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Abstract. The goal of web mining is relatively simple: provide both
computationally and cognitively efficient methods for improving the value
of information to users of the WWW. The need for computational effi-
ciency is well-recognized by the data mining community, which sprung
from the database community concern for efficient manipulation of large
datasets. The motivation for cognitive efficiency is more elusive but at
least as important. In as much as cognitive efficiency can be informally
construed as ease of understanding, then what is important is any tool
or technique that presents cognitively manageable abstractions of large
datasets.
We present our initial development of a framework for gathering, ana-
lyzing, and redeploying web data. Not dissimilar to conventional data
mining, the general idea is that good use of web data first requires the
careful selection of data (both usage and content data), the deployment
of appropriate learning methods, and the evaluation of the results of
applying the results of learning in a web application. Our framework
includes tools for building, using, and visualizing web abstractions.
We present an example of the deployment of our framework to navi-
gation improvement. The abstractions we develop are called Navigation
Compression Models (NCMs), and we show a method for creating them,
using them, and visualizing them to aid in their understanding.
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1 Introduction

After only half a decade, the world wide web (WWW) has become an infor-
mation playground where every possible learning technique is of potential value
for improving web usage — if only one could match application performance
goals with appropriate learning technologies. Given enough resources, one can
typically find almost anything on the web. In fact, at the estimated growth rate
of about 14 million pages per day1, it is a practical tautology that we can’t find
value without creating relevant human-oriented abstractions.
1 Whatever a page is?
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The process of web mining is to create abstractions, with the overall goal
of providing both computationally and cognitively efficient methods for improv-
ing the value of information for WWW users. The need for computational effi-
ciency is well-recognized by the data mining community, which sprung from the
database community concern for efficient manipulation of large datasets.

In as much as cognitive efficiency can be informally construed as ease of
understanding, then what is important is any tool or technique that presents
cognitively manageable abstractions of large datasets. The visualization of web
space is based on exactly this idea: that some abstracted form of a large data set
can provide insight into some important attributes of that space (e.g., see [6]).

The idea of web mining is to apply the tools and techniques of data mining to
world wide web (WWW or web) data to induce “interesting” hypotheses that can
be used to improve various web usage applications. So the only realistic research
direction is to develop web mining software architectures that explicitly address
both aspects: computational efficiency in order to provide access to large volumes
of data, and cognitive efficiency in enabling users to guide learning processes to
information abstractions of appropriate relevance.

The most common instance of this combination is the application of learning
to user generated web usage data, sometimes referred to as web usage mining
(WUM). Here we use WUM as a specific instance of a web mining task, to
illustrate the development of a general framework for web mining.

The biggest challenge is to provide a “mining” software architecture that
not only provides a harness for efficient learning methods, but also aids in the
incremental user formulation of mining goals. This is important because humans
are the ultimate determiner of what “relevance” means.

Everyone has their idea of what an abstraction should be. For example, web
search engines are a dynamically created operational abstraction that continu-
ally update indices, which are then coupled with user query systems to identify
relevant web information. Similarly, meta search engines provide another level
of abstraction, working at a granularity above search engines by transforming
single user queries into several queries to regular search engines. In the other
direction, corporate, intranet, and e-business search engines provide local index-
ing structure, imposing more rigid abstractions that are targeted to circumscribe
corporate policies, workflow constraints, and sales strategies.

This is why the notion of web data is as broad as the potential applications
of its mining. Most current applications of web mining (e.g., [3, 7, 9, 10, 11, 14])
have concentrated on data that is created by the browsing user, beginning with
the usage logs produced by web servers (e.g., [12]). Of course there is a broad
spectrum of such user “web data,” including ordinary web logs, cookies, page
exit surveys, search query collections, and even hand collected user surveys.
Even though this spectrum of information can itself be incredibly broad, there
is another aspect of web data that is even broader and deeper: the web content
itself.

The Web Mining Framework proposed here is designed to facilitate all aspects
of web mining we can currently envisage, including the use of browsing data,
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web content, and web meta content. The framework consists of three broad
components: 1) data capture tools, 2) learning tools, and 3) evaluation tools.

Our development of this framework is itself an experiment, based on our
belief that we need such a framework to assess the various combinations of data,
learning, and application evaluation methods. We hope to incrementally improve
our framework, and develop answers to questions like “What are the tradeoffs
between intrusive data gathering and navigation improvement?” or “Can we
measure how the analysis of search queries be focused on specific demographic
groups to increase relevance?”

In what follows, we provide a more detailed description of the current status
of each of our components, together with examples of our preliminary experi-
ments. In all cases we attempt to be as general as possible in identifying the
“inductive opportunities” that arise within web data, and anticipate their ulti-
mate role in improving the value of a range of web activities.

2 System Architecture for Web Mining Framework

Like existing data mining architectural proposals (e.g., [3, 7, 11]), the gross level
component architecture will require a module to support data capture, a module
to support the specification and deployment of a repertoire of learning methods,
and, perhaps less common, an explicit module designed to support evaluation of
any combination of the first two.

In our particular instance, we have already extended the simple three com-
ponent architecture into something more elaborate, as depicted by the diagram
of Figure 1. One simple way to understand this instance of our architecture is to
consider a high-level description of the process control within it. With respect
to the diagram of Figure 1, our current web mining procedure can be described
as follows:

1. Determine what data can be used, and obtain the data through Data Acqui-
sition modules.

2. Convert the original data into specific formats that can be used by various
data mining methods. This work is done through Data Preparation modules.

3. Determine what data mining algorithms are appropriate for the task. Then,
apply the algorithms to the formatted data to obtain corresponding knowl-
edge. This work is done through Data Mining modules.

4. The knowledge can be queried or evaluated through various methods. This
work is done through Knowledge Analysis modules. The evaluation of the
knowledge can then be used as a feedback for steps 1-3.

5. We can make use of the knowledge to achieve various tasks in certain ap-
plications, and evaluate the performance improvement. This work is done
through Applications & Evaluation modules. The evaluation of the perfor-
mance improvement can be used as a feedback for steps 1-3.

6. Original data, formatted data, and even the knowledge can all be visualized
through Visualization modules, to provide feedback for steps 1-3.
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Fig. 1. System Architecture for Web Mining Framework

3 An Architecture Instance: Creating NCMs

Our first experiments with our web mining framework have the goal of improving
user navigation. Our input is web usage data, e.g., web logs, and our evaluation
methods (described below) help indicate whether we are actually “improving” a
user’s navigation, e.g., by helping reduce the number of links traversed to find
“interesting” pages.

The missing middle component is that object to be created by various learn-
ing algorithms, and then tested to see whether the learning algorithm has found
something “interesting” which can provide navigation improvements, as mea-
sured by the evaluation methods. We call the objects created by the application
of learning methods navigation compression models (NCMs). NCMs are simply
some representation of an abstract navigation space, determined as a function
of a collection of user navigation paths on actual websites.
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4 Visualization

There has been a lot of recent work on various forms of data visualization, with
a focus on exploiting human cognitive abilities to understand the structure,
features, patterns and trends in data [4]. Much of this work derives from the
innovative and creative work on graphics design, especially the land mark texts
of Tufte [13].

Most existing visualization tools concentrate on either web site visualization
(e.g., [8]) or web usage data visualization (e.g., [1]). Because we want our vi-
sualization tool to provide insight into both web site structure and web usage,
we have developed a tool that provides both. Our current version provides the
ability to view individual web sites at different levels of granularity, and allows
both the static and dynamic display of individual and aggregate user behavior.

Our tool is loosely based on various two dimensional displace techniques that
focus visual attention in two space on a single URL, from which links are radially
drawn outward. In particular, we use the radial tree algorithm of [2] to provide a
two dimensional display of an arbitrary URL. The reason for limiting ourselves
to two instead of three dimensions (cf. the three dimensional hypergraphs [8]) is
that three dimensional displays require us to solve occlusion problems. Since our
goal is a general visualization of both structure and usage, we take this decision
to help reduce the complexity of our experimental visualizations.

A screen shot of our WV tool is given in Figure 2. The radial tree is a hier-
archical acyclic tree, with each level of the hierarchy represented by a concentric
ring of page nodes, distributed around a central focus node. The focus node is
designated by the user as a starting URL, which provides the initial focus for
any visualization display.

Fig. 2. Web Visualization Tool
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Similar to heights on a topographic map, nodes linked from the focus URL
are displayed on different concentric circles according to their levels in the hi-
erarchical tree. A breadth-first search that avoids cycles is used to traverse the
web site, to build the hierarchical structure. The radial pattern of links from a
given node is represented by a radial distribution of nodes on a concentric circle,
proportional to the number of nodes. Note, for example the concentric rings of
linked nodes in the diagram of Figure 2.

This two dimensional display based on concentric link “isobars” doesn’t pro-
vide any insight to web structure, without an ability to shift the focus and level
of detail. With this in mind, our visualization also provides the user with the
ability to drag a rectangle over the visualization, then zoom on that rectangle.
As shown in Figure 2, a smaller window (context window) always provides a
context for the web site structure, while the other larger window (focus window)
displays the detail of choice, which is a subset of the larger context. Whenever
there is a need to drill down, the selected sub area is enlarged, and both win-
dows are appropriately modified. If the user “zooms in” to sufficient detail then
individual URLs are used to label each node.

If we can visualize individual user navigation paths superimposed on top
of the web site visualization described above, we can begin to recognize well-
traversed paths. These might be links that are popular over some particular time
period, or trajectories of heavily visited web pages which help us understand how
users arrived at web site “hot spots.”

In addition to visualizing the navigation paths of individual users, we can also
visualize aggregate paths. For example, when an individual traversal of a hyper-
link is indicated by drawing a line from one node to another, the aggregate
behavior of two users can simply annotate that link for each traversal. There
are an arbitrary number of ways to visualize aggregate link traversal (e.g., line
width, color, annotation). But when we can visualize aggregate user navigation
pathers superimposed on top of the web site visualization, we can begin to
recognize web navigation clusters in order to understand aggregate user behavior.
For example, this is useful to validate web site design (cf. [5]), by statically
viewing the distribution of aggregate navigation paths on a web site. And with
appropriate navigation path annotation, we can dynamically observe aggregate
behavior, e.g., aggregate navigation path changes over different time periods.

5 Experiments with Navigation Compression Models

Navigation optimization means improving the ease with which users can reach
the contents of interest more quickly. The basic idea is that we can discover navi-
gation patterns from previous visitations, and then use these patterns to provide
guidance for new users. As explained above, we call our “patterns” navigation
compression models or “NCMs.”

We can evaluate our NCMs statically by measuring overall navigation im-
provements. To actually use such information, we can use one of two approaches:
one is using synthetic static index pages, each of which contains indices to a set
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of pages belonging to similar or related topics; another is using dynamic recom-
mendations, which use NCMs to make recommendations to a user based on the
pages the user has already visited. In our preliminary experiments, we use our
NCM to implement dynamic recommendations.

Note that there is a significant problem with user navigation patterns: a
traveled path is not necessarily a desired path. Therefore we propose a recom-
mendation mechanism which ignores those auxiliary pages and makes recom-
mendations only on “relevant” pages. Of course the identification of “relevant”
pages is a very difficult problem, but we can make assumptions based on certain
heuristics. Though this definition is heuristic, we can still compare NCMs for
how well they help users find the relevant pages more quickly.

The inputs to create an NCM include knowledge of page visiting patterns and
the path of the user sessions; the outputs are recommendations for useful links.
As mentioned above, a NCM can be created from the results of various learning
methods, such as association rules, sequential patterns, and clusters. Moreover,
a NCM can also be created with some pre-defined navigation templates.

5.1 Data Preparation

Our preliminary experiment uses only the server-produced access logs. Moreover,
we experiment on two different original data sets so that we can make sure the
result is not exceptional, and some comparisons can be done when necessary.
Both data sets are the server access logs of our academic department: one is in
the period of September and October, 2001 (DS1); another one is in the period
of August and September, 2001 (DS2). In both data sets, we use the previous
one-month logs as training set, and the later one-month logs as test set.

Our data preparation consists of breaking the access log into user sessions.
Currently we use two different user identification methods: (a) we exclude all
records without both authentication and cookie, and identify users just by their
authentication or cookie value; (b) we identify users with all the information we
have (including all log information as well as topology structure), and no record
is excluded.

To compare these two user identification methods, we generated sessions with
each of them on all the three-month logs. The result shows that with method
(b), we can identify a lot more users and sessions. But interestingly, after we
removed those useless sessions (with length = 1), the results from method (a)
and (b) became quite similar (with a difference less than 2%). This implies that:
(i) most users choose to accept cookies, not rejecting them; (ii) the large amount
of “length = 1” sessions might come from some robots or web crawling programs.

In what follows, we use only method (a) for user identification, because it
is more accurate and runs much faster than method (b). Another important
parameter is the session timeout, for which we arbitrarily select 30 minutes.

5.2 Evaluation of Usage Improvement

Exercising our general framework, our experiment took three steps:
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1. Convert original log data into sessions (data preparation).
2. Apply learning algorithms to the sessions to obtain NCMs. In our preliminary

experiment, we only generate association-rule-based NCMs.
3. Apply the NCMs to the sessions in the test set, and generate a new set of

shortened navigation paths.

The specific measure we use for evaluation is called Usage Improvement (UI),
which is computed based on the number of hyperlinks traversed:

UI =
Norg − Ncom

Norg
(1)

Here, Norg is the number of requests in the original sessions, and Ncom is the
number of requests in the compressed sessions.

For example, suppose we obtain an association rule A −→ D, where D is a
content page. Then an original session Sorg = {A, B, C, D, E} (where B and C
are not content pages) can be compressed by removing B and C to obtain Scom =
{A, D, E}. The usage improvement for this session would be UI = 5−3

5 = 40%.
As mentioned above, our NCM mechanism only makes recommendations for

relevant pages. Correspondingly, an association rule is applied only when it is
used to shorten the path to a relevant content page. We determine relevant
content pages using three different approaches: (a) Maximal Forward Reference
(MFR) [3], which assumes that maximal forward references are content pages,
and the pages leading up to the maximal forward references are auxiliary pages.
Here, a maximal forward reference is defined to be the last page requested (before
session timeout) by a user before backtracking; (b) Reference Length (RL) [3],
which assumes that a user generally spends more time on content pages than
auxiliary pages, therefore identifies content pages based on a cutoff viewing time.
In our experiment, we set the cutoff time to an empirical value — 1 minute; and
(c) Visit Count (VC), which simply assumes that those pages mostly visited are
content pages.

Here we generated three kinds of Usage Improvement UI:

– UI — usage improvement on all sessions.
– UIc — usage improvement on those sessions each of which has at least one

content page.
– UIr — usage improvement on those sessions for each of which at least one

rule is applied.

5.3 Experimental Results

We report two experiments. In the first, we tested the usage improvement with
varying numbers of association rules and a fixed number of content pages. To
simplify the problem, we set the minimal confidence of rules to a fixed value —
75%, and only adjusted the support of rules. The content pages were selected
based on a restriction on their visit counts. So a web page is determined to be
content page if: (a) it is classified to be a content page by one of the content page
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identification methods (MFR-based, RL-based, or VC-based); and (b) it has a
visit count no less than a threshold vc. In this experiment, we set vc to S

1000 ,
where S is the total amount of sessions. The number of content pages obtained
with this approach may not be the same for different content page identification
methods. In that case, we simply use the minimum among those numbers, and
remove those less-visited pages when necessary.

In the second experiment, we tested the usage improvement with varying
numbers of content pages and a fixed number of association rules. The support
and confidence were set to 0.75% and 75% respectively. This is because smaller
support and confidence values will generate a lot more rules without bringing
apparent improvement to the performance.

The experiment results for DS1 and DS2 are shown exclusively in Figure 3.
First, we found that the total usage improvement (UI) we can expect is

relatively small, though the usage improvement on those sessions where rules
took effect (UIr) is quite large. This means that only a very small part (less
than 1% in our experiment) of the sessions were compressed with the associa-
tion rules we obtained. A possible reason might be that, users’ interest in this
web site is too diverse, and the content pages we selected (1000 at most) are
only a very small part of that. Moreover, among those three content page iden-
tification approaches, reference length seems to have the potential for the best
Usage Improvement (UI).

Secondly, with a given set of content pages, the usage improvement is im-
proved when rule number gets larger (i.e., when the support gets smaller). How-
ever, this also means that users will have more recommendations to choose from
in the real world, which can be seen as an extra cost.

Thirdly, we found that more content pages can have two effects: a positive
one is that more paths can be compressed (no recommendation will be made if
it is not for a content page, therefore no compression); however, there are more
pages in the paths we can not skip. Our experiment showed that, with a given
set of association rules, the usage improvement is impaired when content page
number gets larger.

In those UI = f(Support) figures, we can see that UI can change a lot in
some area, and changes very little in some other area. This means that not all
rules have the same effect on UI: some rules are very useful, while some other
rules can be completely useless. There might be three reasons behind this: (a)
an association rule is possibly useful only when some content pages appear at its
right side; (b) an association rule may not be useful even it has a content page
at right side, because users might have already taken the path it suggests; (c) a
lot of rules could relate to very few content pages.

5.4 Visualization of Navigation Compression Modules

Our visualization tool WV provides a way of comparing the navigation behavior
of two different navigation strategies, by superimposing two sets of user naviga-
tion paths (in this case web logs). This is shown in Figure 4, where part (a) is
the visualization of a user web log before applying a navigation learning method,
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Fig. 3. Experiment Results on DS1 & DS2
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part (b) is a visualization of the same user web log after a learning method has
been applied, and part (c) is a “subtraction” (b) - (a), which provides a vi-
sualization of the difference between the unimproved and improved navigation
paths.

(a) before applying NCM (b) after applying NCM (c) pattern (b) - (a)

Fig. 4. Visualization of NCM application

6 Summary and Conclusions

We have developed a framework for web mining, based on a general architecture
that decouples input data, learning method, evaluation method, and visualiza-
tion. Our initial experiments with our framework focused on improving web nav-
igation, and we developed the idea of a navigation compression model (NCM)
to represent the results of learning “better” navigation paths from web logs.

In these our first experiments, our NCM’s ability to make recommendations
on “relevant” pages is important, but also revealed deeper problems. For exam-
ple, we found that many pages were discarded in the compressed paths perhaps
because we set the vc too high. However, if we set the visit count threshold vc
too low, it means that few users’ interest will become content pages for everyone.
So there is obviously a trade off between aggregate and individual content page
sets.

In future experiments we intend to try user-specific content pages for the
evaluation. And in quantitative evaluation, the number of recommendations at
each traversal step should be counted as an extra cost in the evaluation, because
the more recommendations we have, the less possible that users will look into
it. The determination of which pages to recommend is still a difficult problem.

We have initiated some experiments with other data preparation methods on
different data sets but the NCM models differ only in size and so far have all
been created with association rules. Our future experiments will create NCMs
from other learning methods, and make comparisons among them.
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