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Abstract. Considering one-dimensional continuum-armed bandit prob-
lems, we propose an improvement of an algorithm of Kleinberg and a
new set of conditions which give rise to improved rates. In particular,
we introduce a novel assumption that is complementary to the previ-
ous smoothness conditions, while at the same time smoothness of the
mean payoff function is required only at the maxima. Under these new
assumptions new bounds on the expected regret are derived. In partic-
ular, we show that apart from logarithmic factors, the expected regret
scales with the square-root of the number of trials, provided that the
mean payoff function has finitely many maxima and its second deriva-
tives are continuous and non-vanishing at the maxima. This improves a
previous result of Cope by weakening the assumptions on the function.
We also derive matching lower bounds. To complement the bounds on
the expected regret, we provide high probability bounds which exhibit
similar scaling.

1 Introduction

We consider continuum-armed bandit problems defined by some unknown distri-
bution-family P (·|x), indexed by x ∈ [0, 1]. In each trial t = 1, 2, . . . the learner
chooses Xt ∈ [0, 1] and receives return Yt ∼ P (·|Xt). We assume that Yt is
independent of Ft−1 = σ(X1, Y1, . . . , Xt−1, Yt−1) given Xt. Furthermore, the
returns are assumed to be uniformly bounded, say Yt ∈ [0, 1].

The goal of the learner is to maximize her expected return. Let the mean
return at x be

b(x) , E [Y1 |X1 = x] ,

where we assume that b : [0, 1] → [0, 1] is measurable. Let b∗ , supx∈[0,1] b(x) be
the best possible return. Since P is unknown, in every trial the learner suffers a
loss of b∗ − Yt, so that after T trials the learner’s regret is

RT , T b∗ −
T∑

t=1

Yt.

With this, return-maximization is the same as regret minimization.



In general, the domain of the decision or action variable Xt can be multi-
dimensional. Here we restrict our attention to the one-dimensional case as this
shares many of the difficulties of the full multi-dimensional problem, while it
allows a simplified presentation of the main ideas.

The continuum-armed bandit problem has many applications (for references
see e.g. [1]) and has been studied by a number of authors (e.g., [2, 1, 3]). It turns
out that the continuum-armed bandit problem is much harder than finite-armed
bandit problems. For the latter, it is known that logarithmic regret is achievable
(see e.g. [4] and the references therein), while for the continuum-armed bandit the
regret in typical cases will be polynomial. Concerning results on one-dimensional
decision spaces, Kleinberg has derived upper and lower bounds on the regret un-
der the assumption that the mean payoff function is uniformly locally Lipschitz
with some exponent 0 < α ≤ 1. Functions in this class satisfy the requirement
that there exists some neighborhood size δ > 0 and constant L ≥ 0 such that for
any x, x′ ∈ [0, 1] which are δ-close to each other, |b(x)−b(x′)| ≤ L|x−x′|α holds.
Kleinberg proposed a natural discretization-based algorithm that divides the do-
main into subintervals of equal lengths and plays a finite-armed bandit problem
over the discretized problem. When choosing an interval, Kleinberg’s algorithm
samples its midpoint. He proves that this algorithm achieves an expected regret
of Õ

(
T 2/3

)
over T steps, along with a lower bound of Ω(T 2/3) that matches the

upper bound apart from a logarithmic factor. If the exponent α is known, the
algorithm is shown to achieve expected regret of size Õ

(
T (1+α)/(1+2α)

)
.

In another recent work Cope [3] studies a modified Kiefer-Wolfowitz algo-
rithm (the modification concerns the learning rates). He shows an expected
regret bound of size O(T 1/2) if b is unimodal, three times continuously dif-
ferentiable, and its derivative is well behaved at its maxima x∗ in the sense that
c1|x− x∗|2 ≤ (x− x∗)b′(x) and |b′(x)| ≤ c2|x− x∗| hold for some c1, c2 > 0.

In this paper, we provide a refined performance characterization for the fol-
lowing modification of Kleinberg’s algorithm: While Kleinberg suggested to pick
the midpoints of the intervals, we propose to sample actions uniformly at ran-
dom within the interval. The key underlying idea is the following. There are two
sources of the loss in the algorithm: the loss coming from the discretization of
the continuous action space (the approximation loss) and the loss for selecting
suboptimal arms (cost of learning). A bound on the approximation loss is con-
trolled by the smoothness of the function at its maxima. The cost of learning,
on the other hand, is controlled by the gap between the payoffs of suboptimal
intervals and the optimal payoff. These gaps are easier to control if one samples
uniformly from an interval than if one samples only the midpoint of the inter-
val. Our analysis overcomes another limitation of Kleinberg’s analysis which is
incapable of capturing higher order smoothness: If b is uniformly locally Lip-
schitz with coefficient α > 1 then it must be constant. We avoid this problem
by demanding continuity only at the maxima of the mean payoff function.

A careful analysis then leads to a number of improved bounds. In particular,
the modified algorithm achieves expected regret of Õ

(
T 1/2

)
if b has finitely

many maxima and non-vanishing, continuous second derivatives at all maxima.



Compared with the result of Cope, the regret is within a logarithmic factor,
while our conditions on the payoff function are much weaker. Our upper bounds
on the expected regret are complemented by a matching lower bound and a
high-probability bound.

2 Problem Setup and Algorithm

In this section we state our assumptions on the mean payoff function, give our
algorithm and an outline of the rest of the paper.

Our first assumption is a continuity condition. Without such a condition the
regret may grow linearly with T , as it is hard to find maxima of a function,
which are obtained at a sharp peak. We propose to capture this difficulty by the
degree of continuity at the maxima:

Assumption 1. There exist constants L ≥ 0, α > 0 such that for any point
x∗ ∈ [0, 1] with lim supx→x∗ b(x) = b∗ , supx∈[0,1] b(x), and all x ∈ [0, 1]

b(x∗)− b(x) ≤ L|x∗ − x|α.

Define the loss function dx∗(x) , b(x∗)−b(x). Under Assumption 1, 0 ≤ dx∗(x) ≤
L|x∗ − x|α. Hence dx∗ is Hölder continuous at x∗ with exponent α, and so is
b. In particular, dx∗(x∗) = 0 and thus b(x∗) = b∗. Note that since we do not
require this condition to hold at all points in the domain of b, we may allow
α > 1 without restricting the set of admissible functions to the set of constant
functions.

Finding the maximum is also hard, if there are many candidates for the
maximum, i.e., if for many x the value of b is close to b∗. This difficulty is
captured by the measure of points with value close to the maximum:

Assumption 2. There exist constants M ≥ 0, β > 0 such that for all ε > 0,

m ({x : b∗ − ε < b(x) ≤ b∗ }) ≤Mεβ

holds, where m denotes the Lebesgue measure.

In terms of the loss function d(x) , b∗ − b(x) the condition states that
m({x : d(x) ≥ ε }) ≥ 1−Mεβ . For large β and ε > 0, m({x : d(x) ≥ ε }) ≈ 1.
Hence the maxima of the function do not have strong competitors. In fact,
Assumptions 1 and 2 are complementary to each other in the sense that αβ ≤ 1
holds for most functions. In particular, an elementary argument shows that under
these assumptions αβ ≤ 1 holds if b is measurable, all maxima of b are in (0, 1)
and b is not constant in the vicinity of any of its maxima.

Assumptions 1 and 2 put global constraints on the function. We will also
consider the following assumption which relaxes this requirement:

Assumption 3. Let X∗ be the set of maxima of b. Then X∗ ⊂ (0, 1) and there
exist ρ > 0, ν > 0, α > 0, β > 0, L ≥ 0,M ≥ 0 such that for any maximum x∗ ∈
X∗, Assumptions 1 and 2 hold when x is restricted to the intervals (x∗−2ρ, x∗+
2ρ) ⊂ [0, 1]. Further, it holds that whenever x ∈ [0, 1] \

⋃
x∗∈X∗(x∗ − ρ, x∗ + ρ)

then b(x) ≤ b∗ − ν.



Parameter: n
Initialization: Divide [0, 1] into n subintervals Ik with Ik = [ k−1

n
, k

n
) (1 ≤ k < n)

and In = [n−1
n

, 1].
Execute UCB on the set of intervals:

– Initialization: Choose from each interval Ik a point uniformly at random.
– Loop:

• Choose the interval Ik that maximizes b̂k+
q

2 ln t
tk

, where b̂k is the average

return obtained from points in interval Ik, tk is the number of times
interval Ik was chosen, and t is the overall number of steps taken so far.

• Choose a point uniformly at random from the chosen interval Ik.

Fig. 1. The UCBC algorithm with the number of intervals as parameter.

This assumption requires that the function is well behaved in the vicinity of its
well separated maxima.

As discussed before, we use a discretization-based algorithm that divides the
domain into subintervals of equal lengths. Within each subinterval the algorithm
chooses the actions uniformly at random. The problem is then to set the number
of intervals n and to decide which interval to sample from. While we leave the
choice of n open at the moment (n is a parameter of the algorithm, and a central
theme of the paper is to find the “right” value of n), for the latter part, just like
Kleinberg, we use the UCB algorithm (i.e. UCB1 from [4]). UCB is a finite-armed
bandit algorithm that uses upper confidence bounds on the arms’ sample-means
and achieves optimal logarithmic regret-rates [4]. A more formal description of
our UCBC (UCB for continuous bandits) algorithm is given in Figure 1.

Under Assumptions 1 and 2, in Section 3.1 we prove a generic result that gives
a bound on the expected regret in terms of the number of subintervals n and
the length T of the trial. As will be shown in Section 3.2, this result also holds
under Assumption 3. We then give a high probability bound in Section 4. In
Section 5, we show that without any knowledge of β, we get the same bounds as
Kleinberg. However, for known β we get an improved bound of Õ

(
T

1+α−αβ
1+2α−αβ

)
. In

particular, if b has finitely many maxima and a non-vanishing, continuous second
derivative at all maxima, then we prove E [RT ] = Õ(

√
T ). We also present lower

bounds on the regret under Assumptions 1 and 2 in Section 6. These lower
bounds essentially match our upper bound, hence showing that the algorithm’s
performance is optimal if α, β are known.

3 Bounds on the Expected Regret

3.1 Bounds under Assumptions 1 and 2

In this section we analyze the regret of UCBC under Assumptions 1 and 2. We
use the following result that can be extracted from the analysis of UCB (in
particular, from the proof of Theorem 1 in [4]):



Lemma 1. Consider UCB applied to a multi-armed bandit problem with payoffs
in [0, 1]. Let τi(T ) denote number of times an arm is chosen up to (and including)
time step T , and let di be the expected loss when playing arm i instead of an
optimal arm. If i is the index of a suboptimal arm then

E [τi(T )] ≤ A ln(T )
d2

i

+B (1)

for some constants A,B. In particular, one may select A = 8 and B = 1+π2/3.

Analysis of the regret of UCBC: Our analysis will follow the idea described
earlier, bounding separately the loss resulting from the discretization, and the
cost of learning which interval is the best. According to Lemma 1, for the latter
we need to lower bound the gap between the best arm’s payoff and the subop-
timal arms’ payoffs. This is the critical part of the proof.

For k = 1, 2, . . . , n let Ik denote the k-th interval, i.e. Ik , [(k − 1)/n, k/n)
if 1 ≤ k < n and In , [(n− 1)/n, 1]. Let the choice of UCB be Ut ∈ {1, . . . , n},
the choice of UCBC be Xt and the received payoff Yt. Let τi(T ) ,

∑T
t=1 I{Ut=i}

be the number of times UCBC selects arm i in the first T trials.
Denote by bk , n

∫
Ik
b(x)dx the expected payoff when the algorithm selects

to sample from the k-th subinterval. Let b1 ≤ b2 ≤ . . . ≤ bn be the ordering of
(bk)k, and let π be the permutation that gives this ordering, i.e. bπ(k) = bk. Set
τ ′i(T ) , τπ−1(i)(T ). Finally, let d∗i , b∗ − bi, and di , bn − bi.

By Wald’s identity, the expected regret of UCBC can be expressed via the
sampling times τk(T ), alternatively using τ ′k(T ), as follows:

E [RT ] =
n∑

k=1

(b∗ − bk)E [τk(T )] =
n∑

i=1

d∗i E [τ ′i(T )] .

In what follows, we analyze R̃T ,
∑n

i=1 d
∗
i τ
′
i(T ), where τ ′i(T ) , E [τ ′i(T )]. We

start with a simple observation that follows immediately from Assumption 1:

d∗n , b∗ − bn ≤ Ln−α. (2)

To see that this holds pick any maximum x∗ of b and let k∗ be the index of the
interval containing x∗: x∗ ∈ Ik∗ . Let i∗ , π(k∗). Then b∗−bn ≤ b∗−bi∗ = b(x∗)−
n
∫

Ii∗
b(x)dx = n

∫
Ii∗

(b(x∗)− b(x))dx ≤ nL
∫ 1/n

0
zαdz ≤ nL(1/n)α+1/(α+ 1) ≤

Ln−α as promised.
We split the set of arms into two parts. Let γ ≥ 1 be a real-valued number

to be selected later and define

S , { i : d∗i > γLn−α }.

By design, S contains the indices of “strongly” suboptimal intervals.
We split the regret based on if the payoff in an interval is “strongly” subop-

timal:
n∑

i=1

d∗i τ
′
i(T ) ≤

∑
i 6∈S

d∗i τ
′
i(T ) +

∑
i∈S

d∗i τ
′
i(T ) , R̃T,1 + R̃T,2.



Bounding R̃T,1: R̃T,1 is controlled by the resolution of the discretization: By
the choice of S, d∗i ≤ γLn−α whenever i 6∈ S. Hence

R̃T,1 ≤ γLn−α
∑
i 6∈S

τ ′i(T ) ≤ γLn−αT. (3)

Bounding R̃T,2: The idea here is to “sort” intervals with index in S according
to the size of the “gaps” di into different buckets and then argue that the number
of indices in a bucket with small gaps cannot be too large. Within each bucket
we use Lemma 1 to bound the regret.

First, let us note that when nα ≤ γL then S = ∅, hence R̃T,2 = 0. Thus, in
what follows we assume that nα > γL or γLn−α < 1.

Observe that S does not contain any interval with an optimal response: if
bi = bn, then i 6∈ S. Indeed, by (2) d∗n ≤ Ln−α ≤ γLn−α. Therefore, we may use
Lemma 1 to bound τ ′i(T ) for i ∈ S. By (2), d∗i = b∗ − bi ≤ bn − bi + Ln−α =
di + Ln−α and hence using (1) we get

R̃T,2 ≤ A ln(T )
∑
i∈S

(
1
di

+
Ln−α

d2
i

)
+B|S|. (4)

Let ∆k , 2−k, k = 0, 1, 2, . . . so that 1 = ∆0 > ∆1 > ∆2 > . . .. Let

Sk , { i ∈ S : ∆k ≤ d∗i < ∆k−1 }, k = 0, 1, 2, . . . .

Note that if ∆k−1 ≤ γLn−α then Sk = ∅. Hence, if we define K to be the unique
index such that γLn−α ∈ [∆K ,∆K−1), then S =

⋃K
k=0Sk. (The existence of K

is guaranteed since by assumption γLn−α < 1.) Note that K = dln2(nα/(γL))e,
and if k ≤ K, then ∆k−1 > γLn−α. Now set γ , 4. By (2), di , bn − bi ≥
b∗ − Ln−α − bi = d∗i − Ln−α, hence for i ∈ Sk, k = 0, 1, . . . ,K,

di ≥ ∆k − Ln−α = ∆k(1− Ln−α/∆k) > ∆k/2. (5)

Here in the last step we used that ∆k = (1/2)∆k−1 > (1/2) γLn−α = 2Ln−α.
Using (5) we get

∑
i∈S

(
1
di

+
Ln−α

d2
i

)
=

K∑
k=0

∑
i∈Sk

(
1
di

+
Ln−α

d2
i

)
≤

K∑
k=0

(
2
∆k

+
4Ln−α

∆2
k

)
|Sk|.(6)

A bound on |Sk|: Let Ui(ε) , {x ∈ Ii : b∗− b(x) ≥ ε } with some ε > 0. Note
that b∗ − b(x) ≥ 0 and hence by Markov’s inequality, m(Ui(ε)) ≤ (1/ε)

∫
Ii

(b∗ −
b(x))dx = (b∗ − bi)m(Ii)/ε = d∗im(Ii)/ε and thus for U i(ε) = Ii \ Ui(ε),
m(U i(ε)) ≥ (1 − d∗i /ε)m(Ii). Assume that i ∈ Sk. By the definition of Sk,
∆k−1 > d∗i and hence m(U i(ε)) ≥ (1 − ∆k−1/ε)m(Ii). Set ε = 2∆k−1 so that
m(U i(2∆k−1)) ≥ 1/2m(Ii). Therefore,

|Sk|m(I1) =
∑
i∈Sk

m(Ii) ≤ 2
∑
i∈Sk

m(U i(2∆k−1)) = 2m(∪∗i∈Sk
U i(2∆k−1)), (7)



where the disjointness follows since U i(2∆k−1) ⊂ Ii. Since U i(2∆k−1) = {x ∈
Ii : b∗ − b(x) ≤ 2∆k−1 } = {x ∈ Ii : b(x) ≥ b∗ − ∆k−2 }, the union of
these sets is contained in {x ∈ [0, 1] : b(x) ≥ b∗ − ∆k−2 } and therefore by
Assumption 2,m(

⋃∗
i∈Sk

U i(2∆k−1)) ≤M (4∆k)β . Combined with (7), this gives
|Sk|m(I1) ≤ 2M (4∆k)β and hence |Sk| ≤ 2Mn (4∆k)β .

Putting things together: The bound on |Sk| together with (6) and (4) yields

R̃T,2 ≤ 2AMn ln(T )

(
K∑

k=0

(4∆k)β

(
2
∆k

+
4Ln−α

∆2
k

))
+B n

= 4β+1AMn ln(T )

(
K∑

k=0

2(1−β)k + 2Ln−α
K∑

k=0

2(2−β)k

)
+B n. (8)

Assuming that β 6∈ {0, 1, 2} and exploiting that 2K+1 ≤ nα/L (this follows from
K − 1 ≤ ln2(1/(γLn−α)) and γ = 4), we get

R̃T,2 ≤ 4β+1AMn ln(T )
(

(nα/L)1−β − 1
21−β − 1

+ 2Ln−α (nα/L)2−β − 1
22−β − 1

)
+Bn. (9)

Considering β:

• If β < 1, from (9) we get via some tedious calculations,

R̃T,2 ≤
3 · 4β+1AMLβ−1

21−β − 1
n1+α−αβ ln(T ) +Bn.

• β = 1: Since by our earlier remark we assume that nα > γL = 4L, working
directly from (8) gives

R̃T,2 ≤ 4β+1AMα

ln 2
n lnn lnT + 4β+1AM(3 + ln2(2/L))n ln(T ) +Bn.

• 1 < β < 2: Using (9) and nα > γL > L we get

R̃T,2 ≤
4β+1AM

1− 21−β
n lnT +

2 4β+1AMLβ−1

22−β − 1
n1+α−αβ lnT +Bn.

• If β = 2, from (8) using lnx/x ≤ 1/e we get

R̃T,2 ≤ 2 4β+1

(
1 +

1
4e ln 2

)
AMn lnT + 2 4β+1AMLn1−α lnT +Bn.

• If β > 2, using again (9),

R̃T,2 ≤
4β+1AM

1− 21−β
n lnT +

2 4β+1AML

1− 22−β
n1−α lnT +Bn.



Combining these inequalities with the bound (3) on R̃T,1, we get:

Lemma 2. Consider UCBC with n intervals in a continuum-armed bandit prob-
lem where the payoffs are in the range [0, 1] and the mean payoff function satisfies
Assumptions 1 and 2 with some constants L,α,M, β. Then

E [RT ] ≤ 4Ln−α T + 4β+1AMnR′T lnT +B n,

where

R′T =



3 Lβ−1

21−β−1
nα−αβ , 0 ≤ β < 1;

α
ln 2 lnn+ 3 + ln2(2/L), β = 1;

1
1−21−β + 2Lβ−1

22−β−1
nα−αβ , 1 < β < 2;

2
(
1 + 2

4e ln 2

)
+ 2L, β = 2;

2 + 2L
1−22−β , β > 2.

Here A,B are as in Lemma 1 and can be selected as A = 8, B = 1 + π2/3.

3.2 Bounds under the Localized Assumption (Assumption 3)

The previous analysis can be repeated, except that we split S into two disjoint
parts: S′ , { i ∈ S : Ii∩(xs−ρ, xs+ρ) 6= ∅ }, S′′ , { i ∈ S : Ii∩(xs−ρ, xs+ρ) =
∅ }. If n is big enough so that 1/n < ρ, we can use the argument of the previous
section for S′, since then Assumptions 1 and 2 hold for any interval in S′. For
i ∈ S′′, by Assumption 3, di ≥ ν. Hence, d∗i d

−2
i ≤ 1/ν + Ln−α/ν2, so that∑

i∈S′′

d∗i d
−2
i ≤ n

ν
+
Ln1−α

ν2
≤ n

ν

(
1 +

L

ν

)
.

Let c , 1
ν

(
1 + L

ν

)
. Then we get the following result:

Lemma 3. Under Assumption 3, the expected regret satisfies

E [RT ] ≤ 4Ln−α T + 4β+1AMnR′T lnT + (B + c)n.

4 A High Probability Bound

The next lemma follows from a version of Bernstein’s inequality due to Cesa-
Bianchi et al. [5]:

Lemma 4. Let Js ∈ Fs−1, Js ∈ {0, 1}, Zs ∈ Fs, |Zs| ≤ K, and assume that
E [JsZs|Fs−1] = 0. Let Mt ,

∑t
s=1 JsZs, Tt ,

∑t
s=1 Js. Then for all δ > 0,

t > 0,
P (Mt > Kφ(t, Tt, δ)) ≤ δ,

where
φ(t, T, δ) ,

√
2(Tt + 1) ln(t/δ) +

√
2

3 ln(t/δ).



Proof. Let Xs = JsZs. Then Xs is a bounded martingale difference series. Ob-
serve that E

[
X2

s | Fs−1

]
≤ K2Js and hence Vt =

∑t
s=1 E

[
X2

s | Fs−1

]
≤ K2Tt.

Hence,

P
(
Mt ≥

√
2(K2Tt +K2) ln(t/δ) +

√
2

3 K ln(t/δ)
)
≤

P
(
Mt ≥

√
2(Vt +K2) ln(t/δ) +

√
2

3 K ln(t/δ)
)
≤ δ,

where the last inequality follows by Corollary 16 of [5]. ut

Now consider UCBC on a bandit problem defined by P , but let us now
change the protocol of interaction. In particular, let (Xk,t, Yk,t)k,t be a sequence
of random variables generated independently of the choice of the algorithm such
that Xk,t is uniformly distributed in the interval Ik and Yk,t ∼ P (·|Xk,t). We
assume that these samples are generated independently of each other and from
the past. Remember that Yt is the payoff received at time step t, and let Ut again
denote the index of the interval chosen at time step t, Y ′t = YUt,t, X

′
t = XUt,t.

It should be clear, that the distributions of
∑T

t=1 Yt and
∑T

t=1 Y
′
t are identical.

Hence, it suffices to analyze the properties of the regret of UCBC when it is used
under this new protocol. For simplicity, in what follows we will use Yt instead of
Y ′t and Xt instead of X ′

t.
Fix any index i ∈ {1, 2, . . . , n}. Remember that d∗i , b∗ − bi is the expected

loss when playing interval i, where bi is the expected payoff for interval i and
bi ≤ bi+1, i = 1, . . . , n − 1. Let Fs = σ(X1, Xi,1, Y1, Yi,1, . . . , Xs, Xi,s, Ys, Yi,s),
Zs = b∗−Yi,s−d∗i , Js = I{Us=i}. It can be readily verified that the conditions of
Lemma 4 are satisfied with K = 1. Hence, with probability at least 1 − δ/(2n)
simultaneously for all i, φ(T, τi(T ), δ/(2n)) ≥

∑T
s=1 JsZs =

∑T
s=1 I{Ut=i}(b∗ −

Yi,s − d∗i ), i.e.,

T∑
s=1

I{Ut=i}(b∗ − Yi,s) ≤ d∗i

T∑
s=1

I{Ut=i} + φ(T, τi(T ), δ/(2n)). (10)

Summing (10) over i, followed by some calculations gives RT ≤
∑n

i=1 d
∗
i τi(T ) +

HT (δ), where

HT (δ) ,
(√
Tn+ n

)√
2 ln(2Tn/δ) + 2(

√
2/3)n ln(2Tn/δ).

Our aim now is to obtain a high probability upper bound on τi(T ) for the
suboptimal arms. For this we change the confidence intervals of the algorithm

to ct,s(δ0) =
√

2 ln(t/δ0)
s , i.e. the modified UCBC algorithm (called UCBC(δ0))

chooses the interval that maximizes b̂k + ct,tk
(δ0) for an appropriately selected

δ0. Consider inequality (6) in the proof of Theorem 1 in [4]. Using the notation
of [4], the expectation over the triple sum in inequality (6) is O(δ0), and thus
the probability that Ti > `i + Ω(1), `i , 8 ln(n/δ0)/∆2

i , is O(δ0) by Markov’s
inequality. Hence, the following result holds:



Lemma 5. Under the assumptions of Lemma 1, with probability at least 1−nδ0,
simultaneously for all suboptimal arms i,

τi(T ) ≤ A′ ln(T/δ0)
d2

i

+B′

for some constants A′, B′.

Setting δ0 , δ/(2n) in UCBC(δ0), we get that τi(T ) ≤ A′ ln(2Tn/δ)/d2
i + B′

holds for all suboptimal arms simultaneously with probability at least 1 − δ/2.
Hence, with probability at least 1− δ,

RT ≤ 4Ln−αT +
∑
i∈S

d∗i τi(T ) +HT (δ/2)

≤ 4Ln−αT +A′ ln(2Tn/δ)
(∑

i∈S

d∗i d
−2
i

)
+ nB′ +HT (δ/2).

Continuing as in Section 3, we obtain the following result:

Lemma 6. Let δ > 0. Consider UCBC with n intervals and confidence se-
quence ct,s(δ/(2n)) applied to a continuum-armed bandit problem, where the
payoffs are in the range [0, 1] and the mean payoff function satisfies Assump-
tions 1 and 2 with some constants L,α,M, β. If nα ≤ 4L, then the regret satisfies
RT ≤ 4Ln−αT +HT (δ/2) with probability 1− δ, while for nα > 4L it holds with
probability at least 1− δ that

RT ≤ 4Ln−α T + 4β+1A′MnR′T ln(2Tn/δ) +B′ n+HT (δ/2).

Using the reasoning of Section 3.2, this result can be extended to the localized
version of Assumptions 1 and 2 (Assumption 3). We omit the details.

5 Choice of the Parameters

First note that according to Lemma 2 we have for 0 ≤ β < 1 and a suitable
constant c

E [RT ] ≤ 4L
T

nα
+
c 4β MLβ−1

21−β − 1
n1+α−αβ lnT. (11)

5.1 Results Without Assumption 2

With β = 0 and M = 1 Assumption 2 trivially holds true. From (11) we get

E [RT ] ≤ 4L
T

nα
+
c

L
n1+α lnT.

Corollary 1. If α is known, setting n ,
(

T
ln T

) 1
1+2α gives

E [RT ] ≤
(
4L+

c

L

)
T

1+α
1+2α (lnT )

α
1+2α , (12)



while if α is unknown, setting n ,
(

T
ln T

) 1
3 gives for sufficiently large T

E [RT ] ≤ 4L · Tmax{1−α
3 , 2

3}(lnT )
1
3 +

c

L
· T 2

3 (lnT )
2
3 . (13)

Proof. (12) is straightforward. Concerning (13), first note that for our choice of
n and α ≤ 1 we have

E [RT ] ≤ 4L · T 1−α
3 (lnT )

1
3 +

c

L
· T 2

3 (lnT )
2−α

3 . (14)

On the other hand, if α > 1, then Ln−α ≤ L
√
nT−1 lnT for n =

(
T

ln T

)1/3
. Then

E [RT ] ≤
(
4L+ c

L

)
T

2
3 (lnT )

1
3 . Combining this with (14) gives (13). ut

5.2 Results Using Assumption 2

The most interesting case is β < 1. For known α and β, we set n ,
(

T
ln T

) 1
1+2α−αβ

and get from (11), E [RT ] ≤
(
4L+ 4cMLβ−1

21−β−1

)
· T

1+α−αβ
1+2α−αβ (lnT )

α
1+2α−αβ .

As noted before, comparing Assumptions 1 and 2 we find that for most
functions b we have αβ ≤ 1, the only exception being when b is constant in the
vicinity of the maximum. Making the optimistic assumption that αβ = 1, we
may set n ,

(
T

ln T

) 1
2α and get

E [RT ] ≤
(

4L+
4cMLβ−1

21−β − 1

)
·
√
T lnT . (15)

If the function b has continuous second derivatives, then Assumptions 1 and 2
are satisfied with α = 2 and β = 1/2:

Theorem 1. If b has a finite number of maxima x∗ with lim supx→x∗ b(x) = b∗,
and continuous second derivatives 6= 0 at all these x∗, then our algorithm with
n ,

(
T

ln T

) 1
4 achieves

E [RT ] ≤ O
(√

T lnT
)
.

Proof. By assumption, b′(x∗) = 0 and b′′(x∗) 6= 0 for any maximum x∗. Using
Taylor series expansion we find

b(x∗)− L1(x∗ − x)2 ≤ b(x) ≤ b(x∗)− L2(x∗ − x)2 + L3|x∗ − x|3

for suitable constants L1, L2, L3 > 0, any maximum x∗, and any x ∈ [0, 1].
Hence, Assumption 1 is satisfied with α = 2.

Furthermore, there are ε0 > 0 and 0 < δ0 < L2/(2L3) such that b(x) ≤ b∗−ε0
for all x with minx∗ |x − x∗| ≥ δ0. Thus b(x) > b(x∗) − ε for ε < ε0 implies
minx∗ |x − x∗| < δ0 and b(x∗) − ε < b(x) ≤ b(x∗) − L2(x∗ − x)2 + L3|x∗ −
x|3 = b(x∗) − (x∗ − x)2(L2 − L3|x∗ − x|) ≤ b(x∗) − L2(x∗ − x)2/2 such that
|x− x∗| <

√
2ε/L2 for some maximum x∗ (out of the finitely many). For ε ≥ ε0

we have |x − x∗| ≤ 1 ≤
√
ε/ε0. Hence, Assumption 2 is satisfied with β = 1/2.

The theorem follows from (15). ut



5.3 When the Number of Steps T is Unknown

If unlike in the previous sections the total number of steps T is unknown,
then a simple application of the doubling trick gives the same bounds with
somewhat worse constants. That is, UCBC is executed for 2k steps in rounds
k = 1, 2, . . .. Then after T steps at most K = 1 + dln2 T e rounds have been
played. Thus the total regret can be obtained by summing up over all rounds∑K

k=1(2
k)a(ln(2k))b = O

(
(2K)a(ln(2K))b

)
= O

(
T a(lnT )b

)
.

6 Lower Bounds on the Regret

In this section we extend the lower bound result of Kleinberg [1] and show that
our upper bounds on the regret are tight (apart from a logarithmic factor).

Theorem 2. For any α > 0, β ≥ 0, αβ ≤ 1, and any learning algorithm, there
is a function b satisfying Assumptions 1 and 2 such that for any γ < 1+α−αβ

1+2α−αβ ,

lim sup
T→∞

E [RT ]
T γ

→∞.

In [1] this theorem was proven for β = 0. We extend the construction of [1] to
consider also β > 0.

Proof. We define function b as

b(x) ,
∞∑

k=k0

[φk(x) + ψk(x)]

for an appropriate k0 and functions φk and ψk. We set ck0−1 = 0 and dk0−1 = 1
and iteratively define intervals [ck, dk] at random. The functions φk and ψk are
defined in respect to these random intervals. As such, the function b is con-
structed by a random process. We will argue, that for any learning algorithm
the average regret in respect to this random process is large, which will imply
the theorem.

The functions φk and ψk are continuous, non-negative, and positive only
within a part of the interval [ck−1, dk−1]. The main part of these functions is a
plateau where they remain constant, and they rise to and fall from this plateau
governed by a function f : [0, 1] 7→ [0, 1] where f(x) , 1 − (1 − x)α, such
that f(0) = 0 and f(1) = 1. The lengths δk of the intervals [ck, dk] are very
rapidly decreasing. We are also using sub-intervals [c′k, d

′
k] with the property

[ck, dk] ⊂ [c′k−1, d
′
k−1] ⊂ [ck−1, dk−1]. Let

δk , 2−k!, ∆k ,
1
5
δ
1/(αβ)
k−1 , Lk , max

{
2,
⌊

1
5δ

αβ−1
k δk−1

⌋}
,

c′k−1 , ck−1 +∆k, and d′k−1 , ck−1 +∆k + 3Lkδk,



and

φk(x) ,



0 for x ≤ ck−1

∆α
kf(x−ck−1

∆k
) for ck−1 ≤ x ≤ c′k−1

∆α
k for c′k−1 ≤ x ≤ d′k−1

∆α
kf(1− x−d′k−1

∆k
) for d′k−1 ≤ x ≤ d′k−1 +∆k

0 for d′k−1 +∆k ≤ x .

Observe that

d′k−1 +∆k ≤ ck−1 + 2∆k + 3Lkδk ≤ ck−1 +
2
5
δ
1/(αβ)
k−1 + max

{
6δk,

3
5
δαβ
k δk−1

}
≤ ck−1 +

2
5
δk−1 +

3
5
δk−1 ≤ ck−1 + δk−1 .

Let `k ∈ {0, . . . , Lk − 1} be chosen uniformly at random and set

ck , c′k−1 + (Lk + `k)δk, dk , ck + δk,

and

ψk(x) ,


0 for x ≤ ck − δk

δα
k f(x−ck+δk

δk
) for ck − δk ≤ x ≤ ck

δα
k for ck ≤ x ≤ dk

δα
k f(1− x−dk

δk
) for dk ≤ x ≤ dk + δk

0 for dk + δk ≤ x .

Then any fixed b has a unique maximum at x∗ = limk ck = limk dk. The intuition
of the construction is the following: the slope of function f is responsible for
matching Assumption 1 tightly (this is rather obvious), whereas the length 3Lkδk
of [c′k−1, d

′
k−1] is responsible for matching Assumption 2 tightly. This can be

seen from the fact that the peak of function b on top of the plateau [c′k, d
′
k] is

approximately of size ε = δα
k , such that Lkδk ≈ δαβ

k δk−1 ≈ εβ . (δk−1 is very
large compared to δk and can be ignored.)

The heights of functions φk and ψk are chosen such that Assumptions 1
and 2 are satisfied. We first check that function b satisfies Assumption 1. For
any x ∈ [0, 1], x 6= x∗, there is a k ≥ 1 such that x ∈ [ck−1, dk−1] \ [ck, dk].
We assume without loss of generality that x < ck < x∗. Then b(x∗) − b(x) =
b(x∗)− b(ck) + b(ck)− b(x) and

b(x∗)− b(ck) ≤
∞∑

i=k+1

(∆α
i + δα

i ) ≤ 2(∆α
k+1 + δα

k+1) ≤ 4(x∗ − ck)α,

since x∗− ck > ∆k+1 + δk+1. To bound b(ck)− b(x) consider the following cases:

a) If ck − δk ≤ x < ck, then b(ck) − b(x) = δα
k − δα

k f
(

x−ck+δk

δk

)
= δα

k − δα
k

(
1 −(

1− x−ck+δk

δk

)α) = (ck − x)α.
b) If c′k−1 ≤ x ≤ ck − δk, then b(ck)− b(x) ≤ δα

k ≤ (ck − x)α.



c) If ck−1 ≤ x ≤ c′k−1, then b(ck)−b(x) = δα
k +∆α

k [1−f(x−ck−1
∆k

] = δα
k +∆α

k [1−
x−ck−1

∆k
]α = δα

k +∆α
k [ c′k−1−x

∆k
]α ≤ 2(ck − x)α.

Since 4(x∗ − ck)α + 2(ck − x)α ≤ 6(x∗ − x)α, Assumption 1 is satisfied.
For checking Assumption 2, let x ∈ [0, 1] be such that b(x∗) − b(x) < ε. We

distinguish two cases, δα
k ≤ ε < ∆α

k and ∆α
k ≤ ε < δα

k−1 for some k ≥ k0.

a) If δα
k ≤ ε < ∆α

k , then φk(x) ≥ ∆α
k + δα

k − ε, which by definition of φk and f
holds if x ∈ [c′k−1−(ε−δα

k )1/α, d′k−1+(ε−δα
k )1/α]. As (ε−δα

k )1/α < ε1/α ≤ εβ

and d′k−1−c′k−1 = 3Lkδk ≤ 3
5δ

αβ
k δk−1 ≤ δαβ

k ≤ εβ , the length of this interval
does not exceed 3εβ .

b) On the other hand, if∆α
k ≤ ε < δα

k−1, then ψk−1(x) ≥ ∆α
k +δα

k−1−ε, which by
definition of ψk−1 and f holds, if x ∈ [ck−1−(ε−∆α

k )1/α, dk−1+(ε−∆α
k )1/α].

The length of this interval is smaller than 7εβ , since (ε −∆α
k )1/α < εβ and

dk−1 − ck−1 = δk−1 = 5∆αβ
k ≤ 5εβ .

Thus Assumption 2 is satisfied, too.
Finally we show that for Tk ,

⌊
1
2Lkδ

−2α
k

⌋
= Θ

(
δαβ−1−2α
k δk−1

)
, and any

γ < 1+α−αβ
1+2α−αβ

lim
k→∞

E [RTk
]

T γ
k

→∞ .

For any x1, x2 ∈ [c′k−1, d
′
k−1], the Kullback-Leibler distance between the bandits

x1 and x2 is O(δ2α
k ) and it is 0 if both x1, x2 6∈ [ck, dk]. Therefore, to iden-

tify [ck, dk] with probability Ω(1), at least half of the intervals [c′k−1 + (Lk +
`k)δk, c′k−1 + (Lk + `k + 1)δk], `k ∈ 0, . . . , Lk − 1, need to be probed dδ−2α

k e
times. Since b(x∗)− b(x) ≥ δα

k for x 6∈ [ck, dk], we find

E [RTk
] = Ω (Tkδ

α
k ) = Ω

(
δαβ−1−α
k δk−1

)
= Ω

(
T

αβ−1−α
αβ−1−2α

k δ
1− αβ−1−α

αβ−1−2α

k−1

)
= Ω

(
T

1+α−αβ
1+2α−αβ

k δ
α

1+2α−αβ

k−1

)
.

Since limk→∞ δγ1
k−1/δ

γ2
k →∞ for any γ1, γ2 > 0, this proves the theorem. ut

7 Conclusions and Future Work

We have shown that by changing the algorithm of Kleinberg, it is possible to
get improved regret bounds under a wide range of conditions. In particular,
the uniform local Lipschitz condition is replaced with a smoothness condition
that is localized to the set of maxima of the payoff function. A complementary
condition ensures that the maxima do not have many strong competitors. These
two conditions allow us to get improved bounds compared to the bounds of
Kleinberg [1]. Moreover, the new algorithm is shown to match the performance
of the Kiefer-Wolfowitz algorithm [3], but under substantially weaker conditions.



One limitation of the presented results is that in order to get the best possible
rates, the user must know the exponents α, β of Assumptions 1 and 2. It is an
open question, if it is possible to achieve the optimal rates when this knowledge is
not available, possibly by restricting the payoff function in some other reasonable
way. In connection to this, we could recently show that a two-phase algorithm
achieves regret of Õ

(
T 1/2

)
for functions with well separated maxima, provided

that in a small neighborhood of the maxima the functions are unimodal and
satisfy a not too strong rate-condition (which holds e.g. for locally strictly convex
functions). There is also room for improvement regarding the high probability
bounds. Thus, a better bound on the inferior sampling time for UCB would
immediately lead to better bounds for our algorithm.

We have not considered d-dimensional action spaces in this paper, though we
believe that our results can be extended to this case. Previous lower bounds show
that in the worst-case, the regret would scale exponentially with the dimension
d. An interesting open question is if there exists an algorithm that scales better
when the mean payoff function depends only on some unknown subset of the
variables.

Finally, let us remark that if UCB is replaced with UCB-tuned [4] and there
is no observation noise, i.e. Yt = b(Xt), then the analysis presented can be used
to prove the improved rate Õ

(
T 1/(1+α)

)
, i.e. Õ

(
T 1/2

)
for α = 1. Hence, the

cost of control-learning is substantially less when there is no observation noise
present.
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