Multiagent Planning in the Presence of
Multiple Goals

Michael H. Bowling, Rune M. Jensen, and Manuela M. Veloso
Computer Science Department, Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA 15213-3891, USA

1 Introduction

Traditionally, planning involves a single agent for which a planner needisdo

a sequence of actions that can transform some initial state into some state wher
a given goal statement is satisfied. A good example of such a problem isohow
solve Rubik’s cube. The initial state is some configuration of the cube, &nd w
need to find a sequence of rotations such that every tile on each sidtheasame
color. Even though this problem is hard, the planning agent has fullaamter

the situation. The outcome of a rotation action is completely known.

Real-world planning problems, however, seldom conform to this simple do-
main model. There may be uncontrollable actions of other agents in the domain
interfering with the actions applied by the planning agent. Such uncertaintyeca
modeled by nondeterminism where actions may have several possible ogtcome
One approach is to assume that transition probabilities are known andcprodu
plans with a high likelihood to succeed (e.g., [13, 8]). The scalability of glen-
ners, however, is limited due to the overhead of reasoning about plitibabIn
addition, it may be hard to gather enough statistical data to estimate the transi-
tion probabilities. In this chapter, we consider a simpler model of nondeterminis
without transition probabilities. The effect of a nondeterministic action isrpase
a set of possible next states. Recently, efficient planners have beeloped for
this class of nondeterministic domains (e.g., [3, 11]). These plannersseyis
states and perform search implicitly in a space of Boolean functions eayiess
efficiently with reduced Ordered Binary Decision Diagrams (OBDDs) [The
plans produced by these planners are encoded compactly with OBDReaed
spond touniversal plang19] or policies in Reinforcement Learning [14]. Hence,
anondeterministic plafs a state-action table mapping from states to actions rele-
vant to execute in the state in order to reach a set of goal states. A platiged

by iteratively observing the current state and applying one of the actizesi@ted
with that state.

In this chapter, we specifically examine nondeterministic planning in domains
where nondeterminism is caused by uncontrollable agents with specific gfoals
their own. Such problems have been considered in the Al literature on muitiage
systems, in particular, concerning co-operation and negotiation (e.89,[22, 7,

5, 9]). They have also been studied in game theory and formal verificatider
various forms (e.g.,[16, 4]).

The novelty of our work is two-fold. First, we introdueelversarial planning
problemsand a class of adversarial plans callttbng cyclic adversarial plans
An adversarial planning domain has a single system agent that is corlzaladb
a single environment agent that is uncontrollable and may be an oppontet to
system agent. The task is to synthesize plans for the system agent thiaiss ro
to any plan of the environment agent. We go beyond theoretical work rase it
an OBDD-based planning algorithm that efficiently can generate strariig eg-
versarial plans. This algorithm has been fully implemented in the oBDD-Based
Informed Planning and controller Synthesis Tool (BIFROST) 0.7 [103cdad,
we formally define our concept ohultiagent planning equilibridor multiagent
domains inspired by the game theoretic notion of equilibria [17].

In Section 2, we begin by presenting the foundations of our reseanctutiia-
gent planning equilibria. First, we demonstrate intuitively through simple example
that plan solutions depend on the goals of all the agents. We also preséorintial
notion of a planning domain that we use throughout the chapter. In Sectioa 3
introduce adversarial planning. We present an algorithm for synthgsimver-
sarial plans and demonstrate theoretically and experimentally that the gehera
plans are robust to any strategy of the environment. In Section 6, wealjeee
the notion of accounting for an adversary with the solution concept of maltiag
planning equilibria. We formalize this notion for planning environments whiére a
the agents’ goals are explicitly specified. We also analyze this notion of etpuilib
in a variety of domains.

2 Foundations for Multiagent Planning

Plans are contingent upon the agent’s goals. Plans are usually evatisated
whether they achieve the goals; sometimes considering how quickly, with what
probability, or from what initial states. In addition, goals are often theimiyiv
mechanism for finding good plans through heuristics and Means-Eralg#s[15,

18]. In multiagent domains plans are of course still contingent on goalksteTia

an additional dependence, though. Good plans also depend on theoplues

5 (&)

GOAL

Figure 1: A soccer-like grid domain.

other agents, which as we have stated, depends heavily on their goals.

We assume that agents are synchronized and defined by a set of attens
world consists of a finite set of states. In each time step, each agent apqally
one action. The resulting action is calledaint action Thus, a domain is a
finite graph where vertices are states and edges are joint actions. Afpéamn o
agent is a state-action table mapping states to actions relevant to executerin ord
to achieve the goals of the agent. We will illustrate our concept of multiagent
planning through a small two-agent soccer domain.

2.1 The Soccer Domain

Consider the simple soccer-like grid domain simplified from Littman’s two-player
grid game [14], which is diagrammed in Figure 1. There are two agents A and
B each of which solely occupies one of the four unshaded squaresedielth.
Agent A begins in possession of the ball. The shaded squares aré lootvads for
our simplification of the domain. The agents have operators or actionsatesbc
with each of the compass directions (N, S, E, and W) or can wait, holding its
position (H). The two agents in this domain select their actions simultaneously, bu
in execution there is an undetermined delay before these actions arel cartie
So, the execution is serial but it is nondeterministic as to which agent’s action is
carried out first. The effect of an action is to simply move the agent in thefisgak
direction as long as the target square is unoccupied. If the target ipieddinen
the agent does not move, but if the agent was carrying the ball it losésitihé&or
agent A, losing the ball terminates execution as a failure. The goal fot Age to
move into either of the two labeled goal squares, which also terminates executio
Figure 2 shows two examples of how the agents operators affect theFstate.
the initial state, if both agents choose their south operator (S,S) they will both
simply move south. But if agent A selects south and agent B selects Eajt (S,E
then there are two possible outcomes depending on their order of exec(iion
agent A moves south first, and then agent B moves east into the now piextcu
square; or (ii) agent B bumps into agent A first causing no position ahaard
then agent A moves south.

28l(A) s 3
O Qe l(a)
S,E 7 T
o |

%8B
9 [

Figure 2: Two example effects of joint actions in the grid-soccer domaire Th
ordered pairs of actions represent the actions of agents A and Bctaspy.

2.2 Possible Plans

There are a number of different possible plans for agent A to achiexgoitls
in this domain. The various plans depend on what actions we expect Bgent
perform. We describe these plans without rigorous definitions or prapfgealing
to the reader’s intuition as to what constitutes a “good” plan. The condept o
“good” plan will be formalized later in the chapter.

Nondeterministic. One very simple case is if we believe agent B has no goals in
particular and will select its actions nondeterministically, i.e., randomly. A skensib
plan would be to hold position until the other agent’s actions carry it into thernotto
right state. From this position, regardless of the action of the other agplgna

of two consecutive west actions is guaranteed to reach the goal. SianeRBg
selects actions nondeterministically it will eventually enter the bottom right state
and so this plan is guaranteed to reach the goal. Other plans risk ageah&a@n
actions causing it to move in the way, resulting in the loss of the ball and failure.
Although this plan guarantees reaching the goal, it does not necessaigngee
achievement in a finite time, as it requires waiting a possibly infinite number of
cycles before agent B moves to the bottom right square.

Teammate. As we assume that most agents have goals, and often these goals are
known, we go beyond the assumption that the other agent selects actidogitg.

Their actions therefore are not likely to be nondeterministic but rather gthnn
carefully to reach their own goals. Consider the case that agent B idlpeigant

As teammate and therefore they have an identical set of goal statesthdrerns a

much more efficient plan. Agent A should simply hold at the initial state while its
teammate moves south out of its way. Then move west into the goal, without fear
that the other agent will move in front of it. As a teammate it can be sure that the

agent will comply with these assumptions since its goals are identi€hls plan
is guaranteed to reach the goal in a finite number of steps, as opposedtarthe
for the nondeterministic agent.

Adversary. Neither of these plans though have any guarantees if agent B is in
fact planning to stop agent A from succeeding. If agent B simply holdsdisrgl,

then neither the nondeterministic nor teammate plan for agent A would evér reac
its goal. In this situation an adversarial plan, as described in Section Jahat
provide worst-case guarantees is more appropriate. One such plarpisdeter-
ministically select between holding and moving north or south until the othet agen
is not in front of it. Then, move west into the goal hoping its action gets e&dcu
first. This plan has no guarantee of success as the opponent may stilimfawet

of it while it advances toward the goal causing the ball to be lost. It doeagth
have some possibility of success. In fact, against a good plan by theepiphis

is all that can be guaranteed.

Overlapping Goals. A whole new situation arises if we believe that agent B is not
guite an opponent but not quite a teammate. Suppose its goal is to havedagent
score, but only across the south square. In this case moving southifeoimitial
state and then west would reach the goal without its interference. Thigliian
the teammate plan, is guaranteed to succeed in a finite number of steps. Natice tha
the teammate-based plan and the nondeterministic-based plan would both fail in
this case as both agents would hold indefinitely.

These four plans are all completely different, despite the fact that thitoors
that generated the plans, the domain rules, and the agent’s goal dicangedinom
situation to situation. This demonstrates that multiagent planning solutions need to
take into account the goals of the other agents.

2.3 A Formalization

We first begin by formalizing the notion of planning domain and agent behavio
which we will use throughout the chapter. The definitions parallel closdély w
Cimatti and colleagues’ single-agent formalization [3].

Definition 1 (Multiagent Planning Domain)
A multiagent planning domain D is a tup{&, n, A;—1.», R) where,

e Sis the set of states,

e 1 is the number of agents,

This admittedly does not address crucial issues of how this team conmlancbe achieved,
and may require planned communication and coordination strategiestidogted execution.

e A, is agenti’s finite set of actions, and

e R C S x A x Sisanondeterministic transition relation wherg = A; x
. x A, and must satisfy the following condition. (§,a,s’) € R and
(s,b,s") € R then,Vi there exists” € S,

<S, <a1, - ,ai_l,bi,aiH, - ,an> ,8///> e R.

l.e., each agent’s set of actions that can be executed from a state are inde
pendent.

In addition, let AcT;(s) C A; be the set of applicable or executable actions in
states. Formally,

ACTZ'(S) = {ai e A | 3(8,(---,a¢,---),-> ER}.

The additional condition in the planning domain definition®mequires that each
agent be capable of selecting actions independently. Formally this amoungs to th
following. For all states and executable actions for the agemts Act;(s) there
exists some transitiofs, (a;—1._,),s’) thatis inR.

A Simple Example — The Narrow Doorway. Consider a two agent robot domain
where both agents are in a hallway and want to move into the same roomhtaoug
single doorway. The agents have an operator to go through the dothidG)nly
succeeds if the other agent is not also trying to go through the door.al$&have
the choice of waiting (W).

This domain can be defined using the formalization of a multiagent planning
domain above. There are four states in the donsaina {0, 1, 2,3} corresponding
to the four possible configurations of the two agents in the roanis two and
Ay pis the set of action$G, W'}. The transition relatiofR is defined by the rules
described above. The complete enumeration of states and transitions is ishow
Figure 3. Note that the domain satisfies the independent action conditiBn on

The behavior of agents is assumed to be governeddigta-action table In
each execution step, each agent chooses randomly between the asdiotiatad
with the current state in its state-action table. Thus, the agents have no meémory o
previously visited states.

Definition 2 (State-Action Table)

A state-action table; for agent; in domainD is a set of pairg (s, a;) |s € S, a; €
AcT;(s)}. Ajoint state-action table constructed from state-action tables for each
agentr;—1.. ., is the set of pairs

{(s,(a1,...,an))|s € S, (s,a;) € m}

6

©0 g (WW)
©O) 4l ew i D

(W,G) (W,G)

“ww)

will be discussed further in Section 6.

A (joint) state-action table is complete if and only if for ang S there exists some
pair (s, -) in the state-action table.

For the doorway domain, a state-action table (or plan) for each agent bgght

TA = {<03G>a<17W>7<27G>a<27W><33W>}7
T™B = {<O,G>,<0,W>,(1,G>,<2,W>,<3,W>}.

These are alsoompletestate-action tables since they specify at least one action
for each state. We can combine these tables into a conjpietetate-action table.

In general, a joint state-action table together with a multiagent planning domain
determines the entire execution of the system. In order to define what it fogans

a plan to be a solution to a planning problem we need to formalize the notion of
reachability and paths of execution. We will do this by first defining the @@t
structure of the multiagent system.

Definition 3 (Induced Execution Structure)

Letn be a joint state-action table of a multiagent planning donie= (P, S, n,
A;, R). The execution structure induced byfrom the set of initial stateg C S
isatupleK = (Q,T)withQ C SandT C S x S inductively defined as follows:

e if s 7, thens € (), and

e if s € @ and there exists a state-action pajs,a) € 7 and transition
(s,a,s") € R,thens’ € Q and(s,s’) € T.

A states € @ is a terminal state of< if and only if there is na’ € @ such that
(s,8) eT.

Intuitively, @ is the set of states that the system could reach during execution
of the planm, andT is the set of transitions that the system could cross during ex-
ecution. For our doorway domain the execution structure induced byxaonpde
joint state-action table is,

Q = {07173}7
T = {<0,1>,<0,0>,<1,3>,<1,1>,<3,3>}.

We can now formalize an execution path.

Definition 4 (Execution Path)

Let K = (Q,T) be the execution structure induced by a state-action taldlem
Z. An execution path ok from sy € 7 is a possibly infinite sequeneg, s1, so, . . .
of states inR such that, for all states; in the sequence:

e eithers; is the last state of the sequence, in which cade a terminal state
of K, or

° <3i75i+1> eT.

A states’ is reachable from a state if and only if there is an execution path with
so = sands; = 5.

For our doorway domain and example joint state-action table one execution
path from the initial state is,

0,0,0,0,1,1,...

Let EXEC(s, 7) denote the execution paths startingsat_et the length of a path
p = sgs1 - - - With respect to a set of statésbe defined by

1)

B i+ if s;€C and s; €C for 0<j <1
ple = oo : otherwise.

We will say that an execution pagiveachesa states iff |g|;,) # oc. The definition
of execution paths serves to formalize solution concepts in the remaindeeg of th
chapter.

In the next section we present a definition of the adversarial plannaiggm.
We also present and analyze an algorithm for finding plans with strormaugtess
in adversarial domains. In Section 6 we generalize adversarial plaprobtems
to a more general multiagent planning problem where all agents’ goals ale ma
explicit. We then introduce the general solution concept of multiagent planning
equilibria and analyze it in a variety of domains.

8

3 Adversarial Planning

An adversarial planning problem is a multiagent planning problem with twotage
called thesystem agerand theenvironment agenfThe system agent is controllable
and its goal is to reach a state in a set of goal states. The environmentiagen
uncontrollable. It might be an adversary to the system agent trying t@mrév
from reaching its goals.

Definition 5 (Adversarial Planning Problem)

LetD = (S,2, A, A., R) be a multiagent planning domain with a system and
environment agent and a deterministic transition relation. An adversatéining
problem P for D is a tuple(D,Z, G), whereZ C S is the set of possible initial
states and; C S is the set of goal states for the system agent.

An adversarial planfor an adversarial planning proble® is a state-action
tabler, for the system agent such that all execution paths starting in an initial state
eventually will reach a goal state. Thus, an adversarial plan can ach @ead
ends or loop indefinitely.

As an example, consider the adversarial planning problem shown ine=igur
The actions of the system and environment agentsdare- {+s, —s} and. A, =
{+e, —e}, respectively. Transitions are labeled with the corresponding joint action.
There are 5 states, namdlyF, D, U andG. I andG are initial and goal state€)
is a dead end, since the goal is unreachable ftanThis introduces an important
difference betwee’ andU that captures a main aspect of the adversarial planning
problem. We can view the two statésandU as states in which the system and
environment agent have different opportunities. Observe that thiersyagent
“wins”, i.e., reaches the goal, only if the sign of the two actions in the joint action
are different. Otherwise it “loses” since there is no transition to the goal avith
joint action where the actions have the same sign. The goal is reachahlbdith
stateF' andU. However, the result of a “losing” joint action is different fbrand
U. In F, the system agent remains i Thus, the goal is still reachable. [,
however, the agent may transition to the dead Pnathich makes it impossible to
reach the goal in subsequent steps.

Now consider how an adversarial environment agent can take adeanitéhe
possibility for the system agent to reach a dead end ftbmSince the system
agent may end i, when executing-s in U, it is reasonable for the environment
agent to assume that the system agent will always exeesiie U. But now the
environment agent can prevent the system agent from ever reatt@rgpal by
always choosing actiofte, so the system agent should completely avoid the path
throughU'.

Figure 4: An example of an adversarial planning problem.

This example domain illustrates how an adversarial environment agenttcan a
purposefully to obstruct the goal achievement of the system agent. Wesgilt
in the following sections to explain our algorithm. A solution, guaranteeingGhat
is eventually reached, is; = {(I, +s) , (F, +s), (F, —s)}.

3.1 The Algorithm

We use a generic procedureAn (Z,G) for representing nondeterministic plan-
ning algorithms that produce state-action tables as solutions. The algoritityns on
differ by the definition of the function computing the precomponere@omMP(C)).

function PLAN(Z, G)
SA—0;,C G
whileZ ¢ C
SA, — PRECOMP(C)
if SA, = 0 then return failure
elseSA — SAU SA,
C «— C U STATES(S4,)
return SA

The procedure performs a backward breadth-first search frogoilestates to the
initial states. In each step, the precompongsy, of the set of state€' covered by
the plan is computed. The precomponent is a state-action table forming a partition

10

of the final plan with relevant actions for reachifig If the precomponent is empty
a fixed point ofC' has been reached that does not cover the initial states. Since this
means that no plan can be generated that covers the initial states, the algorith
returnsfailure. Otherwise, the precomponent is added to the plan and the states in
the precomponent are added to the set of covered states.

A space and time efficient implementation of the procedure uses Ordered Bi-
nary Decision Diagrams (OBDDs) [1] to represent sets and mappingQBDD
is a compact representation of Boolean functions. Thus, states andsaat®n
represented by bit-vectors and sets of states and actions are engoO&DDs
representing theicharacteristic function The set operations intersection, union,
and compliment translates into conjunction, disjunction, and negation on the cor
responding characteristic functions.

The procedure can be used to synthegieak strong cycli¢ andstrong plans
[3] in domains where the effect of uncontrollable actions is modeled implicitly
as nondeterminism of controllable actions. An execution path of a strong plan
is guaranteed to reach states covered by the plan until a goal state afide a fi
number of steps is reached. An execution of a strong cyclic plan is alsargead
to reach states covered by the plan or a goal state. However, due tg,cycle
may never reach a goal state. An execution of a weak plan may reachratates
covered by the plan, it only guarantees that some execution exists tbhéesdhe
goal from each state covered by the plan. A limitation of these solutions when
nondeterminism is caused by uncontrollable actions of an adversariedmment
is that they are optimistic in the sense that they assume the environment to be
friendly. For instance, a valid strong cyclic plan for the example problem is

s = {(I,+s),(I,—s),(U,+s),(F,+s),(F,—s)}.

Given an adversarial opponent in our example domain, this plan may eliter a
lock in stateF’, since the environment agent may choose only to execute aetion
Thus, strong cyclic plans may loop indefinitely in adversarial domains.

3.1.1 The Strong Cyclic Adversarial Precomponent

A valid adversarial plan ensures that the environment agent, even withlet
knowledge of the domain and the plan, is unable to prevent the goal states to b
reached. We formalize this idea in the definition dba state A states is fair

with respect to a set of stat€s and a planSA if, s is not already a member of

C and for each applicable environment action, there exists a system act#h in
such that the joint action leads infa

11

Definition 6 (Fair State) A states ¢ C' is fair with respect to a set of statésand
aplanSAiff Va, € ACT(s).3(s,as) € SA,s" € C.(s,(as,ae),s’) € R.

For convenience, we define anfair state to be a state that is not fair. The adver-
sarial precomponent is a strong cyclic precomponent [3] prunedifainstates. In
order to use a precomponent for OBDD-based nondeterministic plaréngeed

to define it as a Boolean function. We first define a Boolean functioresepting

the transition relatiofl’(s, as, ac, s') = (s, (as,a.) ,s’) € R. A core computation

is to find all the state-action pairs where the action applied in the state can lead into
a set of state§’. This set of state-action pairs is called threimageof C. The
preimage of joint actions is

JIPREIMG(C) (s, as,ae) = 3s' . T (s, as,ae,s") AN C(s).
By abstracting environment actions, we get the preimage of system actions
PREIMG(C)(s, as) = Jae . IPREIMG(C)(s, as, ae).

We can now define a Boolean function representing the state-action paipan
SA for which the state is fair with respect to a set of stafes
FAIR(SA,C)(s,as) = SA(s,as) A=C(s) A
Vae . [ACTe(s,ae) = Jdas.SA(s,as) A JFPEIMG(C’)(s,aS,ae)}
where ACT.(s,a.) = Jas,s".T(s,as,ae,s’). The strong cyclic adversarial pre-

component (SCAP) is computed by iteratively extending a set of canditdée s
action pairs and in turn prune

e State-actions that can reach states not covered by the current plaa or th
states in the candidate;

e State-actions of states that are unfair with respect to the currently cbvere
states.

The computation of the precomponent terminates either if the pruned candidate
has reached a non-empty fixed point or if it is impossible to extend the caadida
further. In the latter case, the returned precomponent is empty.

Definition 7 (SCAP) The strong cyclic adversarial precomponent of a set of states
C'is the set of state-action pairs computed by func8@ARC).

12

function SCARC)

1 wSA«— 0

2 repeat

3 OldwSA — wSA

4 wSA «— PREIMG(C U STATES(wSA))
5 wSA — PRUNE(wSA, C)

6 SCA «— SCAPlanAuz(wSA, C)

7 until SCA#0 VvV wSA = OldwSA

8 return SCA

function SCAPLANAUX (startSA, C)

1 SA < startSA

2 repeat

3 OldSA — SA

4 SA — PRUNEOUTGOING(SA, C)
5 SA — PRUNEUNFAIR(SA, C)

6 until SA = OldSA
7 return SA

function PRUNEOUTGOING(SA, C)
1 NewSA «— SA\ PREIMG(C U STATES(SA))
2 return NewSA

function PRUNEUNFAIR(SA, C)

1 NewSA «—

2 repeat

3 OldSA — NewSA

4 FairStates < C' U STATES(NewSA)

5 NewSA «— NewSA U FAIR(SA, FairStates)
6 until NewSA = OldSA
7 return NewSA

PRUNE(SA,C)(s,as) = SA(s,as) AN —=C(s)
STATES(SA)(s) = 3as.SA(s,as).

For an illustration, consider the first candidate of SG&P shown in Fig-
ure 5(a). Action—s would have to be pruned froi since it has an outgoing

13

l\ f (—S:—C) | f (-s,—€) { A (-s,—¢)
(+s,—€) - (+5,~€) 1 (+s,—€
s+ SN (-s+e) N . Vo(=ste) N
| G G \

(a) (b) (©)

Figure 5: (a) The first candidate of SCA®), for the example shown in Figure 4;
(b) The candidate pruned for actions with outgoing transitions; (c) Timairgng
candidate pruned for unfair states. Since no further state-action paipuned,
this is the strong cyclic adversarial precomponent returned by SGAP

transition. The pruned candidate is shown in Figure 5(b). Now there i£ho a
tion leading toGG in U when the environment chooses. U has become unfair
and must be pruned from the candidate. The resulting candidate is shdwgr in
ure 5(c). Since the remaining candidate is non-empty and no further staia-a
pairs need to be pruned, a non-empty strong cyclic precomponent éra$dumd.

The generic nondeterministic planning algorithm using the SCAP precompo-
nent returns the following strong cyclic adversarial plan for the examplel@m

s = {(I,+s),(F,+s),(F,—s)}.

This plan corresponds to the plan that we earlier argued would guargoéde
achievement by avoiding the stdte

4 Action Selection Strategies

A strong cyclic adversarial plan guarantees that no intelligent environoaan
choose a plan that forces executions to cycle forever without evehirepa goal

state. In principle, though, infinite paths never reaching a goal statetildres
produced by a system that “keeps losing” to the environment. Howeyasdum-

ing the system selects randomly between actions in its plan, we can show that the
probability of producing such paths is zero.

14

Theorem 1 (Termination of Strong Cyclic Adversarial) By choosing actions ran-
domly from a strong cyclic adversarial planfor the adversarial planning problem
P =(D,Z,G), any execution path will eventually reach a goal state.

Proof. Since all unfair states and actions with transitions leading out of the states
covered byr have been removed, all the visited states of an execution path will
be fair and covered by the plan. Assume without loss of generalityntistitong
cyclic adversarial precomponents were computed in order to generddelie to

the definition of precomponent functions, we can then partition the set tefssta
covered byr into n 4+ 1 ordered subset§,,, - - -, Cy whereZ C C,,, Cy = G,
andC; for 0 < i < n contains the states covered by precomporier@onsider

an arbitrary subsef’;. Assume that there were iterations of the repeat loop

in the last call to RUNEUNFAIR when computing precomponeit We can then
subpartition”; intom ordered subsets; ,,,, - - -, C; 1 whereC; ; contains the states

of the state-action pairs addedA@wSA in iterationj of PRUNEUNFAIR. Due to

the definition of AIR, we have that the states @} ; are fair with respect ta and

the stateg” given by

j—1 i1
C = U C@j U U C;.
k=1 k=0

By flattening the hierarchical ordering of the partitiafls, - - - , Cp and their sub-
partitions, we can assume without loss of generality that we get the orpartd
tioning Ly, - - -, Lo whereLy = Cy. Given that actions are selected uniformly in
m, the fairness between the states in the levels guarantees that there igermon-
probability to transition to a state ih;_1,---, Ly from any state inl;. Conse-
qguently, an execution path only reaching states coveredwyl eventually reach

a state inLy. O

5 Experimental Evaluation

The performance of the strong cyclic adversarial planning algorithmakiated

in two domains. The first of these is a parameterized version of the example do
main shown in Figure 4. The second is a grid world with a hunter and prey. All
experiments are carried out using the BIFROST 0.7 search engine otiarRdl|
Redhat Linux 7.1 PC with 500MHz CPU and 512 MB RAM. Total CPU time is
measured in seconds and includes time spent on allocating memory in the OBDD
software library and parsing the problem description.

15

5.1 Parameterized Example Domain

The parameterized example domain considers a system and environment age
with actions{+s, —s, [} and{+e, —e}, respectively. The domain is shown in Fig-

ure 6. The initial state i = {/} and the goal states ate= {¢1,g2}. Progress
toward the goal states is made if the signs of the two actions in the joint action are
different. At any time, the system agent can cause a switch from the lowee to
upper row of states by executirig In the upper row, the system agent can only
execute+s. Thus, in these states an adversarial environment agent can prevent
further progress by always executiag. Figure 7 shows the total CPU time and

(+s,+e) (+s,+e) (+s,+e)

O(+s,—e) O(+s,—e) O
o—h 0 — P

eoe .(g1

(L+e) (L+e) (L+e)
(l,—e) (l,—e) (lL—e)

I (+s,—e) (+s,—e)

LY e O)

— e
(—s,+e) Q (—s,+e)

(+s,+e) (+s,+e) (+s,+e)
(—s,—e) (—s,—e) (—s,—e)

Figure 6: The generalized example domain shown in Figure 4.

the size of the produced plans of the strong cyclic algorithm compared with the
strong cyclic adversarial algorithm. Due to the structure of the domain, tQélen

of a shortest path between the initial state and one of the goal states grearsylin
with the number of states. Since each of the two algorithms at least must compute
[preimages, their complexity is at least exponential in the number of Booldan sta
variables. The experimental results seem to confirm this. In this domain,dhir

is a small overhead of generating adversarial plans compared to nersadal
plans. The quality of the produced plans, however, is very differemtiristance,

the strong cyclic adversarial plans only consider executingand+s, while the
strong cyclic plans consider all applicable actions. The strong cyclicreahral

plan is guaranteed to achieve the goal. In contrast, the probability of auipidne

goal in the worst case for the strong cyclic plan is less @ﬁ”*{ whereN is

the number of states in the domain.

16

=
o
o

100

T T
Adversarial ——

Ordinary ----x--- Adversarial —+—

Ordinary -

-
15}
T

-
o
T

-
T

Total CPU time (log scale)

Number of OBDD nodes in the plan (log scale)

[

0.1

N
s~

.
2 4 6 8 10 12 14 16 6 8 10 12 14 16
Number of Boolean state variables Number of Boolean state variables

Figure 7: Results of the parameterized example domain.

5.2 Hunter and Prey Domain

The hunter and prey domain consists of a hunter and prey agent movangrass
board. Initially, the hunter is at the lower left position of the board and thg isr
at the upper right. The initial state of the game is shown in Figure 8. The task of

Figure 8: The hunter and prey domain.

the hunter is to catch the prey. This happens if the hunter and prey at sinte p

are at the same position. The hunter and prey move simultaneously. Thegtare
aware of each others moves before both moves are carried out. Iistegaclihey

can either stay at the spot or move like a king in chess. However, if theigpety

the lower left corner position, it may change the moves of the hunter to treat of
bishop (making single step moves). This has a dramatic impact on the game, since

17

the hunter then only can move on positions with the same color. Thus, to avoid the
hunter, the prey just have to stay at positions with opposite color. A strgelig c
adversarial plan therefore only exists, if it is possible for the hunter tbdiplan

that guarantees that the prey never gets to the lower left corner. Agstyamtic

plan, on the other hand, does not differentiate between whether the mmies

like a king or a bishop. In both cases, a “friendly” prey can be catched.

We consider a parameterized version of the domain with the size of the chess
board ranging fron® x 8 to 512 x 512. Figure 9 shows the total CPU time and the
size of the plans produced by the strong cyclic algorithm compared to thegstro
cyclic adversarial algorithm. In this domain strong cyclic adversarial ptaas

1le+06

10000

adversarial ——

adversarial ——
i ordinary ----x---

ordinary ----e---

100000 F

-
o
S
S

10000 |

Total CPU time (log scale)
2
o
o

1000 ¢

i
o
T

Number of OBDD nodes in the plan (log scale)

-
15
S

10 15 20 25 30 35 40 15 20 25 30 35 40
Number of Boolean State Variables Number of Boolean State Variables

=
15}

Figure 9: Results of the Hunter and Prey domain.

larger and take substantially longer time to generate than ordinary strofig cyc
plans. The strong cyclic adversarial algorithm spends more than 40068dsfor
problems with 28 Boolean state variables or more. However, as discussee, a

it is non-trivial, if there exists a strategy of the hunter that guaranteeshthatrey
never succeeds in reaching the lower left corner. Thus, we may ethese plans

to be computationally harder than strong cyclic plans.

Our experimental evaluation shows that the relative complexity differeace b
tween synthesizing adversarial and non-adversarial plans is pratggendent.
For some problems, the structural difference between adversarinbaradversarial
plans is so little that there only is a small overhead of synthesizing advérsaria
plans. For other domains, however, this structural difference is signifand may
cause adversarial plans to be hard to synthesize relative to norsadaeplans.

18

6 Equilibria in Multiagent Planning

In this section, we introduce a more general framework for multiagent jpignn
We explicitly specify all of the agents goals, and introduce the solution gbnce
of multiagent planning equilibria that accounts for all of the agents goale Th
definitions and concepts presented in this section are not bound to aiylsar
planning algorithm or language. The reader may find it easier to look at ebme
the examples given in Section 6.2 before moving to the formalization given below

6.1 The Formalization

We start by formalizing the notion of a multiagent planning problem that explicitly
enumerates all of the agents’ goals.

Definition 8 (Multiagent Planning Problem)

LetD = (S, n, A;=1..», R) be a multiagent planning domain. A multiagent plan-
ning problempP for D is atuple(D,Z, G;—1.. »), WhereZ C S is the set of possible
initial states andy; C S is the set of goal states for agent

Recall the doorway example shown in Figure 3. The goal states for Agaet
Ga = {1,3} and for agent B ar¢z = {2,3}. The initial state set is the singular
set{0}.

We can now formalize our notion of a plan as a state-action table. We actually
define multiple concepts increasing in strength. These concepts formatieeado
the intuitive discussion from the previous section about whether a plaorteasr
more of the following properties:

e the possibility of reaching the goal,
e a guarantee of reaching the goal, and
e a guarantee of reaching the goal in a finite number of steps.

These concepts and their formalization are inspired and highly related to Cimatti
and colleagues’ single-agent solution concepts [3]. They are alsw$trelated
to the properties of the adversarial planning algorithm described in Setfion

Definition 9 (Multiagent Planning Solutions)

Let D be a multiagent planning domain art= (D, Z,G;—1.) be a multiagent
planning problem. Letr be acompletejoint state-action table fo>. Let K =
(Q, T) be the execution structure inducedbfromZ. The following is an ordered
list of solution concepts increasing in strength.

19

1. 7w is a weak solution for ageritif and only if for any state if some state in
G; is reachable.

2. w is a strong cyclic solution for ageritif and only if from any state i)
some state iiyj; is reachable.

3. « is a strong solution for ageritif and only ifall execution paths, including
infinite length paths, from a state @ contain a state irg;.

4. 7 is a perfect solution for agent if and only if for all execution paths
S0, 81, S2 . .. from a state inQQ there exists some > 0 such thatvi > n,
si € G;.

A state-action table’s streng®TRENGTH(D, P, i, 7) is the largest number whose
condition above applies for agentlf no conditions apply theBTRENGTH(D, P,
i,m) = 0.

For our doorway domain, the joint state-action table is a strong cyclic solution
for both agents but not strong (i.e., it has a strength of 2 for both agents3
means that there is a path to the goal from any reachable state. But thelsar
paths that do not include either agents’ goal states, and so it is not g styortion
for either agent.

The plans from the soccer domain can also be described under this solution
framework. The plan that handles the nondeterministic agent B is a stratig cy
solution since a goal state is always reachable but there are infinitetiexegaths
where agent A does not reach the goal (e.qg., if agent B holds indefjnikady the
teammate case, the plan is a perfect solution since it is guaranteed to regohlthe
in three steps and remain there. The same is true for the situation whereéBagent
goal is to have the ball scored in the southern square. In the adverseg the
plan is only weak since some execution paths result in losing the ball and failing

Notice that the adversarial planning algorithms also give similar guarantees.
For example, a strong cyclic adversarial plan along vaitty plan by the other
agent has a SRENGTH of 2. Likewise, an optimistic adversarial plan along with
anyplan by the other agent has arfEENGTHOf 1.

These solutions define what it means for one agent to be successfukgoint
state-action table. The goal of planning from one agent's perspectiodiizd a
plan that has the highest strength given the plans of the other agentheRiher
agents’ selection of a plan is equally contingent upon the first agent’s plais
recursive dependency leads to the main contribution of this section: multiagen
planning equilibria.

20

Definition 10 (Multiagent Planning Equilibria)

Let D be a multiagent planning domain al= (D, Z,G;—1.) be a multiagent
planning problem. Letr be acompletejoint state-action table fo. Let K =
(@, T) be the execution structure inducedbfromZ. = is an equilibrium solution
to P if and only if for all agents and for any complete joint state-action tabtée
such thatr’_, = ;,

STRENGTH(D, P, i, m) > STRENGTH(D, P, i, 7).

l.e., each agent’s state-action table attains the strongest solution conasgibfe
given the state-action tables of the other agents.

Note that our example joint state-action table for the doorway domaintis
an equilibrium. Both agents A and B currently have strength 2, but B caevech
a strength of 4 by choosing a different state-action table. SpecificalljpoBld
select the wait (W) action from the initial state and the go (G) action in state 1.

6.2 Examples

To make the concept of planning equilibria clearer, we will examine it in a numbe
of illustrative domains. We first examine the doorway domain along with a couple
of variants. We then consider a domain representation of the childrens Back-
Paper-Scissors, and finally we reexamine the various plans in the stwroain.

6.2.1 Doorway Domain

We gave above an example joint state-action table that is not a multiagent planning
equilibria for this domain. An equilibria is the following state-action tables:

T = {<07G>7<17W>7<27G>7<37W>}7
mTB = {<07W>7<17G>7<27W>7<3’W>}'

In this case agent A goes through the door while agent B waits and thewsollo
through the door. This is a perfect plan for both agents and so obvinasigent

can achieve a higher strength with a different state-action table. Similarly, the
symmetric tables where agent B goes through the door while agent A waits is als
an equilibrium. There is an additional equilibrium,

TA — {<0’G>7<07W>7<LW>7<27G>7<37W>}’
™ = {<0aG>7<07W>7<1aG>7<27W>7<37W>}'

21

(SP)(R,S)

(RR) e

PP T (P.R) CITTIRRS ‘

(ss) ™= °* R
(RP)(S.R) | i
(P.S) !)

Figure 10: Rock-Paper-Scissors as multiagent planning.

Here both agents nondeterministically decide between going through thamibor
waiting. This results in a strong cyclic solution for both agents, but giverstate-
action table for the other agent no strong or perfect plan exists for eitfest. So
this is also an equilibrium although obviously inferior to the other equilibria eher
both agents have higher strength plans. In game theory, such a joinggtisite
called Pareto dominated.

Collision variation. Consider a variation on this domain where collisions (when
both agents choose G) result in the robots becoming damaged and unabigto mo
In this case, the first two state-action tables above remain equilibria, butitte th

inferior table no longer is an equilibrium. This joint plan is now only a weak
solution for both agents since there is a possibility of never achieving the goa
Each agent can also change to a different plan where it waits for theagbat to

get through the door thus achieving a strong cyclic plan and a higheggiren

Door closing variation. Finally, consider that one agent entering the room some-
times causes the door to close behind it. Once the door is closed it canmueriemo
and the doorway cannot be used. In this case, the same two joint plargaare a
an equilibrium but now they have different strengths for the differgengés. The
first joint state-action table is a strong plan for agent A, but only a weak fola
agent B, though it can do no better. The second is just a symmetry of this.

6.2.2 Rock-Paper-Scissors

Consider a planning domain representation of the children’s game Rgek-Pa
Scissors. Each agent simultaneously chooses one of rock (R),(Paper scissors
(S). The winner is determined by a cyclic rule: rock loses to paper, papes to
scissors, scissors loses to rock. Figure 10 gives the enumerationas, $tansi-
tions, and goals for this planning problem. In this case, there is a uniqueimdan
equilibrium where each agent’s state-action table contains every actimjoirtt
plan is a weak solution (strength 1) for both agents and neither agenwvii@h s
to a different plan and get a higher strength. This plan is analogous t@athe's
game theoretic equilibrium which randomizes evenly between all three acdpns [

22

6.2.3 Soccer Domain

Let us reconsider the soccer-like domain. We presented three distimetina
problems where agent A's goals remained constant, but agent B’s\goigd from
having identical goals to A, opposing goals to A, and a subset of A's gddle
example plans described for these situations, if we add in the implied plandot ag
B, are all equilibria to their respective multiagent planning problems. In the-tea
mate case and the overlapping goal case, the equilibrium is a perfect sdhurtio
both agents. So, obviously, no agent can switch plans to improve on thiggolu

In the adversarial case, it is a weak solution for both agents, and nagbat can
improve on this strength. This formalization of the planning equilibrium matches
well with our intuitive notions of “good” plans in multiagent domains.

6.3 Discussion

Multiagent planning equilibria is a powerful concept both to understanchtiig-
agent planning problem and as a viable solution that accounts for theagfiets’
goals. It also opens up many avenues for further research andstamting. We
consider a couple important questions this work raises.

The first issue is the number of planning equilibria. The doorway domain
shows that multiple equilibria may exist. Although some equilibria are obviously
inferior to others, the equilibria framework need not define a single solptam
For example, the two symmetric equilibria in the doorway domain are not equiv-
alent, nor is one Pareto dominant. This calls for coordination or communication
mechanisms to decide between competing equilibria. In addition, some problems
may have no equilibria. Figure 11 gives an example planning problem with no
equilibrium. Each agent has three possible complete state-action tablessiand a
ple examination of the nine possible pairs will demonstrate that none are eiquilibr
Still, large classes of domains can be proven to have equilibria (e.g., teanindoma
and adversarial domains.) Other interesting questions are whether eguahist
in most useful domains, or what are reasonable plans when they dgisiot e

Second, this work presents a compelling framework and solution conmept f
multiagent planning, and gives the challenge of devising methods to find plan-
ning equilibria. The equilibrium definition involves universal quantificatioero
an agent’s possible plans, which is exponential in the number of stated) iahic
turn is exponential in the number of state variables. This is intractable for any
thing but domains with a handful of state variables. This opens up a néw ofa
interesting issues relating to efficiently finding equilibria under differemmitag
frameworks, languages, or classes of domains. Planning for agent&desiti-
cal goals is essentially a single-agent planning problem. In the case exfsadal

23

Figure 11: Domain without an equilibrium.

settings, the algorithm in Section 3 can find half of an equilibrium plan. These s
cial case algorithms are evidence that multiagent planning equilibria cartfbe bo
theoretically and practically powerful concept.

One possible general technique for finding equilibria comes from game the-
ory’s alternating-move Cournot process [6]. The basic idea would b&atbeach
agent with a complete state-action table and then each agent alternates dinding
new complete state-action table that achieves the highest strength givethehe o
agents’ tables. This process is stopped if none of the agent’s can imgmdheir
current table given the others’ and so the joint state-action table is an eigumilib
This technique may hold some promise. If the initial state-action tables include all
available actions to the players, this process could actually find equilibrizeny ev
example presented in this chapter. Details of the technique, such as hoedio se
among equally strong state-action tables, would be critical to an actual implemen-
tation and analysis. This does, though, give insight into how planning equitib
may be found in practice.

7 Conclusion

In this chapter, we explored the importance of accounting for all of thetage
goals when planning in a multiagent environment. We both examined this fact in
planning for an adversary, as well as defining a more general soluitrept that
explicitly depends on all of the agents’ goals.

We contributed a new OBDD-based nondeterministic planning algorithm, strong
cyclic adversarial planning. This algorithm naturally extend the previtang
cyclic algorithm to adversarial environments. We have proven and skawpiri-
cally that, in contrast to strong cyclic plans, a strong cyclic adversarialgieays
eventually reach the goal.

We also presented a formalization of multiagent planning where all agergs hav

24

individually specified goals and introduced the concept of a multiagent ipigann
equilibrium. This is the first known solution concept that explicitly accounts fo
the goals of all the agents. This provides a unifying framework for ceunisig
planning in multiagent domains with identical, competing, or overlapping goals. It
also opens up many exciting questions related to practical algorithms fordindin
equilibria, the existence of equilibria, and the coordination of equilibria selec

Acknowledgments

This research is sponsored in part by the Danish Research Aged¢hebnited
States Air Force under Grants Nos F30602-00-2-0549 and F30&6@204.35. The
views and conclusions contained in this document are those of the autibrs a
should not be interpreted as necessarily representing the official goticien-
dorsements, either expressed or implied, of the Defense AdvancearBeBeojects
Agency (DARPA), the Air Force, or the US Government.

References

[1] R. E. Bryant. Graph-based algorithms for boolean function manipulatio
IEEE Transactions on Computei®677—691, 1986.

[2] J. G. Carbonell. Counterplanning: A strategy-based model ofradigeplan-
ning in real-world situationsArtificial Intelligence 16(3):257-294, 1981.

[3] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, &trong
Cyclic Planning via Symbolic Model Checkingrtificial Intelligence 147(1-
2), 2003.

[4] L. De Alfaro, T. A. Henzinger, and O. Kupferman. Concurreséchability
games. InIEEE Symposium on Foundations of Computer Sciepeges
564-575, 1998.

[5] E. H. Durfee. Coordination of Distributed Problem SolverKluwer Aca-
demic Press, 1988.

[6] Drew Fudenberg and David K. Levin€lhe Theory of Learning in Games
The MIT Press, 1999.

[7] M. P. Georgeff. Communication and interaction in multiagent planning.
In Proceedings of the 3rd National Conference on Artificial Intelligence
(AAAI'83), pages 125-129, 1983.

25

[8] P. Haddawy and M. Suwandi. Decision-theoretic refinement planusig
inheritance abstraction. IAroceedings of the 2nd International Conference
on Artificial Intelligence Planning Systems (AIPS-9994.

[9] N. R. Jennings. Controlling cooperative problem solving in indusinialti-
agent systems using joint intentionAtrtificial Intelligence 75(2):195-240,
1995.

[10] R. M. Jensen. The BDD-based InFoRmed planning and cOntrofiethg&-
sis Tool (BIFROST) version 0.7http://www.cs.cmu.edu/runej ,
2003.

[11] R. M. Jensen, M. M. Veloso, and R. E. Bryant. Guided symbolizensal
planning. InProceedings of the 13th International Conference on Automated
Planning and Scheduling ICAPS-(3ages 123-132, 2003.

[12] T. Kreifelts and F. Martial. A negotiation framework for autonomousrag.
In Proceedings of the 2nd European Workshop on Modeling Autonomous
Agents and Multi-Agent Worlgdpages 169-182, 1990.

[13] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabiliptemn-
ning. Artificial Intelligence 76:239-286, 1995.

[14] Michael L. Littman. Markov games as a framework for multi-agent iicd-
ment learning. IrProceedings of the Eleventh International Conference on
Machine Learningpages 157-163. Morgan Kaufman, 1994.

[15] Allen Newell and Herbert A. Simon. GPS, a program that simulates huma
thought. In Edward A. Feigenbaum and Julian Feldman, edi@os)puters
and Thoughtpages 279-296. McGraw-Hill, New York, 1963.

[16] M. J. Osborne and A. RubinsteiA.course in game theorMIT Press, 1994.
[17] Guillermo Owen.Game TheoryAcademic Press, 1995.

[18] J. Pearl. Heuristics : Intelligent Search Strategies for Computer Problem
Solving Addison-Wesley, 1984.

[19] M. Schoppers. Universal planning for reactive robots in edfatable envi-
ronments. IProceedings of IJCAI-8ages 1039-1046, 1987.

[20] G. Zlotkin and J. S. Rosenschein. Incomplete information and deceiptio
multi-agent negotiation. IRProceedings of the 12th International Joint Con-
ference on Artificial Intelligence (IJCAI'85pages 225-231, 1985.

26

