
Reusing Learned Policies Between Similar
Problems

Mike Bowling Manuela Veloso
mhb@cs.cmu.edu veloso@cs.cmu.edu

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

We are interested in being able to leverage policy learning in complex
problems upon policies learned for similar problems. This capability is par-
ticularly important in robot learning, where gathering data is expensive and
time-consuming, and prohibits directly applying reinforcement learning. In
this case, we would like to be able to transfer knowledge from a simulator,
which may have an inaccurate or crude model of the robot and environment.
We observed that when applying a policy learned in a simulator, some parts
of the policy effectively apply to the real robots while other parts do not.
We then explored learning a complex problem by reusing only parts of the
solutions of similar problems. Empirical experiments of learning when part
of the policy is fixed show that the complete task is learned faster, but the
resulting policy is suboptimal. One of the main contributions of this paper is
a theorem and its proof, which states the degree of suboptimality of a policy
that is fixed over a subproblem, can be determined without the need for opti-
mally solving the complete problem. We formally define a subproblem and
build upon the value equivalence of the boundary states of the subproblem
to prove the bound on suboptimality.

Keywords: reinforcement learning, subproblem reuse, bounding policy
optimality

Contact: Mike Bowling, mhb@cs.cmu.edu, (412) 268-3069.

1 Introduction

Learning to act in complex environments, such as multi-robot ones, is a well-
known difficult task. It seems however intuitive to think that the complexity of an
environment could be handled by training and learning in simpler similar prob-
lems. Our motivation for this work is therefore twofold. We are interested in
investigating the reuse of solutions to similar (possibly simpler) problems. And,
we would like to apply our techniques to learning in a multi-robot setting.

Gathering real robot data is extremely time consuming and therefore prohibits
using basic reinforcement learning techniques. Other learning approaches suc-
cessfully solve this problem by refining a model of the robot. In our case, building
a model of each robot is not feasible since each may have different hardware char-
acteristics. In addition, model-based techniques still require complete exploration
of the world and the robot’s actions, and could still benefit from knowledge gained
in similar problems.

We therefore followed a different approach. Instead of learning a model, we
built a crude simulator of the robot’s actions in the environment. The purpose was
to learn optimal policies in the simulator, and use that to leverage learning in the
real robots. Directly applying the policy learned from the simulator in the real
robots, does not succeed. However we note (qualitatively) that some parts of the
learned policies successfully apply to the real robots while others do not.

In this paper, we discuss this underlying real case study that motivates our
formal investigation of reusing policies learned in similar problems. To effectively
study the underlying issues, we explored this in simulated environments.

We reproduced in the simulator the use of subparts of a policy in similar prob-
lems. We realize that the learning of the new policy is faster and by comparing
with learning from scratch, we can quantitatively determine how suboptimal is the
policy learned when using a fixed policy for a subproblem.

It would be very interesting if we could determine quantitatively how subopti-
mal a policy built from a similar policy is without having to determine the optimal
policy. We contribute in this paper an answer to this question. We introduce a
theorem and its proof, which states that the degree of sub-optimality of a policy
that is fixed over a subproblem, can be determined without the need for optimally
solving the complete problem. We formally define a subproblem and build upon
the value equivalence of the boundary states of the subproblem to prove the bound
on policy suboptimality.

The paper is organized as follows. Section 2 presents the case study with
the results of reusing policies from a crude simulator in a real robot. Section 3

1

introduces similarity between problems and shows the results of using similar
policies in controlled experiments in a simulator. Section 4 introduces the theorem
on the bound of the suboptimality of a similar policy. We present the complete
detailed proof in the appendix. We analyze the value of the bounds in particular
situations, and verify the bound for our results from Section 3. Section 5 discusses
some related work, and Section 6 concludes.

2 A Motivating Example

Our work is in the context of robotic soccer [5]. The robots use several hardwired
behaviors to select actions to achieve individual and team goals. However there
are situations for which finding the appropriate analytical behavior is not trivial,
and we would like to apply learning to these cases. Figure 1 illustrates an example
of one of these problems. The robot is in a rectangular playing area, and the ball is
placed at a fixed distance from the wall. The goal of the robot is to strike the ball
in the desired direction. The robot is roughly square shaped with two independent
motors, allowing it to move forwards and backwards as well as turning in place.
Positive reinforcement is received for hitting the ball in the correct direction. Neg-
ative reinforcement is received for hitting the ball in an incorrect direction, leaving
the playing area, or getting stuck along the wall. The goal is to learn a policy that
would successfully hit the ball in the desired direction.

Wall

Robot
Target
Direction

Ball

Figure 1: A simple problem in the robot soccer domain.

For learning, the state is encoded as a tuple
�����������
	

, which is the Cartesian
position relative to the ball and the direction the robot is facing. This continuous

2

state is uniformly discretized into 2080 states1. The actions are discretized to four:
turn left (in place), turn right, move forward, and move backward.

Training in this setting, as with most real robot domains, is extremely slow.
In our experiments, the robot performs less than two actions every second. Just
to perform every action in every state would require over an hour. In addition,
training requires human intervention between trials. Despite this discouraging
evidence, training was still attempted. After eight hours2 of training, the robot
had completed 550 trials, visited 25,000 states, and only managed 18 successes.
The resulting Q table was still very sparse, and performance was expectedly very
poor.

Gathering enough real robot data was prohibitive and so it became difficult
to directly apply reinforcement learning to real data. Other learning approaches
successfully solve this problem by refining a model of the robot. In our case,
building a model of each robot is not feasible as we have multiple robots with
different hardware characteristics. We followed a different approach. We built a
crude simulator of a general robot’s actions in the environment. The simulator is
an idealistic representation of the world, and uses the same state and action space
used in the real robots. It is deterministic with all actions just transitioning to
the geometrically expected state. It does not model the effects of the wall on the
robot’s motion. It also has an extremely simple model of the robot’s shape and
how it can hit the ball.

Training in this computer simulated model is very fast. After approximately
1500 trials, it had visited 100,000 states, and taken an elapsed time of less than
five seconds. The resulting policy is nearly optimal for the model. Of course, the
measure of success is performance in the real robots.

This learned policy was then used on the real robots. The quantitative re-
sults were very poor, as it never successfully hit the ball in the desired direction.
Though qualitatively a couple of things were noticed:

� The robot acts “well” when far from the ball (i.e. it positions itself appro-
priately to hit the ball.)

� The robot acts “poorly” when near the ball (i.e. it doesn’t hit the ball in the
correct direction.)

� The robot easily gets caught on the wall.

1The rectangle is discretized into 20x13, and the robot’s direction is discretized into 8.
2This time does not include down time of charging batteries, fixing hardware problems, etc.

3

These observations are consistent with the simulator’s deficiencies, described
above.

3 Using a Policy From a Similar Problem

Towards the goal of transferring knowledge from our crude simulator to the real
robots, we investigated the more general problem of transferring knowledge be-
tween “similar” problems. We will make no attempt to define similarity between
problems, and instead appeal to a basic intuition. In the domains we explored
similar was restricted to problems with the same transition probabilities, but with
different rewards. Though, we expect results to be similar when transition prob-
abilities are different, e.g. when transferring policies from a simulator to real
robots.

Two simulated domains were investigated. The first is the simulator used for
the robot soccer problem that was just described. In this domain, our similar prob-
lem was to alter the desired direction for the robot to strike the ball. The second
domain is a discrete grid-navigation problem, presented in [4], and depicted in
figure 2. The agent can move in any of the eight grid directions. But, with a
probability of 0.1, its action is ignored and it is moved to a random neighbor. The
agent receives a reward of 1 for transitions entering the goal state, and a reward of
zero for all others. We used a discount factor, � , of 0.1. In this domain we used
different corners for the start and goal states for our similar problems.

All the results shown in this paper are for the grid-navigation problem, since
the subproblems in this domain are easy to visualize and the results for the robot
soccer problem are identical.

3.1 Refining a Similar Policy

One naive approach to transferring knowledge between two problems is to use the
final Q values from a similar problem as the starting Q values for the new prob-
lem. Q-Learning is then used normally from these starting values. This approach
was tried in both of the simulated domains. The results for the grid-navigation
problem are shown in figure 3. Initializing the Q values seems to be a consider-
able hindrance to learning, and is easily outperformed by simply learning from
scratch.

4

S

S G

G

Figure 2: A simple 3 room environment. There are two problems whose start
states are labeled ’S’ and whose goal state is the state labeled ’G’ in the opposite
corner. The shading marks two different subproblems.

3.2 Reusing Part of a Similar Policy

Another approach is motivated by the qualitative observations given in section 2.
When using the policy, which was learned in the simulator, in the real robots we
observed that the policy worked well for some parts of the state but worked poorly
in other parts. This lends itself to reusing only parts of a policy that was learned in
a similar problem, and holding these parts of the policy fixed during learning. In
the next section we’ll show a relationship between these subparts and the notion
of a subproblem.

This approach was also tried in both simulated domains. For the grid-navigation
problem, we tried fixing two different sets of states, which are marked in figure 2
by the shaded regions. The dark region corresponds to fixing the “left room”, and
the light and dark regions correspond to fixing the “left and middle rooms”. The
results are given in figure 4.

These results show that fixing a large part of a similar policy is an improve-
ment over learning from scratch when there is very little training. For example, if
training were limited to visiting 5000 states, fixing the left and middle rooms is
a 600% improvement over learning from scratch. Though, it is obvious from the
graph that this improved initial learning is at the cost of converging to the optimal
solution. In cases where training data is difficult or expensive to gather, as it is in

5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 20000 40000 60000 80000 100000

A
ve

ra
ge

 R
ew

ar
d

States Visited

From Scratch
Starting From Similar Q-Table

Figure 3: Results from the grid-navigation problem comparing learning from
scratch to learning with Q values initialized from a similar problem.

robot learning, it may be beneficial to exploit this trade-off.
The more conservative approach of fixing just a small portion of the similar

policy results in a more conservative learning improvement of 300% over learning
from scratch. Though it does not appear to sacrifice convergence to optimality.
The intuition is that these two problems share the same subproblem of exiting the
left room, and therefore the optimal policy over these states is the same for both
problems.

4 Bounding the Policy Suboptimality

The above results show that optimality can be sacrificed for faster learning, but
it would be good to be able to calculate the loss in optimality, even though the
optimal solution is not known. To do this, we will define a notion of a subproblem
in reinforcement learning, and then show that the loss in optimality by using that

6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 20000 40000 60000 80000 100000

A
ve

ra
ge

 R
ew

ar
d

States Visited

From Scratch
Fixing Left Room Only

Fixing Left and Middle Rooms

Figure 4: Results from the grid-navigation problem comparing learning from
scratch to learning while fixing a portion of a similar policy.

subproblem can be calculated without finding the optimal solution.

4.1 Determining the Bound

The following definitions and theorems assume that
�

is a traditional reinforce-
ment learning problem, with a few exceptions.

�
must have a set of goal states

that are absorbing (i.e. there are no transitions from the state.) In addition, reward
is only received for transitions into these goal states, all other transitions receive
zero reward.

First, we define a measure of the suboptimality of a policy.

Definition 1 A policy, � , is � -optimal if and only if �����	� � � 	�
 ���� � � 	 .
The following two definitions play a crucial role in the bound on suboptimal-

ity. The first provides a measure of the equivalence of a set of states. The second
provides a measure of the stochasticity of a problem.

7

Definition 2 A set of states,
�

, is � -equivalent with respect to � if and only if
� ��� � ����� � � � � ��� 	�
 ��� � � ��� 	 .
Definition 3 Let �	� be the probability that following the optimal policy at � will
transition to a state, ��
 , where �� � ��
 	� �� � � 	 . Let ��������������� . This captures
the stochasticity of the problem, where ����� for a deterministic problem.

Before we can define the notion of a subproblem, we will need to formally
define a boundary of a set of states.

Definition 4 For a set of states,
�

, let the boundary of
�

, denoted � � � 	 , be the
set of all states not in

�
with a non-zero transition from a state in

�
.

For example, in the 3 room grid-navigation problem, the boundary of the set of
states that make up the left room are the five adjacent states in the doorway.

We can now define our notion of a subproblem.

Definition 5 A pair
� � ��� 	

is a subproblem of a problem
�

if and only if:
�
��� � �! .

�
�#" � � � 	 .

�
�

and � � � 	 do not contain goal states in
�

.

This definition induces a new problem over the states S. The state transitions re-
main the same as in

�
, but the reward function is zero for all transitions except

those entering states in
�

, where the reward is one.

There is a relationship between this notion of a subproblem and fixing a portion
of a similar policy. By fixing part of the policy we are assuming that the two
problems contain a common subproblem over the states that are fixed. So, our
bound on the suboptimality of using a subproblem also applies to fixing part of a
similar policy.

This definition provides a general notion of a subproblem, but our bound is
going to be restricted to subproblems where

� �$� � � 	
. We can now state our

main theorem.

Theorem 1 Let �&% be an optimal solution to the subproblem
� � � � � � 	 	 of

�
. Let

� be the optimal policy for
�

that uses �'% for the subproblem, i.e. ���� � � � � 	 �
�(% � � 	 . If � � � 	 is � -equivalent with respect to � , then,

� is �*) -optimal for
�

,

where)+� �-,	.�/,0.21 and 34� 52687�-,	9:�/, 5/;<6 .

8

The 3 value seems cryptic, but is constructed in the proof and represents the
probability of ever reaching a state of lower value, discounted for the distance the
state is away. It’s derived from the sum,

34� � � � � � � ����� � 	 � � � � ����� � 	 � ���
	�	�	 	��

where � is the value defined in definition 3 and � is the reward discount factor.
The complete proof for this theorem is given in the appendix, but some in-

tuition for it is presented here. Consider the boundary state, �� � � � � 	
that

maximizes � . We can examine all possible paths from �� , and each must either
contain a state in

�
or not. � is optimal for states not in

�
, so � achieves the same

reward as � if it doesn’t contain a state in
�

. If it does, then it also contains a
state in � � � 	 . The best case is that this state is � , the worst case is it’s some other
 , which by � -equivalence is within � of � . The ratio of these can be shown to
be larger than) , which means � is) -optimal for � .

We can apply the same reasoning to other states. By examining all possible
paths, they either contain a state in

�
or not. If not, then � does as well as � . If

so, then they must contain a state in � � � 	 , which is � -equivalent from � , which
is) -optimal. So all other states are �) -optimal.

The important thing to notice is that the bound provided by the theorem does
not depend on any knowledge of � or � . The next section below will show
how to use this theorem to calculate a bound on the suboptimality of using a
subproblem.

Further Extensions. Below are some very interesting corollaries and exten-
sions to our theorem.

Corollary 1 If
�

is deterministic then � is � -optimal for
�

.

Corollary 2 If � � � 	 is
� 	 � -equivalent then � is optimal for

�
.

These are obtained directly from substituting the appropriate values into the theo-
rem.

Theorem 2 If the policy � % is only � -optimal for the subproblem then the result-
ing � is �*)�� -optimal for

�
.

The proof for this follows exactly as for theorem 1, with the additional � factor.
This result allows us to bound the suboptimality of using a policy for subproblem
that itself is composed of subproblems.

9

4.2 Using the Bound

For the three room grid-navigation problem we can use our theoretical results to
calculate a lower bound on their suboptimality. We can then verify this bound by
our empirical results from section 3.2.

Fixing the Left and Middle Rooms. We can simply follow the computations
from theorem 1. From the definition of the problem we know, ���!� 	 � ���� � � 	 � ��� ,
since when we take a random action only six of the eight moves take us to a state
of lower value. After learning by fixing the policy, we examine the values on the
five states in � � � 	

(i.e. the states connecting the middle and right rooms), to get
� . Below is the rest of the calculation; in this example the bound provided by the
theorem is fairly tight.

� � � 	 � ��� 34� � 	��
	
�+�!� 	 � �)+� � 	��
	

The learned policy must be at least � 	�	 � -optimal.

It is actually � 	�	 � -optimal (see figure 4.)

Fixing the Left Room Only. We can also use corollary 2 to say something about
the suboptimality of fixing only the left room. The values on the states in � � � 	
when fixing this smaller portion of the policy, converge to be

� 	 � -equivalent. By
the corollary, learning with this portion of the policy fixed should still lead to an
optimal solution. This fact matches our empirical results from figure 4 and our
intuition.

5 Discussion

Finding a similar problem, and deciding what to fix. Our formal analysis and
results assume that the similar policies are given, or were acquired in previous
learning episodes. However an important question is how to determine what is a
similar problem and which parts of its policy to fix.

These two problems have been present in other subareas where reuse of learned
knowledge is considered. Of particular related interest to us is the area of plan
reuse, as we can view a plan as a policy. For example, when using past plans to
solve new problems, the algorithm can be given past similar plans or can retrieve

10

them according to some measure of similarity. These two cases create different
research questions; one involves how to change the plan, and the other involves
defining plan similarity. Combining both plan retrieval and plan adaptation is
shown to produce interesting results (e.g., [6]).

In our case, it may be possible to learn these subproblems, which is the goal of
the SKILLS algorithm [4]. We would have to slightly constrain the state construc-
tion of SKILLS to comply to our definition of subproblem. In particular, by our
definition of subproblem, states need to be ”spatially” adjacent so that boundaries
can be identified. This extension is part of our current research agenda.

An alternative approach may be to try multiple subproblems. Since by fixing
parts of a subproblem, learning proceeds much faster, it may still be tractable to
consider trying a set of subproblems. We can learn fixing each one individually
and compute the � value of their boundaries, and using our theorem select the one
that is the least suboptimal.

Applying our theoretical results. Finally, the suboptimality bound as given by
our theorem could be combined with methods that find structure in reinforcement
learning problems. The bound can provide a measure to evaluate the effectiveness
of the constructed abstractions or the loss in optimality of using the abstractions [1,
2, 3].

6 Conclusion

In this paper, we introduced and proved a tight bound for the suboptimality of
a learned policy that is fixed over a subproblem. By determining the � -value
equivalence of the boundary states of the subproblem, we proved that the policy is
within a factor �) of the optimal policy, where) is a function of how stochastic
the problem is and of the reward decay factor. The important fact to note is that the
sub-optimality bound does not depend on knowing the ultimate optimal policy.

This formal result has a deep motivation in our work in applying reinforce-
ment learning to real robot learning, especially with multiple, possibly different,
robots. In the paper we showed motivating results from our approach to real robot
learning. We are currently applying our approach to reuse the policy learned in
the simulator in the real robots.

11

A Proof of Theorem 1

Proof. Let � � argmax����� 9 % ; �� � 	 . We will first show that � is) -optimal for
 � . From this we will be able to show that for all other states it is �) -optimal.

We can write � � � 	 as,

� � � 	 � �
all paths

Pr
���	� �
 	 Value

����� �
 	
We can then split the sum into the paths containing a state in

�
and those that

don’t contain a state in
�

. Let
�

be the probability a path from � , following the
optimal policy, contains a state in s. Then,

� � � 	 � ������ 	�� �
Value

����� �
 	�� ��� ��� �
�� 	 �� � �
Value

����� �
 	�� ��� ��� �
��� 	

Let � � ��� ��� 	�� �
Value

����� �
 	�� � � ��� �
 � 	 . Notice that any path that contains a
state in

�
must also contain a state in � � � 	 . So we can write the second term as a

value of that state discounted by the length of the path before the state is reached.
Let � ���	� �
 � 	 be the number of steps in

�	� �
 until is reached. So,

� � � 	 ��� � ���� �
 � ��� with
 � � � � 	

Pr
����� �
 	 ��� 9��! ��"$# � ; � � 	

Since �� � � 	
 � � 	 , we can substitute � � � 	 for �	 � 	 and pull it outside of
the sum. The resulting sum is just the expected discount between � and when
following the optimal policy. Let this value be % . So we get,

� � � 	'& � � � % � � � 	
This recurrence can be written as,

� � � 	�& � (*)�+-,/. ��� % 	
+�0

& � (�
���� %

0

12

We can also achieve a similar result for � � � � 	 . Since � acts optimally for � �� � ,
then it can achieve the same value for paths not containing � � �

. As before,
paths containing a state in

�
, must contain a state in � � � 	 . So we can write,

� � � � 	 � � � ��	� �
 � � with
 � � � � 	

Pr
���	� �
 	 � � 9 �! ��"$# � ; � � � 	

By the � -equivalence of � � � 	 we know that ��� � 	
 ����� � � 	 . So, as before,
we can substitute ���	� � � 	 for ��� � 	 and pull it outside of the sum. The resulting
sum is the expected discount between � and when following � . Let this value
be %
 . So we get,

� � � � 	�
 � � � %
 ��� � � � 	
Since � is optimal over the subproblem, it will reach a state in � � � 	

with less
expected discount than �� . Hence, %

 % , and we can substitute % for %
 and
maintain the inequality. As above, we can rewrite the recurrence as,

� � � � 	�& � (*)�+-, . ��� % � 	
+ 0

& � (�
���� % �

0

Now we examine the ratio of the two values,

� � � � 	
�

� � 	

 ��� ��/, ��� 1��� � ��/, ��� �

 ��� ��� � � % � 	��� ������ % 	

 � � � %���� % �

The value,
� % , is the probability of returning to a state in

�
, discounted by the

distance to that state and the distance from that state to a state in � � � 	 . Since all
states in

�
have a smaller value than � , then we can bound this by the discounted

13

probability of ever reaching a state with smaller value. But this can be computed
from � and is the following infinite sum,

� � � � � � ��� � � 	 � � � � ����� � 	 � � � 	�	�	 	 � � � �
� � ����� � 	 � � 3

So,
� % & 3 , hence,

��� � � 	
�

� � 	

 ��� 3� � 3 �

)

We can now show that � is �) -optimal for any state, � . We can decompose the
value of � just as was done for � . Let

�
be the probability that a path from � ,

following � , contains a state in
�

. Notice that if �4� � , then
� � �

. We let � and% represent the same values with respect to � . Then we can bound � � � 	 , ��� � � 	 ,
and their ratio as follows:

� � � 	 & � � � % � � � 	
� � � � 	
 � � � % ��� � � � 	
� � � � 	

�
� � 	

 � � � % ��� � � � 	� � � % � � � 	

 � % � � � � � 	� % � � � 	

 � ���

� � 	
�

� � 	
 �*)
So, ��� � � � � 	�
 �*) � � � 	 , therefore � is �) -optimal for

�
. �

References

[1] Craig Boutilier. Macros and subproblems in reinforcement learning. In personal
communication, 1998.

[2] Thomas Dean and Shieu-Hong Lin. Decomposition techniques for planning in
stochastic domains. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence (IJCAI-95), 1995.

14

[3] Doina Precup, Richard S. Sutton, and Satinder P. Singh. Planning with closed-loop
macro actions. In Working notes of the 1997 AAAI Fall Symposium on Model-directed
Autonomous Systems, 1997.

[4] Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement learning.
In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information
Processing Systems, volume 7, pages 385–392. The MIT Press, 1995.

[5] Manuela Veloso, Peter Stone, Kwun Han, and Sorin Achim. CMUnited: A team of
robotic soccer agents collaborating in an adversarial environment. In Hiroaki Kitano,
editor, RoboCup-97: The First Robot World Cup Soccer Games and Conferences.
Springer Verlag, Berlin, 1998. A shorter version appeared in the First International
Workshop on RoboCup, IJCAI-97, August, 1997.

[6] Manuela M. Veloso. Flexible strategy learning: Analogical replay of problem solving
episodes. In Proceedings of AAAI-94, the Twelfth National Conference on Artificial
Intelligence, pages 595–600, Seattle, WA, August 1994. AAAI Press.

15

