for tracking ten 
robots and a ball moving at speeds approaching 5 ms” both 
accurately and reliably in real-time based on the observations of 
a single color camera. The environment is highly dynamic and 
non-linear, as exemplified by the motion of the ball which varies 
from free rolling under friction, to rolling up 45” inclined walls 
at the boundary, to being manipulated in unpredictable ways by 
a mechanical apparatus on each robot. The sensing apparatus, a 
camera and color blob tracking algorithms, suffers from the 
usual noise, latency,intermittency, as well as from false-positives 
caused by the misidentification of an observed object with a non- 
negligible likelihood. 

I. INTRODUCTION 
HE Kalman-Bucy filter is a widely used algorithm for 
tracking observable parameters in linear systems under 
the presence of stochastic noise [4, 51. In short, it has 

been described as the optimal tracking algorithm [9] for 
parameters in the presence of Gaussian noise. The Extended 
Kalman-Bucy Filter (EKBF) extends the algorithm to include 
non-linear systems whereby the model is linearised about the 
state estimate [l 11. 

The filter algorithm is based on the fundamental 
assumption that the parameters of the observations and 
dynamics have a Gaussian probability distribution. In other 
words, any noise components in the system are Gaussian in 
nature. Although noise is commonly not Gaussian in nature, 
with suitably chosen parameters, the filter is often robust to 
moderate violations of the Gaussian noise assumption. 

This paper describes an extension of the EKBF algorithm 
to remove white noise, in the form of false-positive 
observations, from degrading the performance of the filter. 
False-positives, where incorrect observations are reported 
with high confidence, violate the Gaussian assumption 
underlying the EKBF. Modifying the EKBF parameters can 
compensate for false-positives but at the expense of tracking 
ability. We describe a new approach, called Improbability 
Filtering (ImpF), developed to overcome this problem. ImpF 
uses the state and co-variance estimates of the EKBF to filter 
out unlikely observations, thereby removing false-positives 
and enabling the EKBF to track reliably. We describe an 
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application of this algorithm to small size robot soccer where 
the tracking module must reliably track ten fast moving robots 
and the ball at the camera frame rate (-6OHz). The highly 
dynamic nature of the environment, the presence of false- 
positives caused by misidentifications, and the need for fast 
computations provide an ideal testing grounds for ImpF. 

The following section briefly describes the robot soccer 
application that is the basis for the tracking system. Section 
I11 describes the EKBF‘s that we implemented to track 
different objects and section IV describes the improbability 
filter algorithm, its approach and implementation along with 
the results of its performance. In section V, we discuss these 
results and conjecture where the improbability filter could be 
used in other applications. Section VI concludes the paper. 

n. TRACKING IN ROBOT SOCCER: THE PROBLEM 

RoboCup robot soccer is an exciting and challenging robot 
domain aimed at advancing robot intelligence and control 171. 
This paper focuses on the tracking module implementation in 
a s m a l l  size robot team where two teams of five robots 
compete autonomously in a game of soccer with an orange 
golf ball on a carpeted, ping-pong table-sized field with 45” 
inclined walls along the boundaries [l]. Figure 1 shows the 
system structure with an illustration of two robots from either 
team. 

I I 

Figure 1. Each robot is observed by the camera and tracked 
via colored markers on top of its cover. 

Each robot receives radio commands from an off-field PC. 
The PC generates the commands based on its strategic and 
tactical algorithms, which in turn derive information about the 
world from an overhead camera. The overhead camera 
provides interlaced fields at a rate of 60Hz. Each field is 
processed using the CMVision color recognition system [2] 
and the results are reported along with an estimated 
confidence measure. Thus, each object is reported as: 

+ (xybs, yj”” ,qb*, cj”.) 
Here CbS is the confidence of the reported observation over 

the range 0.0 to 1.0, j refers to the object being tracked be it 
one of the ten robots or the ball. For the opponent robots and 
the ball the orientation gbS has no meaning. 
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Vision sensing suffers from a number of the usual problems 
associate with sensors. Data is noisy, intermittent, and has 
significant latency. Moreover, robot covers have patterns for 
individual robot identification which when viewed by the 
overhead camera are occasionally misidentified with one 
another causing the reported robot locations to jump around 
between frames. Misidentifications, or false-positives, act as a 
white noise source on top of the usual Gaussian noise in the 
sensing stage. Such white noise causes havoc with many 
tracking algorithms due to the deviations from the Gaussian 
noise pattem that they cause. 

To accurately control the robots at speed, the tracking 
system needs to account for the deficiencies in the vision 
output. Additionally, it needs to derive velocity information 
that cannot directly observe. Finally, it needs to provide 
facilities to predict, with appropriate confidence measures, 
where the objects on the field will be at some given time in 
the future. Although there are many statistical tracking 
algorithms that have been developed, the Kalman-Bucy filter 
has proved to be one of the most capable filters. The KBF and 
its extended variant for EKBF non-linear systems, are widely 
used [3], have a solid and well-understood mathematical 
basis, and are computationally tradable when used in such a 
system as the one discussed here. As such, the EKBF 
represents a good choice for a tracking mechanism and was 
the one used for the robots described in this paper and is 
discussed next. 

III. TRACKING WITH THE KALMAN-BUCY FILTER 

Each of the eleven objects, two teams of five robots and the 
ball, is tracked using an independent EKBF. Multiple EKBF's 
are used due to the non-linear nature of the tracking problem. 
Robot kinematics are inherently non-linear as is the motion of 
the ball both along the inclined walls and along the field 
surface. Multiple independent EKBF's are used based on the 
assumption that the observations of different objects are 
independent. This is a reasonable assumption that helps 
preserve limited computational resources. There are two filter 
types; the robot EKBF and the ball EKBF, where the 
difference is due to the different dynamics of the object being 
tracked. We briefly describe the EKBF equations that are the 
basis for the filters, which are an extension on our previous 
EKBF's [8]. For a more detailed discussion of EKBF's refer 
to [3,9,6, 111. The symbols used here are identical to [ l  11. 

In the following discussions, the state estimate will be 
represented by Tk and the state covariances by 9 .  Two 
stochastic difference equations model the system dynamics 
and observations, respectively, as: 

x k  = f ( x k - l  9 wk-l ) and z k  = h(x, 9 vk  ) 
Here zk is an observation of the system at step k ,  Uk is the 

command input at time k, w and v are random variables with 
zero mean. The EKBF operates in two stages. The first step is 
a dynamical update step where the state estimate and its 
covariances are updated according to the dynamical model of 
the system as: 
q = f(Zk-,,U,,0) 
4- = A, Pk-, A: + W, Q, -, W,' 

The super-minus symbol indicates the results are 
intermediate, pre-observation update, values. EKBF's work 
by linearizing at each time step about the state estimate, 
hence, the matrices Ak and wk are the process Jacobians at 
step k of JI.) with respect to the state estimate A and to noise 
W, respectively. The Jacobians must be recalculated at each 
time step. The matrix Q is the process noise covariance and is 
defined a priori based on knowledge of the dynamical noise 
components in the system. 

The second stage of the filter requires incorporating 
observations of the real system into the state estimate. The 
measurement update equations are: 

Zk = Ti  + K ,  (z, - h(Zi,O)) 
Pk = ( l - K , H , ) P [  
where Kk is the so-called Kalman gain, Rk is the 

measurement noise covariance set a priori, while Hk and vk 
are the measurement Jacobians with respect to the state 
estimate and noise, respectively. The operation of the two 
stages of the algorithm enable the state estimate to track the 
mean of the observations and the variances to represent the 
confidence range of the estimate. 

K ,  = P,-H:(H,P;H: +v,R~v;)-' 

A. RobotEKBF 
To fully estimate the position and velocity of a fully 
holonomic robot constrained to a 2D plane, we require six 
state variables as indicated in Figure 2. This state 
representation is used for all the robot objects. Thus: 

= ( x i  y i  si v / / ~  vli mi)' 

f i e l d  X 
10.0) 

Figure 2. The six state variables and their relationship to the 
real world. 

Given that all the field objects are represented as particles 
with velocity and orientation, the process update function 
neglecting process noise is given by: 

where RA.) is the rotation matrix given as: 
cosy, -siny, 0 

The velocity command is Uk, the system input, given by: 

here uk is the delayed command where I is the system 
U, = (0 0 0 vP"(k-I) vI"(k- -I )  m""d")(k-I))T 

latency of 6 frames corresponding to a delay of about looms. 
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1 0 -(v,,sinO+v,cosO)At 
o I (v,,cose-v,sine)ht 

0 1 
0, 

and W=(O, I I,)T 
Here, 0, and I, indicate a zero matrix and identity matrix of 

size n x n, respectively. Finally, the process noise matrix Q: 
Q, = diag(oz, ,ot ,o:) , where diag(.) indicates a diagonal 
matrix. 

The standard deviations were chosen to reflect the 
accelerations that robots are limited to due to wheel slip. 
Typically robots can accelerate on the order of 3m.d' or so, 
thus, a working value of 4m.i2 will robustly describe even the 
fastest robot. Working from an acceleration of 4m.s-', a robot 
can change its velocity by 66mm.s" in the '/60* of a second 
between iterations. Hence, a, was set to 66rnm.i' for all 
robot types. The exception to this was the differential drive 
robot that had its lateral deviation set to 4mm.i' 
corresponding to lateral acceleration of 0.25m.s-' caused by 
wheel slip. It was naturally assumed that opponents are 
capable of omnidirectional motion. For rotation, the standard 
deviations were set to 0.2 rads" corresponding to an 
acceleration of 4m.i2 at the robot wheel. The exception is for 
the opponents where no orientation can be reliably observed. 
Hence opponents have a, is set to zero. 

Observations are only made on the positions of the objects 
on the field based on the vision output. Velocities are 
estimated purely on the observation of positions over time 
and the properties of the EKBF. The Observation equation, 
neglecting measurement noise is straightforward: 

zk = h(xk ,O) = (.ob, Yobr 

This is just the observation reported from the vision 
module and gives Jacobians and measurement noise as: 
H =(I, I 0,) , V =I,  and R  ding(^^^,^^,^^) 
All robots are treated identically with a, set to 25" and 

set to 0.173 rad (-10') as obtained from empirical 
measurements of the vision output. 

The observation update step is not applied blindly. False- 
negatives, low confidence values in the vision output, are 
rejected immediately and the sensing update is not performed. 
The dynamics update is still performed meaning the 
covariances on the state estimate will grow until a successful 
observation is reported. While this approach combats false- 
negatives robustly, it does not overcome the problem of false- 

cosO.At -sinO.At 0 
sinOdt c0se.b o 

0 

positives, situations where the vision reports confidently, but 
incorrectly. False-positives, which have a disastrous impact 
on tracking performance, are solved with the improbability 
filter discussed in section IV. 

The state estimate and covariance matrix need to be 
initialized to reasonable values to ensure their operation is 
sensible. Similarly, as robots can be removed or substituted 
during the game, it becomes necessary to reset the EKBF 
filter to its default, start up state. EKBF resets are driven by 
user input. In all resethitialization cases the state estimate 
and covariance matrix are set to default values of: 
Zo = (xobs, yobS,eob* ,O,O,O)T and P, = d i a g ( ~ : , ~ : , ,  o,',O,O,O) 

In short, the state estimate is set to the first observed 
location and orientation and the cQvariance matrix is 
initialized to the noise in location produced by sensing. 

B. BallEKBF 
The ball EKBF is a little different to the robot EKBF's as it 
has different dynamical properties. The state vector is: 

Fk =(x y v, v,$ 
Orientation and angular velocity are dropped as they have 

no meaning for the ball. The ball is not driven, so there is no 
input command, but it has different motions depending on 
where it is on the field. When traveling freely along the 
surface of the carpeted field, the ball travels in a straight line 
but slows due to friction. If the ball hits an edge of the field, it 
rolls up and along the 45" inclined walls where friction is 
comparably negligible. 

For normal free rolling, the primary assumption is that 
friction acts as a constant retarding force against the direction 
of motion unless the ball is traveling sufficiently slowly, 
where its velocity decays away quite rapidly. The model is: 

(1 0 AI 0 )  (1/2axAt2) 

Here v i s  the angle of travel of the ball, v is the ball speed, 
up is the empirically determined acceleration constant due to 
friction (set to 245mm.i2). A similar expression is developed 
for the y component of acceleration. When the ball is rolling 
on the wall, the component of acceleration tangential to the 
wall is set to zero and the parallel component is set to: 

This equation is developed from the dynamics of a ball 
rolling on a frictionless 45" wall under the influence of 
gravity. Here i andj  are the unit axis vectors and n is the unit 
vector pointing down the slope of the wall (either 5 or 3$). 

To use the full Jacobians for these equations would result 
in an overly complex computation that proves unnecessary for 
the level of tracking required. The Jacobian becomes: 
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A, = M where M is specified above. 
The remaining dynamics matrices are as before but are 

lower dimensional. They are: 
H = ( I ,  I 02), Q, = d i a g ( a ; , o : ) ,  W =(02 I I,)7 
z ,  = ( x O b J , y O b S ) ,  R=diag(o:,o:), V = I ,  

The standard deviation a, was again chosen on empirical 
observations and had a value of 2 5 m  The velocity standard 
deviation a, was more complicated. To allow the filter to 
react quickly to ball-robot collisions without any explicit 
dynamic modeling, the state variances are increased when the 
ball nears a robot. This was achieved through varying a, 
depending on the proximity of the ball to a robot as: 

Here d is'the distance between ;he ball and the nearest 
robot and R is the maximum robot width. The near robot 
value oR was set to lOOmm.i', and the open field value oo 
was set to 10mm.i'. 

C. Performance 
The EKBF algorithm, described above, tracks the field 
objects well except when false-positives occur. With the 
appropriate choice of noise covariance parameters, the filter 
is able to compensate for the Gaussian noise components 
present in the sensing process but not the white noise 
components. Handling intermittency in the sensor data is 
relatively trivial by only performing the sensing update step 
whenever that field object is confidently identified. That is, if 
the confidence of identification for that particular field object 
is above a preset, empirically determined threshold, the 
sensing update step is computed. Otherwise the predict update 
step is the only one computed. Due to the nature of the EKBF 
equations, the covariance matrix Pk values will increase 
representing the increased uncertainty in the state estimates. 

The EKBF algorithm enables one to make smart 
predictions about the future location of a particular field 
object. By repeated application of the predict update 
equations to the current estimate of the state vector for a 
particular object, one can estimate its future state and 
covariances enabling one to make future predictions along 
with their respective likelihood. Indeed, this is the approach 
used for overcoming the inherent latency in the vision process 
and by the behavior algorithms used to control the robots. 
Using the EKBF to predict through the inherent latency of the 
vision sensor substantially improves the level of achievable 
control with the robots, however, this is beyond the scope of 
this paper. 

IV. IMPROBABILITY FILTERING 
Although the EKBF works well under most conditions, it 
does have one flaw that severely degrades its performance. 
Occasionally, the vision system will misidentify a field object. 
On most occasions such misidentifications occur when 
attempting to identify robots that are partially occluded, 
something that occurs regularly in general play. Such false- 
positives in the sensing stage have a disastrous impact on the 

performance of the EKBF causing the state estimate to jump 
across the field. The impact on the robot control strategies is 
substantial. 

The difficulty is caused by the Gaussian assumption that 
underlies the EKBF. When an observation differing 
significantly from the state estimate, as determined from the 
state covariances, is incorporated into the state estimate, the 
resulting Gaussian deviates significantly from its prior shape 
and position. A 1D example of this problem is shown in 
Figure 3. The left Gaussian represents the initial state 
estimate, the right Gaussian the false-positive observation. 
The product of the two, after normalization, gives the middle 
Gaussian, which is no longer a useful estimate of the true state 
of the system in the short term. Although the filter robustly 
recovers after some time, the impact of the short term 
deviation on the system as a whole remains significant. 

estimate 
0.01 

0.008 - 
0.006 - 
0.004 - 
0.002 - 

0; J ,  

0 500 lo00 1500 moo 2500 3000 3500 

Figure 3. A 1D schematic of the effect of false-positives. 

There are a number of methods that one could conceive to 
address the problem. Clearly, a suitably complex multi- 
hypothesis tracking algorithm, for example [6], could address 
this problem. The computational cost, however, would be 
prohibitive for the application discussed here. Moreover, 
given the frequent occurrence of false-positives, a simpler 
method is desirable. 

More ad-hoc techniques include increasing the sensing 
covariances, the R matrix parameters. The drawback though is 
degraded performance of the EKBF under normal conditions 
due to its decreased sensitivity to sensor input (the K matrix 
has smaller values). We developed another solution that 
filters false-positives from observation updates by added 
domain knowledge. Our early investigations tried such an 
approach where if the observation deviated by some fixed 
value from the previous observation it was rejected and the 
filter reset. This approach however proved sensitive to 
parameter choice and is somewhat brittle. The question is: is 
there a principled way to recognize and reject false-positives 
that is computationally reasonable? We have devised such a 
method have called it Improbability Filtering (ImpF). 

The ImpF approach is related to multi-modal EKBF in that 
it uses the current state and covariance estimates and the 
Gaussian basis of the EKBF to estimate the likelihood of 
observing the given observation. That is: to determine if an 
observation should be rejected or accepted, one needs to first 
calculate the conditional probability density function @do 
P[p'lxbPk] evaluated for the given observation and state 
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estimates and then use this likelihood to reject observations 
with too low a likelihood as false-positives. 

The conditional pdf is simply the Gaussian curve (in the n- 
dimensional space of the state vector) with the mean of the 
state estimate and the covariances of the state matrix where 
both are transformed into the observation space. Evaluating 
this Gaussian for the given observation will produce the 
likelihood of the observation with the current model. Thus: 

with C k  = HkPkH:  + R  
C, is the state covariance matrix transformed to observation 

space, n is the number of state variables and z' is the 
observation. If an observation is sufficiently likely, as 
determined by an empirically fiied threshold set to reject a 
large majority of false-positive observations, the observation 
is accepted and the filter is updated as per normal. Otherwise 
the observation is rejected and the update is skipped as in the 
false-negative case. 

The ImpF algorithm rejects false positives in a 
computationally efficient manner, but does not harm the 
robust nature of the EKBF to incorrect state estimates. 
Skipped observations cause the state covariances values to 
increase without bound via the dynamical update step. If 
observations are persistently different from the state estimate, 
the variances will soon become large enough that any 
observation will become likely and the new observation will 
be accepted. Moreover, the large covariances will cause the 
state estimate to jump immediately to the new observation. 

A. Experimental Results 
To c o n f i i  the correct operation of the ImpF, we conducted 
experiments in both simulation and the real application. The 
results reported here focus mainly on the simulation. Results 
are qualitatively similar for the real application, which cannot 
be presented here a systematic way as false-positives cannot 
be generated on demand. 

The simulation environment has a rich model of the robot 
application including the full kinematics of the system, some 
limited dynamics, and modeling of the latencies involved in 
the various components of the application. For the purposes 
of this discussion, it will suffice to argue that the simulator 
captures all the essential parts of the world bar noise that are 
required for tracking. Noise, an integral part of tracking 
problem, was modeled in two ways. Gaussian noise, drawn 
from a Gaussian pdf, provides the usual small signal noise 
observed during sensing. It accounts for any small errors 
introduced from vision artifacts such as pixelization, image 
blur, and pixel noise, among other things. False-positives, 
which occur due to misidentifications, were modeled as a 
Poisson process where the interval time between events (in 
multiples of frames) was drawn from a Gamma distribution. 
The Gamma parameter was set such that on average Is passed 
between false-positive events. Intermittency was not modeled, 
as it is not realistic. 

The following graphs show the tracking performance 
comparison between the raw EKBF and the ImpF + EKBF for 

tracking a ball while it rolls down the field and up a wall. The 
results for the robot tracking provide qualitatively identical 
and have not been shown here due to space considerations. 

The three graphs in Figure 4 demonstrate the raw EKT3F 
tracking ability in the presence of false-positives. The graphs 
are, in order: A) the X, Y path of the ball as tracked by the 
EKBF and as reported by the simulated vision. B) the X 
component of the EKBF and observations over time C) the 
distance between the real ball position and the tracked. 

A) XY Tracking 
1500 I 1 

1000 

500 

0 

Y" 

-500 

-1000 I J 
-1500 -1000 -500 x&, 500 1000 1500 

B) X Tracking 
2000 1 

C) Mstance Error 

6oo 6 
400 

Dist. " 
200 

0 
14 16 24 26 '* Ti&&(s) 22 

Figure 4. Performance of the raw EKBF tracking the ball 
hitting a wall with occasional false-positives. (A) the path of 
the ball, (B) the tracked position and observations, (C)  the 
distance error between tracked position and real position. 

The jagged steps in the EKBF output are clearly visible 
from the distance error graph. There is a one-to-one 
correlation between the large jumps in error and false- 
positives. Although the EKBF does recover quite quickly (in 
the order of -250ms) these intermediate jumps significantly 
degrade the controllability of the system as a whole. The poor 
quality of the tracking is apparent by the distance error mean 
of 35.7mm (standard deviation of 70.0"). 

Figure 5 shows the tracking performance of the EKBF with 
the ImpF tracking a rolling ball hitting a wall (graph A) and 
the distance error (graph B). Note the different scales on the 
y-axis as compared to Figure 4, graph C. The error plot no 
longer has the large peaks corresponding to false-positives. In 
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comparison to above, the tracking was significantly improved 
with a mean error of 4.6” (standard deviation of 2.5“). 
Clearly, the ImpF performs its job as desired and greatly 
improves the overall robustness of the EKBF to false- 
positives. 
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Figure 5. The ImpF + EKBF performance with (A) the path 
of the ball hitting a wall and (B) the distance tracking error. 

V. DISCUSSlON 

The experimental results verify the observed performance of 
the algorithm during game play, which is difficult to express 
quantitatively, as robust and accurate. Indeed, the system is 
able to operate robustly even when faced with significant 
occlusion and periodic misidentifications. Furthermore, its 
performance degrades gracefully with degraded vision input. 
Hence, the improbability filter performs the task it was 
designed for in both a principled fashion and with virtually no 
‘tweaking’ required. The lack of ‘tweaking’, an attribute of 
robust systems more often than not, is emphasized by the 
rather arbitrary likelihood threshold chosen to reject false- 
positives. No real effort was required to tune this parameter 
for the level of tracking required in this application. 

The above results demonstrate that in this particular 
application ImpF successfully removes false-positives. We 
conjecture that the ImpF approach is more generally 
applicable as a computationally light means of removing 

false-positives in a system that is not multi-modal in nature. 
Moreover, the approach rejects false-positives without 
introducing additional latency in observation updates or 
predictions and does not overly complicate the tracking 
module as a whole. Although applied here to an EKBF, we 
believe the approach may be applicable to a wider variety of 
probabilistic state estimators provided that an estimate of the 
likelihood of the observing the reported observation given the 
current estimated state of the system can be made. 

VI. CONCLUSIONS 
In this paper we have described a novel modification to the 

standard extended Kalman-Bucy filter approach for detecting 
and rejecting false-positives that would otherwise have a 
drastic affect on the tracking performance of the filter. We 
have implemented the algorithm in a working system that 
must track multiple robots, traveling at high speeds in a 
confined space, with vision as the primary sensor. Our 
experimental results clearly demonstrate the performance of 
the improbability filter approach in rejecting false-positives 
while not detracting from the otherwise desirable properties 
of the Kalman-Bucy filter. Future work must now be 
performed to extend this algorithm to other system. 
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