
Plays as Team Plans for Coordination and Adaptation

Michael Bowling, Brett Browning, Allen Chang and Manuela Veloso

Computer Science Department, Carnegie Mellon University, Pittsburgh PA, 15213-3891, USA,
{mhb,brettb,mmv }@cs.cmu.edu, allenc@andrew.cmu.edu

Abstract. Coordinated action for a team of robots is a challenging problem, es-
pecially in dynamic, unpredictable environments. In the context of robot soccer,
a complex domain with teams of robots in an adversarial setting, there is a great
deal of uncertainty in the opponent’s behavior and capabilities. We introduce the
concept of aplayas a team plan, which combines both reactive principles, which
are the focus of traditional approaches for coordinating actions, and deliberative
principles. We introduce the concept of aplaybookas a method for seamlessly
combining multiple team plans. The playbook provides a set of alternative team
behaviors which form the basis for our third contribution ofplay adaptation. We
describe how these concepts were concretely implemented in the CMDragons
robot soccer team. We also show empirical results indicating the importance of
adaptation in adversarial or other unpredictable environments.

1 Introduction

Coordination and adaptation are two of the most critical challenges for deploying teams
of robots to perform useful tasks. These challenges become especially difficult in envi-
ronments involving other agents, particularly adversarial ones, not under the team’s con-
trol. In this paper, we examine these challenges within the context of robot soccer [6],
a multi-robot goal-driven task in an adversarial dynamic environment. The presence
of adversaries creates significant uncertainty for predicting the outcome of interactions
particularly if the opponent’s behavior and capabilities are unknown a priori, as is the
case in a robot soccer competition. As such, this task encapsulates many of the issues
found in realistic multi-robot settings.

Despite this unpredictability, most robot soccer approaches involve single, static,
monolithic team strategies (e.g., see robot team descriptions in [1].) Although these
strategies entail complex combinations of reactive and deliberative approaches, they
can still perform poorly against unknown opponents or in unexpected situations. With
the uncertainty present in the task, such situations are common. An alternative approach
uses models of opponent behavior, constructed either before or during the competi-
tion [5], which are used then to determine the best team response. A model may be
used in a reactive fashion to trigger a pre-coded static strategy, or in a deliberative fash-
ion through the use of a planner [7]. Although these techniques have had success, they
have limitations such as the requirement for an adequate representation of opponent
behavior. For a completely unknown opponent team, constructing an a prior model of
their strategy is impractical.

Here, we take a novel approach based on observing our own team’s effectiveness
rather than observing the opponent’s behavior. We replace a single monolithic team



strategy, with multiple team plans that are appropriate for different opponents and situ-
ations, which we callplays. Each play defines a coordinated sequence of team behavior,
and is explicit enough to facilitate evaluation of that play’s execution. Aplaybooken-
capsulates the plays that a team can use. Each execution of a play from the playbook
can then be evaluated and this information collected for future play selection. Success-
ful plays, whose successes may be attributed to weaknesses in the opponent or particular
strengths of our team, are selected more often, while unsuccessful plays are ignored.

2 Overview

The work described in this paper was fully implemented on our CMDragons’02 small
size league (SSL) robot team. We competed with our robots at the RoboCup 2002 In-
ternational competition in Fukuoka, Japan. As with other SSL teams, our small robots
utilize perceptual information from an overhead color camera, and an off-field com-
puter for centralized team processing. Hence, our approach does not yet address issues
of distributed coordination per se. Due to space limitations, we do not go into the details
of the larger architecture. Instead, we refer the reader to [3] and [4].

From the perspective of strategy, each robot can perform a range of individual skills.
Each individual skill is encapsulated as a tactic, and all tactics are heavily parame-
terized to provide a wide range of behavior. The role of strategy is to assign tactics,
with suitable parameters, to each robot. The robots then execute the tactic actions each
and every frame. Hence, the strategy layer provides the coordination mechanism and
executes one instance for the entire team and must meld individual robot skills into
powerful and adaptable team behavior. Tactics can be classified as either active or non-
active. An active tactic is one that attempt to manipulate the ball in some manner. Active
tactics includeshoot , steal , andclear , while example non-active tactics include
position for loose ball , defend line , andblock . Parameters are tactic
specific, but example parameters often include target points, regions, or information
affective behavior such as whether to aim or include deflections etc. Each is itself a
complex interaction between the robot control layer that maintains robot-specific infor-
mation, navigation, and motion control.

3 Play-Based Strategy

The main question addressed in this work is: “Given a set of effective and parameterized
individual robot behaviors, how do we select each robot’s behavior to achieve the team’s
goals?” This is the problem addressed by our strategy component.

3.1 Goals

The main criterion for team strategy is performance. However, a single, static, mono-
lithic team strategy that maximizes performance is impractical. Indeed, in adversarial
domains with unknown opponents, optimal static strategies are unlikely to exist. There-
fore we break down the performance criteria into more achievable subgoals. The sub-
goals are to(i) Coordinates team behavior,(ii) Executes temporally extended sequences



of action,(iii) Allow for special behavior for certain circumstances,(iv) Allow ease of
human design and augmentation,(v) Enable exploitation of short-lived opportunities,
and(vi) Allow on-line adaptation to the specific opponent.

The first four goals require plays to be able to express complex, coordinated, and
sequenced behavior among teammates. In addition, plays must be human readable to
make strategy design and modification simple (a must at competitions!). These goals
also requires a capable of executing the complex behaviors the play describes. The
fifth goal requires the execution system to recognize and exploit fortuitous opportuni-
ties not explicitly described by the play. Finally, the last goal requires the system to
improve its behavior over time. These goals, although critical to robot soccer, are also
of general importance for coordinated agent teams in other unpredictable or adversar-
ial environments. We have developed a play-based team strategy, using a specialized
play language, to meet these goals. We describe the major components of this system,
specifically play specification, execution, and adaptation, in the following sections.

3.2 Play Specification

Plays are specified using the play language, which is in an easy-to-read text format (e.g.,
Table 1, Plays use keywords, denoted by all capital letters, to mark different pieces
of information. Each play has two components:basic informationand role informa-
tion. The basic information describes when a play can be executed (“APPLICABLE”),
when execution of the play should stop (“DONE”), and some execution details (e.g.,
“FIXEDROLES”, “ TIMEOUT”, and “OROLE”). The role information (“ROLE”) de-
scribes how the play is executed, making use of the tactics described above (see Sec-
tion 2). We describe these keywords below.

TheAPPLICABLE keyword denotes the state of the world under which a play can
be executed. It defines the state of the world through a conjunction of high-level predi-
cates following the keyword. Multiple keywords, on separate lines, define a logical DNF
where the result of each line forms a disjunction. Examples of common predicates in-
cludeoffense , defense , their ball , where the meaning of the predicate should
be apparent. The ability to form logical DNF’s means that we can choose exactly which
conditions a play can be operate under.

Unlike classical planning, the level of uncertainty when running real robots makes
it difficult to predict the outcome of a particular plan. Although, a play does not have
effects, it does have termination conditions. Termination conditions are specified by the
keywordDONEfollowed by a result (e.g.,aborted ) and a conjunctive list of high-level
predicates similar to the applicability conditions. Plays may have multipleDONEcondi-
tions, each with a different result, and a different conjunction of predicates. Whenever
anyDONEcondition is satisfied, the play terminates. In the example play in Table 1, the
only terminating condition is if the team is no longer on offense. In this case the play’s
result is considered to have beenaborted . In addition to the termination conditions,
a play may be terminated by a timeout or by completing the sequence of tactics for
each role. Timeouts, the length of time which can be overridden with theTIMEOUT
keyword, are necessary to prevent the team becoming irretrievably stuck attempting
an action that is not succeeding. Completions, defined by the keywordcompleted ,
means the play terminated correctly but did not lead to a goal score. Finally, a play is



considered to havesucceeded or failed whenever a goal is scored during the play
for, or against, the team. These play results form the basis for evaluating the success of
the play for the purposes of adaptation.

PLAY Two Attackers, Corner Dribble 1
APPLICABLE offense in_their_corner
DONE aborted !offense
TIMEOUT 15

ROLE 1
dribble_to_shoot {R {B 1100 800} ...
shoot A
none

ROLE 2
block 320 900 -1
none

ROLE 3
position_for_pass { R {B 1000 0}...
none

ROLE 4
defend_line {-1400 1150} ...
none

PLAY Two Attackers, Pass
APPLICABLE offense
DONE aborted !offense
OROLE 0 closest_to_ball

ROLE 1
pass 3
mark 0 from_shot
none

ROLE 2
block 320 900 -1
none

ROLE 3
position_for_pass {R {B 1000 0}...
receive_pass
shoot A
none

ROLE 4
defend_line {-1400 1150}...
none

Table 1.Two example plays involving sequencing of behaviors. The left play is a special purpose
play that only executes when the ball is in an offensive corner of the field.

Roles are the active component of each play, and each play has four roles corre-
sponding to each non-goalie robot on the field. Each role contains a list of tactics with
associated parameters for the robot to perform in sequence. As tactics are heavily pa-
rameterized, the range of tactics can be combined into nearly an infinite number of play
possibilities. Table 1 shows an example play where the first role executes two sequenced
tactics. First the robot dribbles the ball out of the corner and then switches to the shoot-
ing behavior. Meanwhile the other roles execute a single behavior for the play’s dura-
tion. Sequencing implies an enforced synchronization, or coordination between roles.
Once a tactic completes, all roles move to their next behavior in their sequence (if one
is defined). Thus, in the example in Table 1, when the player assigned to pass the ball
completes the pass, then it will switch to the mark behavior. The receiver of the pass
will simultaneously switch to receive the pass, after which it will try to execute the
shooting tactic.

3.3 Play Execution

The play execution module is responsible for instantiating the active play into ac-
tual robot behavior. Instantiation consists of many key decisions: role assignment, role
switching, sequencing tactics, opportunistic behavior, and termination. Role assignment
is dynamic, rather than being fixed, and is determined by uses tactic-specific methods.
To prevent conflicts, assignment is prioritized by the order in which roles appear. Thus,
the first role, which usually involves ball manipulation, is assigned first and considers
all four field robots. The next role is assigned to one of the remaining robots, and so
on. The prioritization provides the execution system the knowledge to select the best



robots to perform each role and also provides the basis for role switching. Role switch-
ing is a very effective technique for exploiting changes in the environment that alter
the effectiveness of robots fulfilling roles. The executor continuously reexamines the
role assignment for possible opportunities to improve it as the environment changes.
Although, it has a strong bias toward maintaining the current assignment to avoid oscil-
lation.

Sequencing is needed to move the entire team through the list of tactics in sequence.
When the tactic executed by theactive player, the robot whose role specifies a tactic
related to the ball, succeeds then the play transitionseachrole to the next tactic in their
relative sequence. Finally, opportunistic behavior accounts for unexpected fortuitous
situations where a very basic action would have a valuable outcome ie. when an op-
portunity to shoot directly on goal presents itself. Thus, opportunistic behavior enables
plays to have behavior beyond that specified explicitly. As a result, a play can encode
a long sequence of complex behavior without encumbering its ability to respond to
unexpected short-lived opportunities. Finally, the play executor checks the play’s termi-
nation criteria, the completion status of the tactics, and the incoming information from
the referee to determine if the play has completed, and with what result.

3.4 Play Selection

The final facet of the playbook strategy system is the mechanism for play selection
and adaptation of play selections given experience. Our basic selection scheme uses the
applicability conditions for each play to form a candidate list from which one play is
selected at random. To adapt play selection, we modify the probability of selecting a
play using a weighting scheme. We describe this mechanism, along with experimental
results, in more detail below.

4 Playbook Adaptation

Playbook adaptation is the problem of adapting play selection based on past execution
to find the dominant play, or plays, for the given opponent and the history of execution.
In order to facilitate the compiling of past outcomes into the selection process, we
associate with each play a weight,wpi

∈ [0,∞). For a given set of applicable plays,A,
the weights are normalized to define a probability mass distribution for selecting each
play as,

Pr(selectingpi) =
wpi∑

pj∈A wpj

.

Playbook adaptation involves adjusting the selection weights given the outcome of a
play’s execution. An adaptation rule is a mapping,W (w, pi, o) → [0,∞), from a
weight vector, a selected play, and its outcome, to a new weight for that play. These
new weights are then used to select the next play.

There are a number of obvious, desirable properties for an adaptation rule. All things
being equal, more successes or completions should increase the play’s weight. Simi-
larly, aborts and failures should decrease the weight. In order for adaptation to have
any effect, it also must change weights drastically to make an impact within the short



time-span of a single game. This leads us to the basic rule that we implemented for
the RoboCup 2002 competition uses a weight multiplication rule, where each outcome
multiplies the play’s previous weight by a constant. Specifically, the rule is,

W (w, pi, o) = Cowpi ,

With Co fixed toCsucceeded = 4, Ccompleted = 4/3, Caborted = 3/4, Cfailed = 1/4.

4.1 Evaluation

Our strategy system was used effectively during RoboCup 2002 against a wide range
of opponents with vastly different strategies and capabilities. Throughout, we observed
that our team quickly honed in on the plays that worked within a few minutes. We
predominantly began each game with a uniform prior. That is, withwi = 1 for each
play i. As the competition progressed, we developed more capable plays, in a reason-
ably efficient manner helped by the readability of the play language (our final playbook
contained around 20 plays, including specialized plays for penalties, free kicks etc).
Although we have no specific results, anecdotally, adaptation appears to make the team
work as good as the performance of the best play given the underlying tactics. Thus,
in situations where the tactics cannot perform their assigned objective, say when play-
ing a very good team, play adaptation does not improve the performance of the team.
However, it does not hinder performance either.

In order to more scientifically understand the capabilities and limitations of the play
approach, we constructed a number of simplified scenarios to evaluate adaptation per-
formance. These scenarios compare whether multiple plays are actually necessary, and
also examine the usefulness of playbook adaptation. We compared four simple offensive
plays paired against three defensive tactics. Only two offensive robots were used against
one defensive robot, where the offensive plays consist of the various combinations of
shoot with and without aiming for the active role, andposition for rebound
or screen for the supporting role. The defensive robot executed a single tactic, which
was one ofblock , active def , or brick where the robot did not move. In all
cases, the robots start in the usual “kick off” position in the center of the field. For
each scenario 750 trials were performed in our UberSim SSL simulator [2]. A trial was
considered a success if the offense scored a goal within a 20s time limit.

Table 2 shows the play comparison results. Each trial is independent, and so the
maximum likelihood estimate of each play’s success probability is the ratio of successes
to trials. Note that there is no static strategy that is optimal against every possible op-
ponent even in this simplified scenario. Our results support the notion that play-based
strategies are capable of exhibiting many different behaviors with varying degrees of
effectiveness. For instance, the screen plays, one of which was shown in the exam-
ple trace, are effective against an “active” defender which tries to steal the ball from
the offense, because the non-shooting attacker is capable of setting screens for the non-
shooting attacker. On the other hand, the screen plays are less effective against a “block-
ing” defender which guards the goal.

To explore playbook adaptation we use a playbook containing all four offensive
plays against a fixed defender running eitherblock or active def . We initially used



Table 2.Play comparison results. For each scenario, the percentage of successes for the 750 trials
is shown. The boldfaced number corresponds to the play with the highest percentage of success
for each defensive behavior.

Play tactic 1 tactic 2 block active def brick
shoot(aim) position for rebound 72.3% 49.7% 99.5%
shoot(no aim) position for rebound 66.7% 57.3% 43.1%
shoot(aim) screen 40.8% 59.0% 92.4%
shoot(no aim) screen 49.2% 66.0% 72.0%

the algorithm described above, but discovered an imperfection in the approach. Due to
the strength of the reinforcement for a completed play, it is possible for a moderately
successful but non-dominant play to quickly gain reward and dominate selection. This
phenomenon did not occur in competition due to the larger disparity in plays against
a given opponent and lower success probabilities. The issue is a lack of normalization
in the weight adjustment to account for play selection probabilities. Therefore, we in-
cluded a normalization factor in the weight updates. Specifically, we used the following
rule,

W (w, pi, o) =
{

wpi
2/Pr(pi) if o = Succeeded

wpi
Pr(pi)/2 if o = Failed

,

where Pr(pi) is the probability assigned topi according tow.

To evaluate the performance of the algorithm, we compare the expected success
rate (ESR) of using this adaptation rule against a fixed defensive behavior. We used
the results in Table 2 to simulate the outcomes of the various play combinations. All
the weights are initialized to 1. Figure 1(a) and (b) show the ESR for play adaptation
over 100 trials, which is comparable to the length of a competition (approximately 20
minutes). The lower bound on the y-axis corresponds to the ESR of randomly selecting
plays and the upper bound corresponds to the ESR of the playbook’s best play for the
particular defense. Figure 1(c) shows the probabilities of selecting each play over time
when running the adaptation algorithm.

As graphs (a) and (b) indicate in Figure 1, against each defense the overall suc-
cess rate of the offense quickly grows towards the optimal success rate within a small
number of trials. Likewise graph (c) shows that against theblock defense, the proba-
bility of selecting either of two plays with comparatively high individual success rates
quickly dominates the probability of selecting the two less successful plays. Clearly, the
algorithm very quickly favors the more successful plays.

These results, combined with the RoboCup performances, demonstrate that adapta-
tion can be a powerful tool for identifying successful plays against unknown opponents.
Note the contrast here between the use of adaptation to more common machine learning
approaches. We are not interested in convergence to an optimal control policy. Rather,
given the short time limit of a game, we desire adaptation that achieves good results
quickly enough to impact the game. Hence a fast, but non-optimal response is desired
over a more optimal but longer acting approach.
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Fig. 1. (a), (b) show ESR against block and activedef, (c) shows expected play success probabilities against
block. These results have all been averaged over 50000 runs of 100 trials.

5 Conclusion

We have introduced a novel team strategy engine based on the concept of a play as a
team plan, which can be easily defined by a play language. Multiple, distinct plays can
be collected into a playbook where mechanisms for adapting play selection can enable
the system to improve the team response to an opponent without prior knowledge of the
opponent. The system was fully implemented for our CMDragons robot soccer system
and tested at RoboCup 2002, and in the controlled experiments reported here. Possible
future directions of research include extending the presented play language, enhancing
the play adaptation algorithm.
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