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Abstract

We consider the use of “on-line” stopping

rules to reduce the number of training exam-

ples needed to pat-learn. Rather than collect a

large training sample that can be proved suffi-

cient to eliminate all bad hypotheses a przorz,

the idea is instead to observe training examples

one-at-a-time and decide “on-line” whether to

stop and return a hypothesis, or continue train-

ing. The primary benefit of this approach is

that we can detect when a hypothesizer has

actually ‘[converged,” and halt training before

the standard fixed-sample-size bounds. This

paper presents a series of such sequential learn-

ing procedures for: distribution-free pat-learn-

ing, “mist ake-bounded to pat” conversion, and

distribution-specific pat-learning, respectively.

We analyze the worst case expected training

sample size of these procedures, and show that

this is often smaller than existing fixed sam-

ple size bounds — while providing the exact

same worst case pat-guarantees. We also pro-

vide lower bounds that show these reductions

can at best involve constant (and possibly log)

factors. However, empirical studies show that

these sequential learning procedures actually

use many times fewer training examples in prac-

tice.

1 Introduction

1.1 Model

We consider the standard problem of learning an accu-

rate concept definition from examples: given a target

concept c : X -+ {O, 1} defined on a domain X, we

are interested in observing a sequence of training ex-
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amples {(z1, C(xl)}, . . . . (zt, c(zt))) and producing a hy-

pothesis h : X + {07 1} that agrees with c on as much

of the domain as possible. Here we are addressing the

standard batch training protocol, where after a finite

number of training examples the learner must produce

a hypothesis h, which is then tested ad injinitum on

subsequent test examples. We also adopt the standard

(noise free) “i.i.d. random examples” model of the learn-

ing situation, which assumes domain objects are inde-

pendently generated by a fixed domain distribution P

on X and labelled according to a fixed target function

c: X + {O, 1}. Thus, the error- of a hypothesis h with

respect to target concept c and a domain distribution P

is given by dp(h, c) ~ P{% : h(~) # c(~)}.

Given this model, we are interested in meeting the so-

called pac(e, 6)-criterion: producing a hypothesis h with

error at most e, with probability at least 1—J. Of course,

the difficulty of achieving this criterion depends on our

prior knowledge of c and P. Here we will consider two

distinct models of prior knowledge: the distribution-free

model [Va184], where the target concept c is known to

belong to some class C, but nothing is known about

the domain distribution P; and the distribution-specific

model [B188a, Ku19 1], where the domain distribution P

is known, but the target concept c is assumed only to

belong to some class C. In either case, we consider what

can be achieved in the ‘<worst case)’ sense:

Definition 1 (Pat-learning problem) A learner L

solves the distribution-specific pat-learning problem
(C, P, e, S) i~ for any target concept c c C, L returns
a hypotheses h such that dp (h, c) ~ c, with probability

at least 1 — cf.A learner L solves the distribution-free

pat-learning problem (C’, e, 6) if it solves (C, P, ~, d) for

all domain distributions P.

In general, a learner L consists of a stopping rule

~’(C, E, ~) : (X x {O, 1})~ + N that maps training

sequences to stopping times (where the event {T” = t}
depends only on the first t examples), and a hypothesizer

IIL(C, <,$) : (X x {O, l})* + {O, l}X that maps finite

sequences of training examples to hypotheses.

As well as designing correct pat-learning procedures,

we are interested in developing eficient learning proce-

dures, and determining the inherent complexity of pac-
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learning problems. (Note that our definitions deliber-

ately separate the correctness of a learner from its e~-

j-iciency.) Our primary focus is on the issue of data-

efiiciency rather than computational-eiliciency.

1.2 Issue

Many algorithms have been developed for pat-learning

various concept classes in the distribution-free model.

Most of these procedures follow a simple (collect; find)

fixed-sample-size strategy we call Procedure F (Figure 1).

Ensuring the correctness of F is a simple matter of find-

ing an appropriate sample size function ~F (C, t, ~) that

can be proved sufficient to eliminate every e-bad hy-

pothesis from C with probability at least 1 – d. This is

normally accomplished by using well-known results on

the uniform convergence of families of frequency esti-

mates to their true probabilities. E.g., for jinite concept

classes T,,.,,. (C, e, d) = ~ in ~ random training exam-

ples are sufficient to ensure F pac(c, J)-learns C’. For &-

jinite concept classes, Blumer et al. [BEHW89] use the

results of Vapnik and Chervonenkis [VC71] to show that

for any (well behavedl) concept class C with VC(C) = d

~BHW(C, c, J) = max{~ logz ~, ~ logz ~} random ex-T

amples are sufficient for Procedure F to solve (C’, c, 6).2

In addition, Ehrenfeucht et al. [EHKV89] have shown

that no learning procedure can observe fewer than

t ~~~v(c, e, J) = max { ~ , ~ in ~ } random training

examples and still meet the pac(c, J)-criterion for every

target concept c E C and domain distribution P. There-

fore, Procedure F, using T~~~w or T~~AB, pac(e, J)-

learns concept classes with near-optimal data-efficiency

(up to constants and a in I/e factor).

However, despite these impressive results, pat-learning

theory has arguably had little direct impact on the ac-

tual practice of machine learning. The problem is that

the sufficient sample size bounds TB~~W and TS~~B are

far too large to be practical in most applications, even

for reasonable choices of C, ~, and 6. This is a serious

shortcoming in practice, where training data, not com-

putation time, is often the critical resource. Common

speculation (among practitioners) is that these large

sample sizes inevitably follow from worst case guaran-

tees — as this forces one to consider ‘(pathological”

domain distributions, when in fact much nicer distri-

butions are ‘(typically” encountered in practice. This

motivates research that makes distributional assump-

tions in order to improve data-efficiency, e.g., [B188a,

13au90, AKA91, BW91] .3 However, there is a funda-

1Uniform convergence results assume the concept class C
satisfies certain benign measurability restrictions. All con-
cept classes we consider are assumed to be suitably “well
behaved” in this manner.

‘This result has since been improved by Shawe-Taylor et

Ld. [STAB93] to ~STAB(c, ‘%‘) = + (Zdln:+ln:).

3This is a different motivation from using distributional
assumptions to reduce the co rnputational complexity of
pat-learning. E.g., while pform ulae cannot be efficiently
pat-learned (unless standard cryptographic assumptions are

Procedure F (C, c, J)

COLLECT TF (C, e, 6) training examples, sufficient to elimi-
nate every c-bad concept from C with probability at
least 1 – 6.

RETURN any h E C that correctly classifies every example.

Figure 1: Procedure F

mental weakness in this line of reasoning: no-one has

actually demonstrated that these “pathological” distri-

butions really exist (for this would be tantamount to

improving the lower bound result t~~~v ). Since the

gap between T.T.B and tBxKv is actually quite large

(roughly a factor of 64 ln(6/e)), it is not clear that the

worst case situation is really as bad as T~~AB suggests.

Approach: We consider an alternative view: perhaps

the simplistic (collect; find) fixed-sample-size approach

is not particularly data-efficient. This raises the ques-

tion of whether alternative learning strategies might re-

quire fewer training examples. To this end, we investi-

gate sequential learning procedures that observe train-

ing examples one-at-a-time, and autonomously decide

when to stop training and return a hypothesis. The idea

is to detect situations where an accurate hypothesis can

be reliably returned even before the fixed-sample-size

bounds have been reached. Our goal is to reduce the

number of training examples observed, while still meet-

ing the exact same pat-criterion as before: returning

an e-bad hypothesis with probability at most d, in any

situation permitted by our prior knowledge.

The first issue we must face is the fact that a sequential

learner observes a random, rather than fixed, number of

training examples. Thus, to compare the data-efficiency

of our approach with previous techniques, we must com-

pare a distribution of training sample sizes to a fixed

number. There are a number of ways one could do this,

but we focus on what is arguably the most natural mea-

sure: comparing the average (i. e., expected) training

sample size of a sequential learner with the jized sam-

ple size demanded by previous approaches to solve the

same pat-learning problem.

1.3 Results

In this paper we introduce a number of sequential pac-

learning procedures, prove them to be correct pat-learn-

ers, derive upper bounds on their worst case expected

data-efficiency, and derive lower bounds on the worst

case expected data-complexity of pat-learning problems.

First, in Section 2 we consider the general problem of

distribution-free pat-learning. Here we introduce a novel

learning procedure S that works by keeping a list of hy-

potheses (produced by some consistent hypothesizer),

testing each one “on-line” with a sequential probability

ratio test (sprt) [Wa147] to see whether any has suffi-

false) [K V89], Schapire [Sch92] has demonstrated a poly-

time learning procedure for (pformu Iae, uniform).
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ciently small error. We show (Theorem 1) that S cor-

rectly solves any pat-learning problem (C, c, 6) for which

d = VC(C’) < m, e >0, S >0. An analysis of S’s data-

efficiency (Theorem 2) shows that S never observes more

than E’Ts (C, c, d) < 0($ in -$+ ~ In # ) training examples

(on average), for any c m C’ and P. This bound actually

beats TBE~W and T.T.B for extremely small values of 6

(Proposition 3). However, we note that S’s true data-

etliciency is decoupled from any precise bounds we can

prove about its performance, and empirical tests [SG95]

show that S actually uses many times fewer training ex-

amples in practice. Finally, we prove (Theorem 4) that

these results cannot be substantially improved upon, as

any learner must always observe an average of at least

t.V~ (C, c, J) > !d(~ ) random training examples in order

to correctly solve any pat-learning problem (C, ~, 6).

Next, in Section 2.1 we briefly consider the special case

of finite concept classes. Here we show (Proposition 5)

that a variant of Procedure S can perform “mistake

bounded to pat” conversion while using strictly fewer

training examples (on average) than the procedure pro-

posed in [Lit89]. In fact, our procedure uses substan-

t2a//y fewer training examples in empirical tests,

Finally, in Section 3 we address the distribution-specific

model of pat-learning. Here we introduce a variant of

Procedure S, Procedure Scov, that correctly solves any

pat-learning problem (C, P, c, J) for which C has a finite

“~/2-cover” under dp. We show (Theorem 7) that Scov

uses about 5 times fewer training examples (on aver-

age) than the fixed-sample-size procedure introduced in

[B188a]. However, a lower bound result (Theorem 8)

shows that sequential learning does not increase the

range of pat-learnable concept spaces.

1.4 Significance and related work

Overall, these results show how one can achieve the

standard pat-learning guarantees, while significantly re-

ducing the number of training examples required in prac-

tice. Although our theoretical bounds for distribution-

free pat-learning are comparable to previous bounds, in

practice Procedure S actually uses many times fewer

training examples than previous fixed-sample-size ap-

proaches, while providing the exact same worst case

pat-guarantees. Moreover, S int reduces little additional

computational overhead over F. Interestingly, the ad-

vantages of sequential learning become even more ap-

parent when we consider distribution-specific pat-learn-

ing, where we can prove a substantial reduction in worst

case expected data-efficiency over previous approaches.

While tighter analyses and more sophisticated proce-

dures are certainly possible, nevertheless, we feel that

these results open the way to exploring a much wider

(and more interesting) range of learning algorithms in
computational learning theory. Furthermore, the em-

pirical performance of these sequential learners actually

appears to be approaching near- “practical” levels (even

while maintaining the theoretical guarantees), which we

feel brings the theory closer to practical applications.

Related work: Many authors have sought to improve

the data-efficiency of pat-learning procedures, but gen-

erally by incorporating additional assumptions about

the domain distribution, e.g., [Bau90, BW91, AKA91].

Our goal is to improve data-efficiency without making

additional assumptions.

While work on nonuniform pat-learning [B188b, LMR91,

Koi94] resembles the present study by also using “on-

line” stopping rules, it has a fundamentally different

aim: Our goal is to obtain a uniform improvement in

data-efficiency for all target concepts c in C, whereas

nonuniform pat-learning sacrifices data-efficiency for cer-

tain target concepts (late in a preference ranking Cl C

Cz c . . . = C), in order to obtain an improvement for

others (early in the ranking). The real goal of nonuni-

form pat-learning is to increase the range of pat-learna-

ble concept classes (e.g., to certain classes with infinite

VCdimension), rather than improve data-efficiency on

previously pat-learnable classes.4

It is also important to distinguish our approach from

on-line learning, e.g., [Lit89, LW89, HLL92]. On-line

learning considers a “learning while doing” model which

is fundamentally different from the “batch” paradigm

considered here. We really are following the standard

batch (“train then test” ) protocol introduced by [Va184]

— the only difference is that we permit the size of the

training sample to be under the learner’s control rather

than set by the designer a priori.

2 Distribution-free pat-learning

We first consider the problem of distribution-free pac-

learning. Here we assume we have access to a “consis-

tent” hypothesizer H, which produces concepts h E C

that correctly classify every training example. Given

such a hypothesizer, our basic strategy is to observe

training examples, collect consistent hypotheses from

H, and test these hypotheses against future training

examples until one proves to have sufficiently small er-

ror. The main trick is to find an appropriate stopping

rule that guarantees the pat-criterion, while observing

as few training examples as possible.

Obvious approach: Perhaps the most obvious ap-

proach is the basic repeated significance testing strategy

of nonuniform pat-learning: test a series of consistent

hypotheses and accept the first one that correctly classi-

fies sufficiently many consecutive training examples; see

Procedure R in Figure 2. Although this is a plausible

approach (which, in fact, works well in practice), it is

hard to prove a reasonable bound on R’s expected train-

ing sample size. The problem is that R rejects ‘(good

enough” hypotheses with high probability, and yet takes

4To illustrate that these two issues really are orthogonal,
note that one could easily incorporate a sequential approach
to nonuniform pat-learning — using a sequential procedure
(like S) for learning each sub-class Cl C (A C .. . = C to
obtain improved performance for each sub-class, in addition
to the standard nonuniform advantages.
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Procedure R (C, c, J, H)

OBTAIN an initial hypothesis hO from H. Fix a sequence

{J,}~ such that ~ Ji = J.

SEQUENTIALLY observe training examples:

RETURN cm-rent hypothesis h, if it correctly classifies
~ in ~ consecutive training examples.

REJECT hypothesis h, if it ever misclassifies a training

example (and call H to obtain h,~l ).

Figure 2: Procedure R

a long time to do so (i. e., R rejects hypotheses of error c

with probability 1 – 6, but this takes ~ expected time).

Therefore, if H produces a series of “borderline” hy-

potheses, R will take a long time to terminate (expected

time about ~, which is not very good). This prevents us

from proving good bounds on R’s data-efficiency — un-

less we incorporate additional assumptions about H, or

somehow use the fact that H cannot produce an endless

sequence of consistent hypotheses of ~ error. However, it

could simply be that R is not a particularly data-efficient

approach. Rather than pursue a complicated analysis,

we consider an alternative strategy which works better.

Improved approach: Here we propose a novel sequen-

tial learning strategy S, which is also based on repeated

significance testing, but avoids the apparent inefficiency

of R’s “survival testing” approach; see Figure 3. Pro-

cedure S is based on two ideas: First, instead of dis-

carding hypotheses after a single mistake, S saves hy-

potheses, and continues testing them until one proves to

have small error. Second, S tests hypotheses by using

a sequential probubdity ratio test (sprt) [Wa147] that

decides on-line whether a hypothesis is sufficiently ac-

curate; see Figure 4. Not only does S prove to be a

correct pat-learning procedure, but we can also derive

a reasonable upper bound on its expected sample size.

Theorem 1 (Correctness) For any ~ >0, 6>0, and
any (well behaved) concept class C’ with VC (C) < co:

using any consistent hypothesizer H for C, Procedure S

meets the pac(c, A)-criterion for any c G C and P.

Proof (Outline) First, to show S terminates with prob-

ability 1 (wpl) we note that (i) sprt eventually accepts

any ~-good hypothesis wpl (Lemma 9 in Appendix),

and ~ii) H eventually produces such a hypothesis wpl

(Lemma 12). Correctness then follows from the correct-

ness of sprt [Wa147], and the fact that S accepts an c-

bad hypothesis with probability at most ~ C$i= J. (Note

that this result generalizes to any class C that can be

decomposed as C = Up Ci, vc (Ci) < m, provided H

guesses consistent concepts from earlier classes first.) ❑

Procedure S (C, e, 6, H)

OBTAIN an initial hypothesis hO from If. Fix a sequence
{6, = ~}~1, and fix a constant ~ >1.

SEQUENTIALLY observe training examples:

SUBJECT each hypothesis h, to a sprt by calling

sprt(h, (z)#c(z), ~, q 6,, O),

which accepts h,, if c-bad, with probability y at most &.

RETURN the first h, accepted by sprt.

IF the current hypothesis h, ever makes a mistake, call

H to obtain an additional h,+l (begin testing h,+l ).

Figure 3: Procedure S

Procedure sprt (~(x), a, ~, d~.~, d,~j)

For Boolean random variable d(z), test

H oP{+(z) = 1} < a vs. H,ej : P{@(z) = 1} ~ r, with:acc .

- probability y of incorrectly deciding Ha.. bounded by Ja.~,
- probability of incorrectly deciding H~~j bounded by &~j.

SEQUENTIALLY observe the sum:

RETURN

RETURN

Theorem 2

‘<accept” if ever St(@t) ~ hl l/Jacc.

“reject” if ever S’ ( 4’ ) < la &e3.

Figure 4: Procedure sprt

(Data efficiency) For an~ E >0, S >0,

and any (well behaved) concept’ class C “with vc (C) =

d < co: using any consistent hypothesizer H for C and

any constant K > 1,Procedure S uses an average train-

ing sample size of at most

Proof (Outline) Using the fact (again) that sprt ac-

cepts any ~-good hypothesis wpl, we bound S’s stop-

ping time by Ts(e,a) < ~H(~) + Tsprt(~, ~,dT~),

where TH (~ ) is the time for H to produce an ~-good

hypothesis hi, and Tsprt is the time to accept any such

hypothesis once produced (using the bound i < TH).

Thus, ETs < ETH + ETsprt. Lemma 11 shows that

and Lemma 13 shows

The only catch now is that ET~prt contains a prob-

lematic E in TH term. However, this can be bounded

by E in TH $ In ETH, using Jensen’s inequality and the

fact that in 1s concave; see e.g., [Ash72]. The rest follows

from algebraic manipulation. •1

Although this is a crude bound, it is interestin~ to note

that it scales the same as T~Eflw and T~7AB. Moreover,
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this bound actually beats TBB~W and T,~AB for small

values of 6 — but this advantage is slight, and only

holds for high reliability levels.

Proposition 3 (i) ET’’(C, c, d) < TBE~W(C, e, 6)

for K ~ 3.5 and sufficiently small d.

(ii) ETs(C, 6, J) < Ts~~~(C, f, J)

for K Z *in ~ and sujjiciently small d.

Although this theoretical advantage is slight, we ex-

pect S to perform much better in practice than any

bounds we can prove about its performance; n. b., this

is not a possibility y for fixed-sample-size approaches. In

fact, this advantage is readily demonstrated in empir-

ical case studies [SG95]. For example, we tested S on

the pac-lear~ing problem (X = Rl”, C = halfspaces, c =

0.01, J = 0.05); fixing a uniform distribution on [– 1, I]n

and a particular target concept, setting K = 3.14619,

and supplying S with a consistent halfspace hypothesizer.

After 100 trials we obtained the results in Table 1, which

show that S used an average training sample size that

was about 5 times smaller than T~TAB, and 27 times

smaller than T~~~W ! Moreover, this average was only

3 times larger than the empirical “rule of thumb that

~ training examples are needed to achieve c error, for

a concept class defined by w free weights [BH89]. Not

only do these results scale up well for harder problems

(Figure 5), they are also robust to changes in the target

concept, domain distribution, and concept class (with

the same VCdimension) [S G95]. C)ne reason for this ad-

vantage is that S‘s data-efficiency is determined by the

specific case at hand, not the worst case situation —

or, worse yet, by what we can prove about the worst

case situation. However, not only does S automatically

take advantage of “easy” situations, it will also take ad-

vantage of the true worst case convergence properties

of C (i. e., if bad concepts are eliminated much sooner

than proven bounds, then S automatically stops sooner).

So, in effect, S’s behavior implicitly exploits the opttmat
worst case bounds, despite our inability to prove exactly

what these bounds really are.

Although S is far more efficient than previous fixed-

sample-size approaches in practice, the following lower

bound shows that sequential learning can at best offer

a constant (or possibly log) improvement in the number

of training examples needed to pat-learn. Therefore,

no new concept classes become pat-learnable simply by

adopting a sequential over a fixed-sample-size approach.

Theorem 4 (Data complexity) For any O < c ~ &,

o<c$<& any concept class C with VC(C) = d ~ 2:

any learner that always observes an average number of

training examples less than

taVg(C, e,J) = rnax{~, ~}

cannot meet the pac(t, J)-criterion for all cc C and P.

Proof (Outline of tavg~ ~.) Fix an arbitrary

learner L with stopping rule T. The basic idea is to

use Markov’s inequality to show that if ET is too small

For (X = lRIO, C = halfspaces, c = 0.01, J = 0.05):

Sufficient: TBEHW = 91,030,
Improved: TSTA~ = 15,981,

Folklore: T,hunb G 1,100,
Necessary: t~.q~v = 32.

After 100 trials, Procedure S used:

avg TS = 3,402,

max Ts = 5, 155,
min Ts = 2,267.

Table 1: A direct comparison of training sample sizes for the

pat-learning problem (I?#”, halfspaces, e = 0.01, J = 0.05).

TBBHW

30000

20000 —

10000 —

. . .. ---- . . .. . . . . . . .
. ..-.-””””- -.-———--::. . ..__ --. :.: .. . . . . . . . . . . . . . . .

0
I I I

~=5 10 15 20

l’STAB

max TS

avg T~

min Ts

Figure 5: Scaling in input dimension n. Number of training

examples observed for (Etn, halfspaces, e = 0.01, J = 0.05)
with n = 1, 2, 3, 5, 10, 15, 20. (Results of 100 us each.)

relative to tEHKv then L must fail the pac(c, J)-criterion

for some c’ E C. This involves generalizing the proof of

[EHKV89, Theorem 1] to handle the fact that T might

not terminate at the same time for every c E C.

Following [EHKV89], we define a specific domain distri-

bution P on a set of d objects {zl, . . . . cd} shattered by

C: let P{rl} = 1 – 8~ and P{z~} = -& for 2< i ~ d.

Let the r.v. U : Xm -+ lV indicate the first time that

half of the objects {zz, . . . . Zd} appear in an observation

sequence x E Xa. Let Ht denote L’s hypothesis after

t training examples.

(1) For any P, c and t we have the following inequality

F’{dP(HT, c) > (} ~ P{ dP(HT, c) >cI Tc< U}

x( P{ Tc~t}+P{U>t}– 1).

We seek lower bounds on each of these terms.

(2) For any P, t,and k >1, by Markov’s inequality we

know that if ET ~ ~ then P{T s t}>1 – ~.

(3) Given P defined as above, [EHKV89, Lemma 3]

shows that P{ U > %12 1-’-’/12> &

(4) Finally, for any learner Lit can be shown that, given

P defined as above there must be some c’ E C for which

P{ dp (HT, c’) > e Tc’ < U } z ~. (This involves gen-

eralizing the proof of [EHKV89, Lemma 2]; see [Sch95]

for complete details.)
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Combining (1 )–(4) shows that, for any k >1, if ETc <

M for all c ~ C’, then there must be some c’ c C?Vk.c-----
for which P{ctp(H~, c’) > e} ~ ~ [1 – ~ +* – I] =

~ [~ - ~]. Choosing k = 15 yields the result. ❑

2.1 “Mistake-bounded to pat” conversion

Before leaving the distribution-free model, we briefly

consider the special case of finite conce~t classes, and

obtain a somewhat stronger result in this case. Little-

stone has observed that a concept from a finite class can

always be learned while making a finite number of mis-

takes, in an on-line model where the learner produces a

hypothesis after each example and tests it on the next

[Lit88]. In later work [Lit89] he showed how a hypothe-

sizer H with a small mistake bound could be converted

into a data-efficient pat-learner. Littlestone develops a

‘(two phase” conversion procedure Li that, given a hy-

pothesizer H with mistake bound A4, uses a fixed sam-

ple Size of TLi=~(~+8hl(~ +2)+ 121n~–~).

Here we consider a sequential approach to this prob-

lem. First, we note that S can be applied to “mistake-

bounded to pat” conversion “as is.” However, by mod-

ifying S to return a hypothesis once the mistake bound

has been reached, setting H = 3.14619 (so that ~ =

~_l~l~ ~ ), and testing each hypothesis h, with& = ~,

we obtain a correct conversion procedure Smb that is

provably more efficient than Li.

Proposition 5 For any t > 0, 6 > 0, any finite con-

cept class C: using any hypothesizer H with mistake

bound iM, Smb pac(c, d)-learns C with an average trai-

ning sample size of at most

Proof (Sketch) As with S, we know Smb eventually ac-

cepts any ~-good hypothesis wpl. Thus, we can bound

Smb’s stopping time by Tsmb ~ TH (~) +Tsprt (~, ~, ~M),

where T,prt is the time it takes to accept an ~-good

hypothesis, and TH is the time it takes for H to pro-

duce such a hypothesis, So ETsmb < ETH + ETsP.t.

Clearly, ETH (~) s ~ since the expected time for an

~-bad hypothesis to misclassify a training example is

less than ~, and there can be at most Al such hypothe-

ses. Also, Lemma 11 shows that ET,prt (~, e, $) ~

(.-:,nK) :(ln%+l ). The result then follows by

choosing K = 3.14619. ❑

This bound on ETSmb is uniformly smaller than TLi by

a small constant factor. However, as before, we ex-

pect Smb to perform much better in practice than any

bounds we can prove about its performance. This too

is readily demonstrated in empirical case studies. For

example, we tested Smb on the pat-learning problem

(X = {O, 1}30, C = halfspaces, c, d = 0.05) for various

values of c; fixing a particular domain distribution and

target concept, and supplying Smb with a hypothesizer

H = WINNOW which has a good mistake bound for this
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Figure 6: Scaling in error level c. Number of training ex-
amples observed for (X = {O, 1}30, halfspaces, e, 6 = 0.05)

with E = 2–1 ,...,2-8. (Result of 200 runs each; log-log plot.)

problem [Lit&3]. After 200 trials (at each error level) we

obtained the results in Figure 6: Smb observed an av-

erage number of training examples that was always 15

tzmes smaller than the upper bound in Proposition 5,

and 30 tzmes smaller than TLi ! In fact, Smb)s data-

efficiency appears to scale better than TLi (and our

bound) as e becomes small. This is a significant prac-

tical savings, achieved without substantial additional

computation.

3 Distribution- specij% pat-learning

We now consider the distribution-specific model, where

the learner knows P and attempts to identify an un-

known target concept c from some specified class C’.

This problem was thoroughly studied by Benedek and

Itai [B188a], who developed a simple (collect; find) learn-

ing procedure BI for pat-learning concept spaces (c, P).

Their procedure first finds an ~-cover A of the space (a

set of concepts A = {hl, . . . . h~} such that for everY

c c C there is at least one hi E A where dp(c, hi) ~ ~),

and then collects a sufficient number of training exam-

ples to estimate the errors of all cover-concepts to within

~, with probability at least 1 — J. Choosing the cover-

concept with minimum observed error rate then satis-

fies the pac(c, J)-criterion; see Figure 7. Benedek and

Itai show that TB1 (C, P, ~, 6) = ~ (ln iV% + in ~) exam-

pIes are sufficient to pat-learn (C, P), where N; is the

size of the smallest ~-cover of (C, P). They also show

that no learner can observe fewer than tBI (C, P, ~, d) =

logz [Nz, (1 – J)] training examples and still meet the
pac(c, J)-criterion for every c in C.

Here we consider a sequential approach to this prob-

lem, which also exploits the existence of a small ~-cover

of the concept space. However, rather than c;llect a

fixed size training sample to estimate errors, we test

each cover-concept sequentially (in parallel) and accept

the first one that proves to have sufficiently small er-

ror; see Procedure Scov in Figure 8. This procedure

correctly pat-learns any concept space that has a finite

~-cover, just as BI, but uses an average training sample

size that is about 5 times smaller than TB1.

382



Procedure BI (C, P, e, 6)

CONSTRUCT an ~-cover A of size N+.

COLLECT TB1(C, P, c, 6) = ~(ln N; + In ~) examples.

RETURN the hypothesis h G A with minimum error.

Figure 7: Procedure BI

Procedure Scov (C, P, c, 6)

CONSTRUCT an ~-cover A of size N;.

SEQUENTIALLY observe training examples:

TEST the error of each h, c A by calling

sprt(h, (z) #c(z), $, e, J/N:, O).

RETURN the first h, G A accepted by sprt.

Figure 8: Procedure Scov

Theorem 6 (Correctness) For any t >0, J >0, and
any concept space (C, P) with N: < co: Scov meets the

pac(e, J)-criterion for any c in C.

Proof Since Scov chooses hypotheses from A, an ~-

cover of (C’, P), there must be at least one ~-good h E

A, and Scov eventually accepts such a hypothesis wpl

(Lemma 9). Correctness then follows from the fact that

Scov mistakenly accepts an e-bad hypothesis with prob-

ability at most ~h~~ J/N; = d. •1

Theorem 7 (Data efficiency) For any c > 0, d >

0, and any concept space (C’, P) with N$ < co: SCOW
observes an average training sample size of at most

ETsCOV(C, P, e, d) < *(lnN%+l”++l)

Proof Since some h E A is guaranteed to be ~-good,

and Scov eventually accepts any such hypothesis wpl

(Lemma 9), we have TSCOV(C, d) S Tsprt(, :,,, 6/N~, o).

Applying Lemma 11 immediately yields the result. ❑

Although Scov is strictly more efficient than BI (while

solving the exact same pat-learning problem), the fol-

lowing lower bound shows that no new concept spaces

become pat-learnable simply by adopting a sequential

over a fixed-sample-size approach.

Theorem 8 (Data complexity) For any c >0, d >

0, and any concept space (C, P): any learner that ob-
serves an average number of training examples less than

taVg(C, P, e, J) = ~ log,[Nz,(+ -01

fails to meet the pac(e, d)-criterion for some c’ E C.

Proof (Sketch) Fix an arbitrary learner L with stop-

ping rule T. As in Theorem 4, we use Markov’s inequal-

ity to show that if ET is too small relative to tB1 then L

must fail to meet the pac(c, J)-criterion for some c E C.

Let IIt denote L’s hypothesis after t training examples.

(1) For any c and t we have the following inequality

P{dP(H~, c) > c} ~ l–p{ctp(~t, c) ~ e}–P{T > t}.

Thus, we seek upper bounds on each of these terms.

(2) For any t,if ET ~ ~ then P{T > t}< ~ by Markov’s

inequality.

(3) For any t, [B188a, Lemma 5] shows that any hypoth-

esizer H is forced to obtain P{dP(Ht, c’) < c} ~ & for

some c’ E C.

Combining (l)–(3) shows that for any t, if ET s ~ then

there is a c’ for which P{dP(H~, c’) > e} ~ 1 – & – ~.

Choosing t = log2[N2, (~ – J)] finishes the proof. ❑

A Properties of sprt

Lemma 9 A call to sprt(h(z) # c(x), ~, ~, J, O)

eventually accepts any ~-good hypothesis h wpl.

Proof First, since J,ej = O, sprt never rejects a hy-

pothesis. To show sprt eventually accepts any ~-good

hypothesis h, we use the fact that St (xt ) is an i.i.d. sum

St(xt) = ~a,~xt Z(~i), where

{

I-E/x

2(X;) =
in —l-e 9 ~(xi) = o,

–l” K, @(xi) = 1.

Let p = P{~(z) = 1}, Since p ~ ~ by assumption,

we have EZ > 0 by Claim 10 below. Therefore} we

get S, ~ co wpl, since St/t ~ EZ wpl by the law of

large numbers [Ash72]. Thus, St eventually exceeds the

in I/JaCC threshold wpl, for any C$aec>0. ❑

Claim 10 For ~ >0, K > 1, given Z and p defined as

above: ifp < ~ then EZ z (’–l~ln’) e >0.

Proof By definition we have EZ = (1 –p) - –p in K.

Since EZ is increasing for decreasing p, it suffices to

verify the lower bound for p = ~. This can be done by

taking derivatives of EZ with respect to c [Sch95]. •l

Lemmall For O< c < l–e–l, d> O, K > 1: given

a Boolean r.v. ~(a) such that P{~(a) = 1} ~ :,

ETsPrt(+(m),:,., ~,o) s (.-:,..): (In++l)

Proof Recall the definition St (x’) = ~. ~X, Z(Z$ )

given above. Since St is an i.i.d. sum, Wald~s identity

gives EST = EZ ET for any stopping rule T [Wa147,

Shi78]. Thus, ET = ES~/EZ. We know that ST <

lnj+ln~ since the sum at termination cannot ex-

ceed the decision threshold plus one increment ~so we get

ET< ~(ln~+l) (sinceln~ < lfor~~ l–e-l).

This inequality holds for any vahle of p = P{~(z) = 1}.

Under the assumption that p <. ~, Claim 10 above pro-

vides a lower bound on EZ which gives the result. •l
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B Additional lemmas

Lemma 12 For any class C, VC(C) < a, and e >0:

every c-bad c F C is eventually elzmmated, wpl.

Proof Let Et be the event that all c-bad concepts

have been eliminated after t training examples. From

[STAB93] we have that for all J >0 there is some t
for which PEt ~ 1 – S, and hence PEt ~ 1. We are

interested in the event Em = U:=l Et. But since, in

fact, Et ~ Em, we must have PEfi ~ PEm and hence

PEm = 1. •1

Lemma 13 For any concept class C, VC(C) < cm: all

e-bad c E C are eliminated in expected ttme

—(2dln~+ln2 +1).ETc(~) < ,(I!+)

Proof We have P{ TC(C) > Ts~.~(C, ~, 6)} < J for all

J >0 from [STAB93]. Assume, pessimistically, that TC

is a random variable that makes this an equality, i.e.,

P{TC > T,yAB } = d for all d >0. Now, consider a
linear transformation of Tc,

V= c(I –+)Tc –2dln~ –ln2.

Notice that V > in ~ iff Tc > TsT.~, and hence

P{V > ln~} = J for all 6 > 0. This shows that

V w emponent~al(l), and hence EV = 1. Finally, since

TC = ~ (2dln~ +ln2 + V), taking expectations

gives t;e result. ❑
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