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Most existing formalizations treat belief change as a single-step process, and ignore several problems that
become important when a theory, or belief state, is revised over several steps. This paper identifies these problems,
and argues for the need to retain all of the multiple possible outcomes of a belief change step, and for a framework
in which the effects of a belief change step persist as long as is consistently possible. To demonstrate that such a
formalization is indeed possible, we develop a framework, which uses the language of PJ-default logic (Delgrande
and Jackson 1991) to represent a belief state, and which enables the effects of a belief change step to persist by
propagating belief constraints. Belief change in this framework maps one belief state to another, where each belief
state is a collection of theories given by the set of extensions of the PJ-default theory representing that belief state.
Belief constraints do not need to be separately recorded; they are encoded as clearly identifiable components of a
PJ-default theory. The framework meets the requirements for iterated belief change that we identify and satisfies
most of the AGM postulates (Alchourrón, Gärdenfors, and Makinson 1985) as well.
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1. INTRODUCTION

Belief change, the process by which a rational agent acquires new beliefs or retracts
previously held ones, is a crucial component of intelligent behavior. Most existing formaliza-
tions view it as a single-step process, mapping from one set of beliefs to another (Alchourrón
et al. 1985; Gärdenfors 1988; Nebel 1989). Several new challenges emerge, however, when
one considers belief change over several steps. The process of belief change can, in general,
have many possible outcomes. With a commitment to producing one unique outcome, most
existing formalizations use some form of ordering on the beliefs to select some subset of
the possible candidate theories, as in (Gärdenfors and Makinson 1988; Gärdenfors 1988),
or combine all of the candidate theories to obtain the unique outcome, as in (Nebel 1989).
Both approaches have undesirable consequences. In the first case, existing theories do not
describe how the ordering relation on beliefs changes as a result of a belief change step.
The notion of iterated belief change is thus not supported. Also, by requiring that all beliefs
are ranked relative to each other (as in Gärdenfors and Makinson 1988), these approaches
make unduly strong demands on the amount of information that must be available. In the
second case, too much information is lost as a result of combining the mutually incompatible
outcomes into a single theory. A related issue is the question of belief persistence. Common
sense dictates that the effects of belief change persist as long as there is no evidence to the
contrary. However, as a consequence of not recording changes in which beliefs are retracted,
the effects of belief change do not persist over iterated steps in most existing formalizations;
we call this the problem of nonpersistent beliefs.

Motivated by these pitfalls in the state of the art, we develop an alternative framework
that obviates the need for selecting among the multiple possible outcomes of a belief change
step, does not discard potentially useful information, and formalizes our intuition of belief
persistence as well. First, we commit to representing a belief state as a collection of theories,
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so that belief change becomes a mapping from one collection of theories to another. Given
that each belief state corresponds to a possibly inconsistent and incomplete picture of the
world, nonmonotonic formalisms are obvious candidates for representing such a state of
affairs. In this paper, we use the language of PJ-default logic (Delgrande and Jackson 1991)
to represent each belief state, such that the collection of theories at that belief state is the set
of extensions of the corresponding PJ-default theory. However, any suitable nonmonotonic
formalism could be used as the belief representation language using the general principles
we describe here. We achieve persistent belief change by recording and maintaining belief
constraints. These are of two types: constraints that enforce that some beliefs be necessarily
held, and others that enforce that some beliefs may necessarily not be held. The intuition
behind our revision operator is that if the new information logically contradicts the original
set of beliefs, then its effects are two-fold (Sattar 1991). Some of the original beliefs are not
affected at all; these remain as part of the set of facts of the corresponding PJ-default theory.
Other beliefs may be contradicted, or brought into question; these beliefs are demoted to the
status of tentative beliefs. This is achieved by removing these beliefs from the set of facts and
incorporating them as default rules. A three-fold characterization of beliefs is thus introduced.
For a PJ-default theory (W, D) representing a belief state, the set of facts W corresponds
to the necessary beliefs, the set of consequents of the default rules in D corresponds to
the set of tentative beliefs, while the negations of the conjuncts in the “semi-normal” part
of the justification of each PJ-default rule correspond the set of necessary disbeliefs. By
addressing pragmatic concerns, such as belief persistence over iterated belief change steps,
our framework represents a first step toward bridging the gap between theory and practice in
this area. By factoring out the process of choosing amongst the multiple possible outcomes of
a belief change step (typically based on orderings on beliefs Gärdenfors and Makinson 1988,
Gärdenfors 1988; Nebel 1989, 1991), our approach permits the dynamic prioritization of
beliefs. In other words, different orderings could be used at different times to choose among
the multiple possible outcomes without causing inconsistencies or unreasonable results. Our
approach can also be viewed as an account of how a nonmonotonic theory evolves into a
more accurate representation of the world through the process of belief change.

This paper is organized as follows. Section 2 describes two existing formalizations of
belief change. In Section 3, we identify some problems with existing frameworks; specifically
the problem of nonpersistent beliefs and the absence of a description of how an ordering
relation on beliefs should change as a result of a belief revision. Section 4 provides the
details of our new framework. Section 5 describes the formal properties of our framework,
specially with respect to some well-established rationality criteria. Section 5 discusses the
relation of our work to other accounts of belief change.

Preliminary versions of the material in Sections 3 and 4 have appeared in Ghose et al.
(1993).

2. BELIEF CHANGE: EXISTING FRAMEWORKS

Alchourrón et al. (1985) have undertaken a systematic study of the dynamics of belief
change, resulting in what is currently popularly known as the AGM framework for belief
change (Alchourrón et al. 1985; Gärdenfors 1988; Gärdenfors and Makinson 1988). In the
AGM framework, the belief state of an agent is represented by a deductively closed, logically
consistent set of propositional sentences called a belief set. They define three kinds of belief
change operations: expansion, in which the new belief being added is guaranteed to be con-
sistent with the existing body of beliefs; contraction, in which an existing belief is retracted;
and revision, in which a new belief, which may possibly be inconsistent with existing beliefs,
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is added. The operations of contraction and revision can be defined in terms of each other, as
shown by the Levi identity below (here, K ∗

A, K −
A , and K +

A denote, respectively, the revision,
contraction, and expansion of K with A):

K ∗
A = (

K −
¬A

)+
A
.

The Harper identity (1975) (K −
A = K ∗

¬A ∩ K ) similarly defines contraction in terms of re-
vision. We describe only contraction operators in this section, because the corresponding
revision operators follow via the Levi identity. Alchourrón et al. (1985) define a set of ra-
tionality postulates for each of the operations of expansion, revision, and contraction. The
postulates for contraction are listed below.

1. For any sentence A and any belief set K , K −
A is a belief set.

2. K −
A ⊆ K .

3. If A 
∈ K , then K −
A = K .

4. If 
|= A, then A 
∈ K −
A .

5. If A ∈ K , then K ⊆ (K −
A )+A .

6. If |= A ↔ B, then K −
A = K −

B .
7. K −

A ∩ K −
B ⊆ K −

A∧B .
8. If A 
∈ K −

A∧B , then K −
A∧B ⊆ K −

A .

Postulate 1 requires that beliefs be represented in the same form before and after a belief
change step. Postulate 2 requires that no new beliefs be held as a result of a contraction.
Postulate 3 requires that if the belief to be contracted is not held, then no change should be
made. Postulate 4 requires that every contraction operation succeed, unless the belief being
contracted is a logical truth. Postulate 5 is the principle of recovery, which requires that if
a belief held in a given belief state is retracted and then added back to the belief state, the
outcome contains the initial belief state, i.e., the initial belief state is recovered. Postulate 6
is the principle of irrelevance of syntax, which requires that the outcome of a contraction
operation be independent of the syntactic form of the beliefs being contracted. Postulate 7
requires that the retraction of a conjunction of beliefs should not retire any beliefs that are
common to the retraction of the same belief set with each individual conjunct. Postulate 8
requires that, when retracting the conjunct of two beliefs A and B forces us to give up A,
then in retracting A, we do not give up any more than in retracting the conjunction of A
and B.

Partial meet contraction (Alchourrón et al. 1985) is a representative AGM operator,
which satisfies all of the rationality postulates, and which appears to be more reasonable,
compared to the other AGM operators by virtue of not discarding too many beliefs and also
by not forcing commitment to a truth value for every propositional letter. Let the removal of
x from A, denoted by A ↓ x , be defined as follows:

A ↓ x = {B ⊆ A | B 
|= x, ∀C : B ⊂ C ⊆ A ⇒ C |= x}.
Let S be a selection function that selects a nonempty subset of K ↓ x (provided K ↓ x is
nonempty, ∅ otherwise). The partial meet contraction operator −p is defined as follows:

K
−p
x =

⋂
S(K ↓ ¬x).

Let M(K ) stand for the family of all the sets K ↓ x , where x is any proposition in K that is
not logically valid. Let ≤ be a relation defined on M(K ). Let

S(K ↓ x) = {K ′ ∈ K ↓ x | K ′′ ≤ K ′ for all K ′′ ∈ K ↓ x}.
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Any partial meet contraction operator for which the selection function S is defined in this
manner, and for which the relation ≤ is transitive, satisfies all the AGM postulates for
contraction (Gärdenfors 1998). A contraction operator, which uses a special class of total
orderings (called epistemic entrenchment), defined on the entire language, to decide which
beliefs to retain is shown to satisfy all eight of the AGM postulates for contraction, and to be
equivalent to partial meet contraction. Let x �K y, where �K is the epistemic entrenchment
relation associated with the belief set K , and denotes that x is at most as entrenched as y.
The relation �K must satisfy the following conditions:

1. If x �K y and y �K z, then x � K z.
2. If x |= y then x �K y.
3. For any x and y, x �K x ∧ y or y �K x ∧ y.
4. When K 
= K⊥, x 
∈ K iff x �K y for all y.
5. If y �K x for all y, then |= x .

The epistemic entrenchment relation uniquely determines a contraction operation via the
following definition:

y ∈ K −
x iff y ∈ K and either x �K x ∨ y or |= x .

Nebel (1991) discusses contraction operators on belief bases, which are finite sets of sentences
instead of infinite deductively closed belief sets. The motivations for defining belief change
on belief bases are twofold. First, operators defined on the bases of belief are computationally
viable (they do not have to operate on infinite sets). Second, belief change operations on belief
bases permit reason maintenance, while those on belief sets do not. The base contraction
operator � defined as

B � x =
{( ∨

C∈(B↓x) C
) ∧ (B ∨ ¬x) if 
|= x

B otherwise

satisfies most, but not all, of the AGM postulates. Note that the term (B ∨ ¬x) ensures that the
original belief base reappears whenever x becomes true. The corresponding revision operator
can be defined, as before, via the Levi identity. In a later paper, Nebel (1991) generalizes this
operator to prioritized belief bases. We will not describe this operator in detail here, because
the problems we will point out apply in either case.

3. ITERATED BELIEF CHANGE

This work has been motivated by the need to address the inadequacy of most existing
belief revision systems in handling the dynamics of iterated belief change, and by the need to
develop more expressive systems, which have significant computational advantages as well.
The inadequacy of existing systems with regard to iterated belief change stems from two
sources. First, contraction operations do not persist in these systems. Second, these systems
provide no account of how selection functions (or equivalently, ordering relations on beliefs)
evolve over iterated belief change steps.

We motivate our discussion of the dynamics of belief change by arguing for the need
for the effects of a belief change step to persist. Belief change operators should satisfy a
persistence postulate requiring that the effects of every belief change persist until there is
new evidence to indicate otherwise. A contracted belief should not reappear in a belief set
unless there is new evidence accumulated since the contraction that requires this. Similarly,
a newly added belief should remain in the belief set until new evidence obtained since the
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addition warrants its removal. We use the notion of evidence here to denote belief inputs that
an agent obtains from the world, together with their prioritization relative to other beliefs.
Thus, a newly added belief will be treated as sufficient evidence to contradict a previously
added belief only if it brings the previously held belief into question, and has a higher priority
than the previously held belief as well.

Example 1. Consider the AGM framework. Let {b, f } be the alphabet of our language.
Let the initial belief state be K 0 = Cn{b → f }. After contracting f , let the outcome be
K 1 = Cn{b → f } (since f is not a consequence of the beliefs in K 0, no change is made
to K 0). Revising K 1 with b results in the belief state Cn{b, b → f }. Thus, the agent starts
believing f again, although the only new information (the belief b) obtained since being told
to retract the belief f does not in itself require that f be believed again. A more detailed
analysis reveals that when K 1 is revised with b, three different entities need to be considered:

A: b → f and its consequences are believed.
B: f is retracted.
C: b is believed.

Prioritizing these entities informally using a relation >, where x > y denotes that x has
higher priority over y, a variety of outcomes is possible.
� If C > A > B then K 1∗

b = Cn{b, b → f }.
� If C > B > A then K 1∗

b = Cn{b}.
� If A > B > C then K 1∗

b = Cn{b → f }.
� If A > C > B then K 1∗

b = Cn{b, b → f }.
We do not list all the possibilities here, but clearly the three distinct entities and their relative
prioritization need to be considered in generating an outcome. For instance, let b denote that
Tweety is a bird and f denote that Tweety flies. Then, starting with a belief in an instance of
the rule “birds fly,” after retracting the belief that Tweety flies and then being told that Tweety
is a bird, it seems reasonable to remove the “birds fly” rule from the status of a first-class
belief, given new information about Tweety’s flying ability and the fact that Tweety is a bird,
giving a final belief state Cn(b). This corresponds to the case where C > B > A.

It may be argued that Cn{b, b → f } is a reasonable resultant belief state, because the
agent has been told to believe b in a belief state that contains only the consequences of the
belief b → f . However, {Cnb → f } is an inadequate representation of the belief state that
results from contracting f from the initial belief state, because the retraction of f has not
been recorded. Note that it is possible that the belief f could be held in the final belief
state even if the contraction of f is somehow recorded in the belief state (this would happen
if the agent assigned a higher priority to the belief in b → f and b over the retraction of
f ). What is crucial, however, is that the retraction of f should be considered in deciding
the subsequent belief states instead of it being forgotten from the next step onward. In
general, existing frameworks always record every revision step, but never record a contraction
step.

It may be argued that contraction is never an independent belief change operation and is
only useful as part of a revision operation (as in the Levi identity). We disagree, because it
is important to admit a belief change operation that causes a belief to become undefined, or
unknown, without requiring that the negation of the belief be held. Contraction is redundant
only in the case of complete theories (i.e., theories that must commit to p or ¬p for any p).
An independent contraction operation can be crucial in a variety of situations, such as those
in which negative examples are accumulated in an incremental inductive logic programming
setting. We therefore believe that contraction should be accorded the status of an independent



42 COMPUTATIONAL INTELLIGENCE

belief change operation, at par with revision, and that contractions should be recorded in the
representation of a belief state in the same way as a revision operation.

Nebel’s framework, as the example below shows, suffers from an identical problem.

Example 2. Consider Nebel’s belief base revision (Nebel 1989). Let B0 = {a → b}. B1 =
B0 � b = {a → b, ¬b ∨ B0}, where we take B0 to denote the conjunction of its elements.
Revising B1 with a gives B2 = {a, a → b, ¬b ∨ B0}. The contraction of b does not persist
(and the spurious belief b appears in the deductive closure of B2) due to the lack of an explicit
record of belief change steps.

Several authors have pointed out the absence of any commitment on how the selection
function evolves as a result of a belief change step in the AGM framework (Hansson 1991;
Nayak 1993; Spohn 1988). An epistemic entrenchment ordering, for instance, must be defined
relative to a specific belief set K . While such an ordering is sufficient for uniquely determining
the outcome of a revision or contraction operation on K , there is no prescription of how a
subsequent belief change operation on, say K ∗

x may be performed, because we do not know
what the epistemic entrenchment relation associated with K ∗

x is. Also, the notion of epistemic
entrenchment can contradict the requirement, in the AGM framework, that every belief
change operation succeed (as set forth in the success postulates for revision and contraction).
More entrenched beliefs may be discarded as a result of revising with a less entrenched
belief, simply because no connection is made between the entrenchment relation and the new
evidence.

Nebel’s (1991) epistemics relevance ordering of beliefs suffers from an identical problem.
Clearly, we need a framework in which belief change steps are recorded and persist and that
treats priority relations on evidence and on existing beliefs in a uniform way. We present such
a framework in the next section.

4. AN ALTERNATIVE FRAMEWORK FOR BELIEF REVISION

Our formalization of belief change is motivated by the following observations:

� A belief state is best represented as a collection of theories. Given that minimal change
is a guiding principle in belief revision, it could be argued that instead of selecting some
outcomes of the belief change and discarding the others (thus losing potentially useful
beliefs), all outcomes should be retained, provided that there exists a compact and elegant
way of representing these multiple possible outcomes. Such representation languages ex-
ist; nonmonotonic formalisms are immediate candidates for compactly representing the
possibly inconsistent and incomplete picture of the world that each belief state corre-
sponds to. The observation that real-life agents typically have incomplete (and sometimes
inconsistent) knowledge about the world is independent justification for choosing such
an approach.

� The persistence postulate suggests that an explicit record of belief change steps should
be maintained. We achieve this by maintaining a set of belief constraints (these may be
of two kinds: constraints specifying beliefs that must necessarily be held, and constraints
specifying beliefs that must necessarily not be held), which may be viewed as the in-
tegrity constraints of a belief system; every theory constituting a belief state must respect
them.

� Beliefs originally held to be true can become tentative as a result of belief change if they
are contradicted or brought into question (intuition is that a belief becomes questionable
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if it is not in every possible outcome of the belief change step) by new evidence. In
syntactically oriented nonmonotonic formalisms, this can be viewed as a process of
demotion from a fact to a default.

We demonstrate that a formalization that satisfies most of the common sense requirements
for belief change, as given by the AGM postulates as well as by the persistence postulate
identified in the previous section, is indeed possible. To prove our point, we use the language
of PJ-default logic (Delgrande and Jackson 1991) to represent a belief state. PJ-default logic
is a variant of the default logic in which default rules are restricted to be prerequisite-free
and semi-normal (i.e., a PJ-default rule is of the form :β

γ
such that β |= γ ). PJ-default logic

improves over Reiter’s (1980) default logic by avoiding cases where Reiter’s logic is too weak,
preventing the derivation of “reasonable” conclusions (such as in the disjunctive default prob-
lem) as well as cases where Reiter’s logic is too strong, permitting the derivation of unwanted
conclusions (for a detailed discussion of these issues, see Delgrande and Jackson 1991). This
approach has other useful properties as well, such as semimonotonicity, guaranteed existence
of extensions, weak orthogonality of extensions, and a constructive definition for extensions.
PJ-default extensions are defined as follows:

Definition 1. Let (W, D) be a prerequisite-free seminormal default theory. Define:

E0 = (EJ0, ET0 ) = (Cn(W ), Cn(W ))

Ei+1 = (EJi+1, ETi+1 ) = (Cn(EJi ∪ {β ∧ γ }), Cn(ETi ∪ {β}))
where

i ≥ 0,
:(β∧γ )

β
∈ D,

¬(β ∧ γ ) 
∈ EJi .

Then E is a PJ-extension for (W, D) iff

E = (EJ , ET ) = (
⋃∞

i=0 EJi ,
⋃∞

i=0 ETi ).

In the remaining part of the paper, whenever we refer to an extension, we refer to the ET part
of a PJ-extension.

Ghose and Goebel (1992) have earlier defined a belief change framework in which a
belief state is represented as a potentially inconsistent set of sentences, together with a partial
order on these sentences. An operator is defined that identifies consistent subsets of this
set of sentences, that respect the partial order as well as some set of disbelief constraints.
A translation from PJ-default theories to this framework is defined such that the process
of identifying PJ-default extensions is shown to be equivalent to the process of identifying
consistent subsets of sentences using the operator mentioned above, with a partial order that
assigns higher priority to sentences obtained from W (given a PJ-default theory (W, D))
than sentences obtained from D and with the set of disbelief constraints consisting of the
conjunction of the negations of the justifications of each PJ-default rule.

Formally, we define a belief state to be a set of theories {T h1, T h2, . . .}. The necessary
belief set BCbelie f , for a given belief state, is a set of sentences such that, for every x ∈ BCbelie f
and for all T hi in that state, T hi |= x . The necessary disbelief set BCdisbelie f , for a given
belief state, is a set of sentences such that, for every ¬x ∈ BCdisbelie f and for all T hi in that
state, T hi 
|= x . Note that BCdisbelie f contains the negations of beliefs that may not be held.
A tentative belief is a belief that is an element of some, but not all T hi in that belief state. We
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define the belief constraint set BC = BCbelie f ∪ BCdisbelie f . Updating the belief constraint
set requires identifying maximal parts of a constraint that is consistent with some others. We
do not present a formal notion of a part of constraint here, but the following example should
make our intuitions clear.

Example 3. Consider retracting both a and b in a single step from a belief state. This
corresponds to ensuring that the formula a ∨ b is not believed in this state. We therefore add
a necessary disbelief constraint ¬a ∧ ¬b. Let the next belief change step be a revision with
a, which corresponds to adding a necessary belief constraint a. Clearly, it is impossible to
enforce a disbelief in both a and b, and belief in a at the same time. The two constraints
cannot be satisfied at the same time. One option is to delete the disbelief constraint ¬a ∧ ¬b
because it contradicts the newly acquired constraint. However, if we do so, we shall allow the
belief b to be held. All that we have been told because both a and b were retracted, is that a is
to be believed again. It makes better sense to retain the requirement for disbelief in b. Thus,
we should retain the maximal part of the disbelief constraint ¬a ∧ ¬b that is consistent with
the new belief constraint a, i.e., the disbelief constraint ¬b.

A set-theoretic representation of each constraint such that each conjunct in a constraint
is clearly identifiable as a set element would enable us to identify maximal subsets that
are consistent with other constraints. Representing belief constraints in clausal form satisfies
these requirements. To be able to distinguish between the elements of BCbelie f and BCdisbelie f ,
we adopt a syntactic convention such that every disbelief constraint φ is written as −φ.
Thus, constraints requiring necessary belief in a and a → b will be written as {{a}} and
{{¬a, b}}, respectively, while a constraint requiring disbelief in (c ∨ d) ∧ e) will be written
as −{{¬c, ¬e}, {¬d, ¬e}}. Belief change will be viewed as the process of adding a new belief
constraint (in the case of revision, a necessary belief constraint, and in the case of contraction,
a necessary disbelief constraint).

We require that the belief constraint set be totally ordered; we refer to this total or-
der ≺ as the constraint prioritization (we write x j ≺ xi if constraint xi has a higher prior-
ity than constraint x j ). This is similar to the orderings used in a variety of belief change
frameworks, including the AGM epistemic entrenchment ordering, but there are significant
differences. Whereas epistemic entrenchment requires that all beliefs be prioritized, we re-
quire that only the current set of belief constraints be prioritized. We will see later that
the size of the belief constraint set can typically be expected to be much smaller than the
size of the theories constituting a belief state. Also, the size of the belief constraint set
does not grow with time and may shrink as belief constraints are discarded (as a result,
for example, of newer constraints contradicting them). This also represents a more prin-
cipled approach to prioritizing beliefs, because it does not suffer from the contradictions
in belief prioritization in the AGM framework pointed out in the previous section. Note
also, that, unlike AGM epistemic entrenchment, this ordering does not uniquely determine
which subset of the possible outcomes is finally selected. It only determines what the new
set of belief constraints should be. To draw a database analogy, the constraint prioritization
ranks only the current integrity constraints, whereas epistemic entrenchment requires that
every assertion in the database be ranked. Several obvious heuristics suggest themselves as
candidate constraint prioritization policies in the absence of any other information on the
relative reliability of the belief constraints. In the case of revision (in the sense of Katsuno
and Mendelzon 1991, i.e., for belief change in static worlds), a constraint prioritization base
on the recency of the belief inputs appears to be appropriate. In the case of update (Katsuno
and Mendelzon 1991) (i.e., belief change in dynamic worlds), one might choose to accord
the highest priority to physical laws at all times, because these are never questioned or
discarded.
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The process of belief change involves two steps. First, the belief constraint set is updated.
Based on the updated belief constraint set, the PJ-default theory representing the previous
belief state is modified.

Definition 2. A belief constraint � (where � = φ if � requires necessary belief in φ and
� = ¬φ if � requires necessary disbelief in φ) is said to be compatible with a set of belief
constraints BC (we write � ∪ BC is compatible), if and only if, for all, xi ∈ BCbelie f and all
¬y j ∈ BCdisbelie f , � ∧ (

∧
i xi ) ∧ (

∧
j ¬y j ) is satisfiable.

We must be able to identify subsets of an individual belief constraint (viewing each
constraint as a set of clauses) that are compatible with a set of belief constraints. The operator
↑ that identifies such subsets is defined below.

Definition 3. Let bc be a belief constraint and BC be a set of belief constraints. Then

bc ↑ BC = {x ⊆ bc | (x ∪ BC is compatible)∧
(∀x ′ such that x ⊂ x ′ ⊆ bc , x ′ ∪ BC is incompatible}.

Updating the set of belief constraints involves starting with the constraint of highest priority
and working downwards, adding as many constraints (or parts of constraints) of lower priority
as can be compatibly added. In the definition below, we assume that BCold is the old set
of constraints, � is the new constraint being added in the current belief change step, and
BCinter = BCold ∪ �. We assume that the constraint prioritization relation ≺ is updated to
reflect the ranking of � relative to the other constraints. Also, every bci belongs to BCinter
and bc j ≺ bck ↔ k < j (i.e., constraints of a higher priority have a smaller subscript).

BCnew = {Y ⊆ BCinter | Y = ⋃
i≥1 Yi ,

∀i ≥ 1
((

(Yi = {bci }) ∧ (
bci ∪ ( ⋃i−1

j=1 Y j ) is compatible
))

∨((
Yi = ⋂ (

bci ↑ ( ⋃i−1
j=1 Y j ∪ �

)) ∧ (
bci ∪ ( ⋃i−1

j=1 Y j

)
is incompatible

)))}
The new constraint prioritization relation is the subset of the old ≺ defined on the elements
of BCnew. If a subset of constraint belonging to BCold is retained in BCnew, then it retains
its position in the new constraint prioritization relation.

In the above definition here, note that in the process of collecting constraints from the
highest to the lowest priority, if a constraint turns out to be incompatible with the set of higher
priority constraints collected so far, we identify maximal subsets of the constraint (given the
representation of a constraint as a set of clauses) that are compatible with the collected
constraints, and add the intersection of these subsets to the set of collected constraints. The
following examples clarify this.

Example 4. Let BCold = {{{¬a, b}}, {{¬b}}} and let ≺ be such that {{¬b}} ≺ {{¬a, b}}. Let
� = {{a}}. Thus BCinter = {{{¬a, b}}, {{¬b}}, {{a}}} and the updated prioritization relation
≺ is such that {{¬b}} ≺ {{¬a, b}} ≺ {{a}}. Then BCnew = {{{a}}, {{¬a, b}}}.
Example 5. Let the initial belief state have a single constraint requiring disbelief in a ∨ b.
Thus BCold = {−{{¬a}, {¬b}}} and the relation ≺ is empty. Let � = {{a}} be added at the
highest priority level. BCinter = {{{a}}, −{{¬a}, {¬b}}} and the updated ≺ relation is such
that −{{¬a}, {¬b}} ≺ {{a}}. Then BCnew = {−{{¬b}}, {{a}}} and the resulting ≺ relation is
such that −{{¬b}} ≺ {{a}}. Thus, while a constraint requiring disbelief in both a and b is not
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compatible with a necessary belief constraint in a, a subset that requires disbelief in b only
is compatible.

Using PJ-default logic as the belief representation language enables us to represent belief
constraints in a PJ-default theory. The set of facts W of a PJ-default theory corresponds to
the beliefs that the agent is constrained to necessarily hold, because W will be contained
in every consistent belief set corresponding to that belief state (i.e., every PJ-extension).
Because every PJ-default rule is of the form :β∧γ

β
, ¬γ corresponds to the theory that the

agent is constrained to necessarily disbelieve. The process of demoting a belief that has
been contradicted, or made questionable (meaning that it is no longer in every possible
outcome of that belief change step), as a result of a belief change step to the status of
a tentative belief involves removing a formula from W and adding a new PJ-default rule
containing this formula as its consequent to D. Discredited beliefs are thus never totally
discarded in our framework in anticipation of future situations in which these beliefs could
be consistently held again. Belief change in our framework thus involves mapping one PJ-
default theory to another. The possible consistent belief sets that may be held in a given
belief state correspond to the extensions of the PJ-default theory representing that belief
state.

The new PJ-default theory (W ′, D ′) is obtained from the previous belief state (W, D)
and the new belief constraint set BCnew as follows

W ′ = BCBelie fnew

D′ =
{

: δi ∧ (
∧

BCDisbelie fnew )

δi

∣∣∣∣ δi ∈ (W − W ′)
}

∪
{

: βi ∧ (
∧

BCDisbelie fnew )

βi

∣∣∣∣ : βi ∧ φi

βi
∈ D

}
.

Here
∧

BCDisbelie fnew stands for the conjunction of all the elements of BCDisbelie fnew . Thus,
if BCDisbelie fnew = {−{{¬b}}, −{{¬a}}}, then

∧
BCDisbelie fnew = ¬b ∧ ¬a.

Note that the justification for every default rule in PJ-default theories representing be-
lief states in our framework is identical and corresponds to the set of necessary disbelief
constraints. We define the notion of uniform default theories as follows:

Definition 4. A semi-normal default theory (W, D) is said to be uniform if for any two
default rules αi :βi ∧γi

βi
,

α j :β j ∧γ j

β j
∈ D, γi = γ j (if |D| = 1, then the theory is trivially uniform).

Clearly, every PJ-default theory representing a belief state in our framework is uniform.
We require that the dummy default rule :"

" be an element of D for every (W, D) repre-
senting a belief state. This is to enable us to record necessary disbelief constraints even if
there are no tentative beliefs.

Example 6. Let the initial belief state be given by the uniform PJ-default theory (W, D)
where W = {a, a → b, c, c → d} and D = { :"

" }. Note that there are no necessary disbe-
lief constraints at this point. Assume that the elements of W were obtained in a single
belief change step. Thus, there is a single necessary belief constraint and BCBelie fold =
{{{a}, {¬a, b}, {c}, {¬c, d}}}.
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Let us now retract the belief b.

� Belief Constraints Update

Let{{a}, {¬a, b}, {c}, {¬c, d}} ≺ −{{¬b}}.
BCBelie fnew = {{{c}, {¬c, d}}}

BCDisbelie fnew = {{−{b}}}
� Default Theory Update

W
′ = {c, c → d}

D
′ =

{
: a ∧ �

a
;

: (a → b) ∧ �

(a → b)
;

: " ∧ �

"
}

, where � = ¬b.

Note that, as a result of the contraction, a and a → b become tentative beliefs. Note also
that there are two possible belief sets that may be consistently held in the final belief
state (corresponding to the two extensions of (W ′, D′)) given by Cn({c, c → d, a}) and
Cn({c, c → d, a → b}) and that the belief b is not held in either of these. The new constraint
prioritization is {{c}, {¬c, d}} ≺ −{{¬b}}.
Example 7. We refer to the initial example in Section 3 motivating the need to record
constraction operations in the same way as revision operations. Let the initial belief state be
given by

(W1, D1) =
(

{b → f },
{

:"
"

})

BCBelie f1 = {{{¬b, f }}}
The relation ≺1 is empty.

The belief state obtained by contracting f and assigning the highest priority to the disbelief
constraint in f is given by

(W2, D2) =
(

{b → f },
{

:" ∧ ¬ f

"
})

BCBelie f2 = {{{¬b, f }}, −{{¬ f }}}
The relation ≺2 is such that {{¬b, f }} ≺ −{{¬ f }}.

The belief state obtained by further revising with b and assigning this belief constraint the
highest priority is given by

(W3, D3) =
(

{b},
{

:(b → f ) ∧ ¬ f

(b → f )
,

:" ∧ ¬ f

"
})

BCBelie f3 = {{{¬b, f }}, −{{¬ f }}, {{b}}}
The relation ≺3 is such that {{¬b, f }} ≺ −{{¬ f }} ≺ {{b}}.

Note that the contraction of f persists because f is in no extension of (W3, D3).
By representing each belief state as a uniform PJ-default theory, we have factored out the

question of which theory (extension) to choose as the currently operative set of beliefs from
the process of belief change. The user, or agent, could thus employ a variety of techniques to



48 COMPUTATIONAL INTELLIGENCE

actually pick the currently operative set of beliefs. If priorities on beliefs are used to select the
currently operative set of beliefs (as in AGM epistemic entrenchment), then our framework
would permit dynamic prioritization of beliefs. In other words, different orderings could be
used at different times to select theories without causing inconsistencies or unreasonable
outcomes from the belief change process. The more crucial priority relation, however, is the
one that determines the nature of the new belief state. In our case, this is the constraint pri-
oritization relation. Unlike the AGM epistemic entrenchment relation and Nebel’s epistemic
relevance ordering (which, like our constraint prioritization relation, determines the nature of
the new belief state), we provide a clear prescription of how the relation evolves over iterated
belief change steps and how the new evidence is integrated into this relation. An additional
advantage with our framework is that we permit, in addition to the traditional operations of
expansion, revision and contraction, the “undoing” of a contraction step; it simply involves
the removal of the relevant necessary disbelief constraint.

4.1. Properties

It has become popular in recent times, to evaluate every new belief change operator against
the yardstick of rationality provided by the AGM postulates for belief change, primarily be-
cause they seem to be the best formalization of the consensus view on the requirements an
ideal belief change operator should satisfy. Our formalization cannot, however, be evaluated
using the AGM postulates directly, for the following two reasons. First, the AGM postulates
consider transitions between belief states represented as a single deductively closed proposi-
tional theory. Our operator maps between belief states represented as collections of theories
(the multiple possible extensions of the PJ-default theories). Second, because the AGM pos-
tulates consider belief change as a single-step process, it is difficult to evaluate “rationality”
over iterated belief change steps. It is possible, however, to articulate a reformulated version
of these postulates, and show that our framework satisfies them under certain conditions. We
formalize these conditions first.

Definition 5. Let a belief change operation result in the introduction of a new constraint x in
a belief state with a constraint set denoted by BC . Let y ∈ BC be such that y is incompatible
with x and there is no z ∈ BC such that y ≺ z and z is incompatible with x . The belief change
operation is imperative iff y ≺ x .

Thus, an imperative belief change operation introduces a constraint that has a higher pri-
ority than the existing constraint of the highest priority that is incompatible with it. Because
our framework is general enough to permit any prioritization of the belief constraints, it is
possible for a belief change operation to fail (in the case that there exists a belief constraint,
with higher priority than the newly introduced constraint, which is incompatible with the
newly introduced constraint. If a belief change operation is imperative, the operation is guar-
anteed to succeed. Because every belief change step in the AGM framework must succeed,
our framework satisfies the AGM postulates only in the case of imperative belief change
operations.

The second condition involves the prevention of beliefs that were previously suppressed
by the existence of a disbelief constraint from reappearing in a belief state when this disbelief
constraint is discarded.

Example 8. Consider a belief state given by W = {} and D = { :¬a∧a∧(a→b)
¬a ,

:"∧a∧(a→b)
" }.

There is a single, empty, belief set corresponding to Cn("), which is the only extension of
(W, D). Let the belief constraint set in this belief state consist of a single disbelief constraint—
{{a}, {¬a, b}}. Let the belief b be retracted from this belief state. We get a new belief constraint
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set given by a single disbelief constraint—{{¬b}}. The new belief state will be given by
W ′ = {} and D′ = { :¬a∧¬b

¬a , :"∧¬b
" }. This default theory has one extension, Cn(¬a). Thus we

get a belief state with a belief set containing ¬a as result of contracting b from a belief state
containing a single, empty, belief set. This clearly violates the AGM contraction postulate,
which requires that the contracted belief set should be a subset of the original belief set,
yet the behavior is perfectly rational. The tentative belief ¬a reappears in a belief set as a
consequence of the removal of the disbelief constraint that caused this tentaive belief to be
supressed.

Clearly, only operations, which do not display such behavior, can be related to the AGM
framework.

Definition 6. Let a belief change operation introduce a belief constraint x in a belief state
(W, D) with a belief constraint set BC . The operation is stable iff there exists no disbelief
constraint y ∈ BC . s.t y ≺ x and there exists :β∧γ

β
∈ D where y ∪ β is incompatible.

Before we state and prove the results relating our framework to the AGM postulates, we
establish a connection between the THEORIST system developed by Poole, Goebel and
Aleliunas (1987) and uniform PJ-default theories that simplifies the proofs. The THEORIST
framework envisages a knowledge base comprising a set of closed formulas that are neces-
sarily true, called facts, and a set of possibly open formulas that are tentatively true, called
hypotheses. Default reasoning in this framework involves identifying maximal scenarios (or
extensions), where a scenario consists of the set of facts together with some subset of the set
of ground instances of the hypotheses that is consistent with the set of facts. The framework
can be augmented with constraints, which are closed formulas such that every THEORIST
scenario is required to be consistent with the set of constraints. Following Poole et al., we
can present the following definition of a maximal scenario.

Definition 7. For a THEORIST system (F, H, C) where F is the set of facts, H is the set of
hypotheses and C is the set of constraints, such that every element of F , H and C is a ground
formula, a maximal scenario is a set F ∪ h such that h ⊆ H and F ∪ h ∪ C is satisfiable.

We present a translation that is simpler than the one presented in Delgrande and Jackson
(1991) because we are dealing with uniform PJ-default theories rather than general ones. In
the following, S(F, H, C) refers to the set of maximal scenarios of the THEORIST system
(F, H, C). Also, E(�) refers to the set of extensions of the default theory �.

Definition 8. Let (F(W,D), H(W,D), C(W,D)) denote the THEORIST translation of the uniform
PJ-default theory (W, D). Then

F(W,D) = W

H(W,D) =
{
β

∣∣∣∣ :β ∧ γ

β
∈ D

}

C(W,D) =
{
γ

∣∣∣∣ :β ∧ γ

β
∈ D

}
.

Theorem 1. Let (F(W,D), H(W,D), C(W,D)) denote the THEORIST translation of the uniform
PJ-default theory (W, D). Then S(F(W,D), H(W,D), C(W,D)) = E((W, D)).

Proof. The proof follows directly from the equivalence of the definitions of THEO-
RIST maximal scenario computation and PJ-default extension computation, given that
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EJi = C(W,D) at every step in the computation of extensions for a uniform PJ-default theory
(W, D).

Thus, the facts F correspond to the necessary belief constraints. The constraints C
correspond to the necessary disbelief constraints in our system. The hypotheses H correspond
to the tentative beliefs. The process of belief change can thus be equivalently defined as
computing the new set of belief constraints, replacing F and C accordingly and demoting
beliefs from F to H if necessary.

We interpret postulate 1 as one way of articulating the following principle of categorical
matching stated by Gärdenfors and Rott (1993), which requires that the representation of
a belief state after a belief change has taken place should be of the same format as the
representation of the belief state before the change. For postulates 2 through 8, we reformulate
every condition on knowledge sets to apply to every extension of the PJ-default theory
representing a belief state. For postulates 7 and 8 we can actually prove a stronger condition
in the case that the antecedent in postulate 8 is satisfied. If the antecedent is not satisfied,
there appears to be no obvious way to reformulate postulate 7. �

Theorem 2. For imperative and stable operations, the contraction operator—satisfies.

1. The principle of categorical matching.
2. ∀e′ ∈ E((W, D)−A), there exists some e where e ∈ E((W, D)) s.t. e′ ⊆ e.
3. If ∀e : (e ∈ E((W, D))) ⊃ (e 
|= A), then E((W, D)−A) = E((W, D)).
4. If 
|= A, then ∀e : (e ∈ E(W, D)−A) ⊃ (e 
|= A).
5. If ∀e′ : (e′ ∈ E((W, D))) ⊃ (e′ |= A) then for every e′ ∈ E((W, D)), there exists some

e where e ∈ E(((W, D)−A)+A) s.t e′ ⊆ e.
6. If |= A ↔ B then E((W, D)−A) = E((W, D)−B ).
7. If ∀e : (e ∈ E((W, D)−A∧B)) ⊃ (e 
|= A) then E((W, D)−A∧B) = E((W, D)−A).

Proof. We prove these results using the THEORIST translations (F, H, C) of (W, D).

1. Obvious.
2. To prove ∀e′ ∈ S((F, H, C)−A), there exists some e where e ∈ S((F, H, C)) s.t. e′ ⊆ e.

Let (F, H, C)−A = (F ′, H ′, C ′). Assume the contrary. Thus, there must exist some ex ∈
S((F ′, H ′, C ′)) s.t. there exists no e ∈ S((F, H, C)) where ex ⊆ e. Let ex = Cn(F ′ ∪ h′)
where h′ ⊆ H ′. Two cases are possible:
(a) F = F ′. In this case, H = H ′. Our assumption holds iff ex ∪ C is unsatisfiable. By

stability, this is impossible. Thus, our assumption does not hold.
(b) F ′ ⊂ F . Thus H ⊂ H ′. Let y = H ′ − H = F − F ′. If h′ ⊆ H , then ex is included

in some e ∈ S((F, H, C)), because F ′ is included in F , h′ is included in H , Cn(F ′ ∪
h′) is satisfiable (by virtue of being a scenario of (F ′, H ′, C ′)) and Cn(F ′ ∪ h′) is
consistent with C , as a consequence of consistency with C ′ and stability. If h′ 
⊆ H ,
then y′′ ⊆ y, where y′′ = h′ − H . Thus, Cn(F ′ ∪ h′) = Cn(F ′ ∪ y′′ ∪ h′′) where
h′′ ⊆ H . Then ex is included in some e ∈ S((F, H, C)) because F ′ ∪ y′′ is included in
F , h′′ is included in H , Cn(F ′ ∪ y′′ ∪ h′′) is satisfiable (by virtue of being a scenario
of (F ′, H ′, C ′)), and Cn(F ′ ∪ y′′ ∪ h′′) is consistent with C as a consequence of
consistency with C ′ and stability.

3. To prove that if ∀e : (e ∈ S((F, H, C))) ⊃ (e 
|= A), then S((F, H, C)−A) =
S((F, H, C)).
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Let (F, H, C)−A = (F ′, H ′, C ′). Clearly F 
|= A. Thus, F = F ′, H = H ′. Then, by sta-
bility, because all elements of S((F, H, C)) are consistent with C , they will be consistent
with C ′ too.

4. To prove that if 
|= A, then ∀e : (e ∈ S((F, H, C)−A) ⊃ (e 
|= A).
C |= ¬A. Hence proved.

5. To prove that if ∀e′ : (e′ ∈ S((F, H, C))) ⊃ (e′ |= A) then for every e′ ∈ S((F, H, C)),
there exists some e where e ∈ S(((F, H, C)−A)+A) s.t e′ ⊆ e.
Let ((F, H, C)−A)+A = (F ′, H ′, C ′). Let ex = Cn(F ∪ h), where h ⊆ H be some arbitrar-
ily chosen element of S((F, H, C)). Because H ⊆ H ′, h ⊆ H ′. Two cases are possible:
(a) F |= A. Then F ′ ⊆ F . Let y = F − F ′. Clearly y ⊆ H ′. Thus, Cn(F ∪ h) =

Cn(F ′ ∪ y ∪ h). Cn(F ′ ∪ y ∪ h) is satisfiable by virtue of being a scenario of
(F, H, C). Clearly, Cn(F ′ ∪ y ∪ h) includes F ′. Also, y ∪ h ⊆ H ′. Because ex is
consistent with C , Cn(F ′ ∪ y ∪ h) is consistent with C ′, by stability. Thus ex must
be included in some e ∈ S((F ′, H ′, C ′)).

(b) F 
|= A. Then F ⊂ F ′. Clearly, F ′ − F = A. Because Cn(F ∪ h) |= A, Cn(F ∪
h) = Cn(F ∪ A ∪ h) = Cn(F ′ ∪ h). Clearly Cn(F ∪ A ∪ h) includes F ′. As well,
h ⊆ H ′. Cn(F ∪ A ∪ h) is satisfiable by virtue of being a scenario of (F, H, C).
Because ex is consistent with C , Cn(F ∪ A ∪ h) is consistent with C ′, by stability.
Thus, ex must be included in some e ∈ S((F ′, H ′, C ′)).

6. To prove that if |= A ↔ B then S((F, H, C)−A) = S((F, H, C)−B ).
Trivially true.

7. To prove that if ∀e : (e ∈ S((F, H, C)−A∧B)) ⊃ (e 
|= A) then S((F, H, C)−A∧B) = S((F,

H, C)−A).
Let (F, H, C)−A = (F ′, H ′, C ′) and (F, H, C)−A∧B = (F ′′, H ′′, C ′′). By stability, and by
the precondition, it is easy to see that every element of S((F ′, H ′, C ′)) is consistent with
C ′′ and every element of S((F ′′, H ′′, C ′′)) is consistent with C ′. The precondition implies
that F ′′ 
|= A. Because F ′′ ⊆ F and F ′′ 
|= A, F ′′ ⊆ F ′. Assume that F ′′ ⊂ F ′. Then
there must exist some x ∈ F ′ such that F ′′ ∪ {x} |= A ∧ B. However, this is impossible
because F ′′ ∪ {x} ⊆ F ′. Hence F ′′ = F ′. Thus H ′ = H ′′. �

5. RELATED WORK

Over a single step, and starting with a deductively closed theory, our framework is
identical to the AGM framework in the sense that the outcomes generated by our framework
are identical to the choices available to the AGM selection function.

Theorem 3. For a uniform PJ-default theory (W, D), E((W, D)−A) = K ↓ A if W = K
where K is a belief set, D = { :"

" }, the contraction operation is imperative and the initial
constraint prioritization relation is empty.

Proof. The proof follows directly from the definitions of the removal operation ↓, the
constraint update operation and imperative belief change operations.

Thus, if we were to start with a deductively closed theory as the set of facts, and an empty
set of defaults, then the set of extensions of the default theory obtained after contracting
a belief A, would correspond precisely to the set of possible outcomes that the selection
function in partial meet contraction. Whereas partial meet contraction requires that a choice
is actually made, we do not require any choices, but retain all the multiple possible outcomes
compactly represented as a PJ-default theory. �
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The following theorem shows how our approach relates to Nebel’s base contraction operator
(1989).

Theorem 4. Let (W, D) be a uniform PJ-default theory with W = B, where B is a finite
belief base, and D = { :"

" }. Then Cn(B � A) = Cn((
∨

E((W, D)−A)) ∧ (B ∨ ¬A)) if the
contraction operation is imperative and the initial constraint prioritization relation is empty.

Proof. The proof follows directly from the definitions of the operation �, the constraint
update operation and imperative belief change operations.

As with our framework, a belief that becomes suppressed as a result of a contraction
operation can be recovered in Nebel’s framework when the belief state is revised with the
contracted belief. However, our framework permits an explicit operation to undo a contraction,
which can also result in beliefs being recovered. Such an operation is not possible in Nebel’s
framework.

With their commitment to producing a unique outcome for the belief change operation,
both the AGM and Nebel frameworks render too many potentially useful beliefs unusable
(note that they are not actually discarded, but can be recovered later under certain circum-
stances); in the AGM framework, this is a consequence of taking the intersection of the
selected outcomes, while in Nebel’s case, this is a consequence of taking the disjunction of
every possible outcome. Our framework retains every possible outcome at all times, and thus
does not suffer from this problem.

Brewka (1989) shows how belief revision can be viewed as a simple process of adding
new information to theories represented in his preferred subtheories framework, which is a
generalization of the THEORIST framework (Poole et al. 1987). Brewka’s framework (1989)
of preferred subtheories differs from THEORIST in two significant ways. First, facts are
done away with, making every formula in the knowledge base potentially refutable. Second,
one is allowed to define a partial order on the formulas in the knowledge base. A preferred
subtheory, Brewka’s analogue of a THEORIST maximal scenario, is a consistent subset of the
knowledge base constructed by starting with formulas with the highest priority (as defined
by the partial order) and progressively adding as many formulas of lower priority levels as
can be consistently added. As with THEORIST, a knowledge base can have several preferred
subtheories. Brewka (1989) shows that a knowledge base of this kind can be revised by
simply adding the new formula and augmenting the partial order to incorporate any ordering
relationships that might exist between this formula and the existing elements of the knowledge
base. Also, if this framework is augmented to include THEORIST-style constraints, and a
partial order is defined on the set containing both the formulas representing hypotheses and
formulas representing constraints, then contraction is shown to be a simple case of adding
a constraint to the knowledge base and augmenting the partial order. The improvements
achieved by Brewka’s belief change framework over earlier ones are twofold. First, the belief
change operator is simple and totally incremental. Second, earlier information is not thrown
away, but is retained in an elegant fashion. Nebel (1991) establishes a restricted form of
equivalence between nonmonotonic inference and belief change along similar lines.

In the case that the new belief (either a new hypothesis, as in revision, or a new constraint,
as in contraction) always has a higher priority, under the partial ordering, than all existing
beliefs, Brewka’s framework turns out to be similar to ours. As the following example shows,
his framework avoids the problem of spurious beliefs in most cases. �

Example 9. Let the initial knowledge base consist of the set {a, a → b} of hypotheses with
no ordering relationship being defined for the hypotheses. To contract b from this knowledge
base, we add the constraint ¬b, written as < ¬b > to the knowledge base, together with the
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ordering relations < ¬b >≥ a and < ¬b >≥ a → b. We get two maximal scenarios , one
containing a and the other containing a → b. Further revision of the knowledge base with a
results in the addition of this hypothesis at a higher priority level than all existing elements
(hypotheses or constraints) of the knowledge base. There is only one maximal scenario at
this point, consisting of a and its logical consequences.

The similarity of Brewka’s framework to ours is not surprising, given that we use, like
Brewka, nonmonotonic theories that can generate possibly many different consistent sets of
beliefs, to represent a belief state. Like Brewka, our approach is incremental, and information
is never thrown away. Our choice of nonmonotonic formalism is very similar too, given
the results in Delgrande and Jackson (1991) relating PJ-default logic to THEORIST with
constraints. However, because Brewka does not explicitly account for the maintenance of
belief constraints, his formalization may provide unintuitive results as the following example
shows.

Example 10. Consider an initial knowledge base containing only one hypothesis and no
constraints {a}. Let us now contract a ∨ b from this knowledge base. This entails the addition
of the constraint < ¬(a ∨ b) > to the knowledge base, and augmenting the partial order such
that the new constraint has higher priority than all existing elements of the knowledge base.
If one were to revise the knowledge base with b, there would be one maximal scenario
containing both a and b. Note, however, that the new evidence obtained since retracting
a ∨ b from the knowledge base does not warrant renewed belief in a. The problem arises
because the presence of b at a higher priority level disables the constraint < ¬(a ∨ b) >.

We improve upon Brewka’s work by explicitly accounting for the maintenance of belief
constraints. Necessary disbelief constraints are treated as a set of formulas to be explicitly
disbelieved. We update this set at every belief change step, by retaining as many constraints,
or parts of constraints, as are compatible with more recent constraints. Thus, in the previous
example, we would update this theory to account for revision with b by removing b from
the set of necessary disbelief constraints, but leaving a intact. The problems with Brewka’s
framework stems from the fact that it uses syntactic units (the constraints) that are enabled
or disabled as whole units and not in terms of the individual components. In fact, his system
would behave like ours only if the only constraints permitted are atomic constraints.

Whereas Brewka’s system uses a recency-based heuristic to order belief constraints, our
framework is more general by permitting arbitrary constraint prioritizations. We differ further
from Brewka in that we factor out the use of priorities on beliefs entirely from the belief change
process. Whereas Brewka’s framework would only generate those maximal scenarios, that
respect the existing orderings on the beliefs, our framework would generate all maximal
scenarios that satisfy the relevant belief constraints. Our framework would coincide with
Brewka’s, in this respect, if the constraint prioritization was based on recency.

Nayak et al. (1994), Boutilier (1992) and Williams (1993) address the question of gen-
erating a new selection function as result of a belief change step. However, they all use a
recency-based heuristic for ranking revisions. More importantly, they do not address the
problem of nonpersistence of the effects of contractions.

Sattar and Goebel (1991) have extended the THEORIST system to a consistency-based
reason maintenance system that incrementally identifies inconsistent sets of hypothesis in-
stances (nogoods) and stores them along with partial explanations for use in subsequent
computations. The computational advantages of this approach can be seen in Goodwin and
Sattar (1993). Our framework could be easily implemented using this extended version of
THEORIST. Also, it would be interesting to see how the idea of experiments, as used in
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THEORIST-style systems (Sattar and Goebel 1991) could be used to discriminate between
the competing outcomes of a belief change step.

6. CONCLUSION

The primary contribution of this study is the identification of a set of requirements
for belief change operators from the viewpoint of their iterated application. A threefold
categorization of belief in a belief state is introduced: necessary beliefs, necessary disbeliefs,
and tentative beliefs. A precise characterization of belief migration across these classes is
provided. The problem of spurious beliefs is identified, and is used to motivate the need both
for maintaining multiple theories in the same belief state, as well as for maintaining belief
constraints. One compact representation is obtained for the multiple possible outcomes of
a belief change operation. By using PJ-default logic to represent a belief state, we are able
to obviate the need for recording belief constraints separately; the constraints are clearly
identifiable components of a PJ-default theory. By retaining all outcomes at any given point
during the process of belief change, we permit the use of different prioritizations of the beliefs
at different times to actually select one theory out of the many that may potentially constitute
a belief state. Our framework can be viewed as a formalization of the process through which
a default theory evolves into a more accurate representation of the world. Belief change
drives this process, and in abstract terms, this involves demoting facts known to be true to
the status of defaults. By showing how a nonmonotonic formalism such as default logic can
be crucial to knowledge revision, this study further explicates the close relationship between
these related, yet separate, areas of inquiry.
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