Incorporating Redundant Learned Rules:

A Preliminary Formal Analysis of EBL*

Russell Greiner

Joseph Likuski

Department of Computer Science
10 King's College Road
University of Toronto

Toronto, Ontario M5S 1A4

Abstract
"Explanation-based learning" — i.e., incorpo-
rating new redundant rules suggested by earlier
problem solving experiences — is an attempt to

speed up problem solving. Unfortunately, the
resulting systems are not always more efficient
on subsequent problems. This paper describes,
analytically, whether these new rules should be
added, and if so, where they should appear in
the overall derivation strategy. While this task
is intractable in general, we present several in-
teresting special cases which can be solved in
time (essentially) linear in the number of rules
in the system.

1 Motivation

General problem solving (a.k.a. deduction) is expensive.
There can be a combinatorial number of potential "so-
lution paths" for a given query/goal — as there can be
many rules/operations which each reduce the goal to a
new set of subgoals, and each of these subgoals can, it-
self, have many possible reductions, etc. [Genesereth
and Nilsson, 1987].

There are several approaches to this problem. One in-
volves ordering the set of rules, so the first rule selected
for a given (sub)goal is the one viewed as most cost ef-
fective. For example, given the KBG knowledge base,
whose rules appear in Figures 1 and 2, we may specify
that the rule R,» should be used before the rule Ry

when determining Abe's parent — i.e., when seeking an
x such that Parent (Abe x) holds. There can, of course,
be many comprehensive "derivation strategies" — i.e.,

many ways of searching this knowledge base, each guar-
anteed to find a solution, if one exists. Our objective is
to find the one which requires the least expected time.
(We describe this "expected time" cost below.)
Another approach involves adding redundant infor-
mation to the knowledge base, in the form of a "new
rule. Using KBG again, we observe that the solution
to the Guardian(Abe Bart) query involved the fact
Father(Abe Bart) and the rules Ry, and Ry, This
suggests modifying our derivation system for subsequent

"This research was supported by an Operating Grant from
the National Science and Engineering Research Council of
Canada.

744 Machine Learning

Rop: Parent(p q) = Guardian(p q)
Ryy: Father{p q) = Parent(p q)
Rpm : Mother{(p q} = Parent(p gq)

Figure 1: Rule Base associated with KBg

queries: When asked to prove Guardian(K Y) (for any
K and 7), this "smarter" system will immediately per-
form the data base retrieval of Father(k 7), and only
if this fails, consider the other possible retrievals and
rule-based reductions (e.g., using Ry, etc.). This corre-
sponds to combining the rules Ry, and R, to produce
the new rule

Ryy: Father(p q) = Guardian(p q)

which is incorporated into the set of rules, forming
KB's <— KBg U {Rg}. Furthermore, this (redundant)
rule is placed first, in that this system will try this new
rule first in subsequent queries, before the other rules are
attempted. This is the basis for the recent Explanation-
Based Learning (EBL) systems [Mitchell et a/., 1986,
Dejong and Mooney, 1986], as well as Chunking [Rosen-
bloom and Newell, 1982], etc.

The objective of these learning systems is efficiency:
to improve the overall future performance of the sys-
tem. Of course, this requires some information about
these anticipated future events — especially about which
questions will be posed and with what probabilities, and
about the probability that certain assertions will be in
the knowledge base (KB) when those queries occur.

Many systems implicitly employ the "obvious" as-
sumption that "the future will mirror the past" — that
the future questions will correspond to the questions
asked until now. This suggests preserving every observed
rule-sequence as a new redundant rule. Recent empirical
evidence [Minton, 1988], however, has exposed some of
the problems inherent in this "save all redundant rules"
approach: these new rules can slow down the overall per-
formance of the complete system. That is, it is not al-
ways advantageous to incorporate a proposed redundant
rule into an existing knowledge base.

This paper addresses this important issue: how to de-
cide whether to add in a new redundant rule. It as-
sumes, as given, the a priori likelihood that any given
database retrieval will succeed. (We may know, for ex-
ample, that there is a 10% chance that the data base

retrieval “Father(x «)” will succeed, for any plausible
pair of constants, <x, ¥>.!} It shows how to use this
likelihood information to determine both whether a new
rule should be added; and if so, where in the derivation
strategy that rule should appear.

The next section presents the {ramework for this anal-
ysis. Section J lists our results, including both the claim
that the general problem is NP-hard, and descriptions of
linear time algorithms which can solve the problem for
some situations. Section 4 ties this work back to EBL
systems.

2 Framework

This section first provides a quick description of deriva-
tion strategies and their expected costs, in general. It
then focuses on the difficulties of incorporating redun-
dancies (read “EBL-generated rules”), within this frame-
work.

Derivation Strategies: Given a specific query, o, and
collection of rules - like those shown in Figure I — we
define a derivalion strategy as an ordering which speci-
fies when to follow which rules (to reduce the subgoal)
and when to perform data base lookups. For exam-
ple, one strategy for answering the query “Guardian(Abe
Bart)” from KBg; would be

¢ Lockup Guardian(Abe Bart) from (the set of facts in)
ABeg. M that succeeds, it returns “Yes” and is done.
Otherwise:

e Use Ry, 10 reduce this goal Lo Parent (Abe Bart).

s Lookup Parent (Abe Bart) from KBg. U that succeeds,
it returns “Yea” and is done. Otherwise:

o Use R,y to reduce this subgoal to Father{Abe Bart).

s Lookup Father(Abe Bart) from KBq. If that succeeds,
it returns “Yes” and is done. Otherwise:

e Use flpm to reduce the Parent (Abe Bart) subgoal to
Mother (Abe Bart).

¢ Lookup Mother(Abe Bart) from KDgs.
If thal succeeds, it returns “Yes”; otherwise, il returns
“Bo”. (Bither way, it is now done.}

We write this strategy
as ©y = ({Lg Rgp Lp Rpy Ly Rym Lm), where Ryy (now)
represents the reduction using the Rz, rule, and the L,
steps refer to lookups of the y-related propositions. We
will continue to refer to R, steps as “reductions”, and
to Ly steps as “lookups”; collectively, these are called

We can use this same strategy, maulafis mulendss,
to address any query of the form “Guardian(x +)”.
While this approach holds for any arbitrary x and ¥y, we

IN.b., this report simply assumes that we have these
probability values, and is not concerned with how they
were obtained. [Likuski, 1988), as well as [Smith, 1989,
Treitel, 1986)], present various ways of estimating these val-
ues. F.g., one method involves examining the number of as-
scriions present in the knowledge base: as in “none are of the
form Parent{-..), 10% are Father{---)”, etc. Of course, this
also makes certain assumptions about the set of anticipated
queries. There are ways of using other types of knowledge to
find more accurate estimales.

will focus on the situation where each is some (unspeci-
fied) constant (as opposed to an existentially quantified
variable?),

The ezpected cost of a strategy is the (weighted) sum of
the expected number of lookups plus the expected num-
ber of reductions. We assume that each lookup costs “d”
cost-units, and each reduction step, “" cost-units. Of
course, the cost of following a strategy depends critically
on the successes of the lookups, which in turn depend on
which facts appear in the knowledge base. If all of ©,'s
lookups fail, this overall strategy will require 3i + 4d
steps. The ezpected cost is usually less: Assuming there
is a 0% chance that L, will succeed, (i.e., there are no
facts of the form “Parent{x)" in KBg), and a 1%,
10% and 25% chance that Ly, Ly and L, respectively,
will succeed,? then the expected cost is

E(®)) =
d4+ (1-0)i+d+ (I-0)i+d+(1-1)i+d+ (1-.25)0]]]
= 2.871i 4+ 3.871d

There can, of course, be many strategies for a given
goal within a given KB. One could, for example, not
bother trying to retrieve Parent(- -) from KB, and fol-
low the Rpp, rule and its associated Mother(- - -) lookup
before Hpy and Father(---). The expected cost of this
alternative strategy, Oz = (L, Rgp Rom Lim Hpy Ly}, is
E(Q)=d+(1-001)[i+i+d+(1—-025)[{+d+(1-
0.10)0]] = 2.7225i 4 2.7325d, which is strictly less than
E(©;) for any values of i and d.

Nothing forces us to consider lookups before reduc-
tions. The ©3 = (Ryp Rpm Lm Rpy Ly Ly) strategy, for
example, does not bother to perform the (low proba-
bility) Guardian(---) lookup until the end. Its cost
E(©a) = 2.751 + 2.425d can be yet less expensive. If
1=1and d =2, then F(61) = 7.6 <« 8.1685 = £(O,),
meaning this Oy is the best strategy yet.

This framework allows us to evaluate different strate-
gies. As we are only considering complefe strategies —
those which are guaranteed to find an answer, if there
is one — all strategies are equally likely to succeed. As
such, the best strategy will be one with the least ex-
pected cost.

The number of possible strategies is ezponential in
the number of allowed steps - even for the tiny X Bg
knowledge base, there are over 71 = 5,040 possible strate-
gies, of which 42 are “depth-first” .4 [Smith, 1989], how-
ever, shows how to compute the optimal derivation strat-
cgy in a time (approximately) proportional to the num-
ber of rules, for any disjunctive, irredundant knowledge
base.” Disjunclive means that all of the rules are of the
form A=C; Smith excludes rules of the form A&B=>C.

?Here, we would scek one answer to a query, rather than
all solutions. Hence, the question “Parent(Abe z)” would
seck one parent of Abe, rather than all of his parents.

3We assume that these probabilities are independent.

*The next section defines this subset, and shows'it must
include an optimal sirategy.

*That algorithm involves sorting the set of m options
at each goal — hence requiring an additional factor of
O(mlog(m)). In general, though, m < the number of rules,

Greiner and Likuski 745

He also disallows embedded function symbols and recur-
sive rules.® Irredundani means that there is at most one
derivation path which connects any goal with any data
base assertion. This means that the inference graph —
the graph whose nodes are (sub)goals and whose arcs
represent the rules which link a goal to its children; see
Figure 2 — is a tree, rather than a more general directed
acyclic graph (“dag”).

Rzy = reduction atep

Ly = lookup step

O = data base accens

Py = probability that x-lookup will succeed

Guardian(» +)

Py = 0.01

[] Pf = 0.10

Figure 2: Inference Graph of KBg's Rules

Dealing with Redundant Knowledge Bases: Many
KBs, cspecially those extended using EBL techniques,
are redundant. This paper extends Smith’s results to
deal with such KBs — i.c., it deseribes how to find an
optimal strategy for answering a given query from a re-
dundant knowledge base. 'The above mentioned KBy
knowledge base 1s redundant because its inference graph
(shown in Figure 3) includes two paths which join the
query Guardian(x <) to the lockup Father{(x «)
— one using {(Ryp Rpy), and the other, (Ryr}. We refer
to the pair of nodes <Guardian(---}, Father(---)}> as
a “AT pair”. We say, furthermore, Lhat the “upward
ares” from the T node (here, the R,y and Rgp ascend-
ing from Father(---}} arc redundant with one another,”
and that R,y is a direct (redundant)} rule between Father
and Guardian.

This paper deals only with disjunctive KBs, and as-
sumes that each of the arguments in the antecedent
or the conclusion of any rule is a variable (rather
than a constant). Hence, it considers rules like
Father(p q)=>Guardian(p q), but not Father(Fred
g)=rGuardian(q Mark).®

3 Finding the Optimal Strategy in a
Redundant KB

As mentioned earlier, there arc an exponential number of
possible strategies for a given query from any knowledge

®This restricted class does include much of the relevant
information in standard hierarchies, making it an important
case for Al systems.

"We assume that our strategy-finding system knows which
arcs are redundant. This is quite reasonable within the EBL
contexti.

8This minor restriction is for pedagogical reasons only;

[Likuski, 1988] deals with the general case.

746 Machine Learning

Guardian(= ~)

Pare

F

Mother(x v)

L

¥

s Rules

Figure 3: Inference Graph of KBy

base, and a fortiors, from a redundant knowledge base.
This section describes how to find an optimal deriva-
tion strategy in such situations, in general, and shows
a linear-time algorithm which applies in some particu-
lar situations. Subsection 3.1 first addresses the task of
finding an optimal strategy for a single query, and states
that even this task is NP-hard in general. Subsection 3.2
then discusses (read “presents negative results for”) the
more general case, when there is a (known) distribution
of different queries. The next section ties this analysis
back to EBL systems.

3.1 Optimal Strategies for a Single Query

Use Depth-First Strategy: At any time during the
derivation process, there is a frontier of subgoals yet
to “expand”, by using one or more reduction or lookup
steps. A strategy could, conceivably, expand goals “be-
low” the current frontier — e.g., consider {fgp Lm ...}
We need not consider such derivation strategies, as
there will always be less expensive “depth-first deriva-
tion strategies”, which only expand ihe subgoeals on this
frontier. In fact, [Likuski, 1988, Lemma 3.1] proves it
is sufficient to consider only stralegies which consist of
only “reduction chains”, where each reduction chain is
a sequence of reduction steps, which each reduce Lhe
subgoal found immediately before, followed by a lookup
of the final subgoal. (E.g., the sequence (R Ryn Lin)
15 a reduction chain, as fl,, reduces the Parent(.-.)
subgoal produced by the R,y step; and Ly, reduces the
Mother(---) subgoal produced by this I, step. How-
ever, {Rgp Rpm Rps Lm) is not, as R,y does not reduce

the Mother (.-} produced by the prior step, fipm,.)

(The proof involves forming a depth-first strategy by
“moving back™ any step which interrupts a reduction
chain in any non-depth-first strategy, and obscrving that
the expected cost of the new depth-first strategy must
be at least as good as the original one.)

Hence, we need only consider these “depth-first deriva-
tion strategies”, and so can write any strategy, ©, as a
sequence of reduction chains, {r| ry --- r;), where cach
r; is a reduction chain. For example, ©3 can be wrilten

as { (Rgp Rpm Lm), (Rpy Ly}, (Lg)).

Use Irredundant Derivation Strategy: A derivation
strategy ts redundant if it includes the same step more
than once; e.g., ©4 = (Ryy Ly Rgp Rpm L Rpp Ly Lg)
is redundant as it includes Ly (i.e., asks for Fathex(.--))
twice. It never makes sense to use a redundant

Antzix)

Figure 4: “Trellis Inference Graph”

derivation strategy to solve a specific query, as there
is always an irredundant strategy which is function-
ally equivalent (i.e.,, will find an answer whenever
the redundant strategy does) and which takes strictly
less time [Likuski, 1988, Lemma 3.3]. Here, ©5 =
(Rgs Ly Ryp Rpm Lm L) is such a reduced, irredundant
strategy for ©4. (Notice ©5 is a subsequence of @y,
which omits both the second Lj lookup, and the no-
longer-useful R,; reduction step.)

Use Irredundant Derivation Spaces: Lel R5(6)
map the strategy © into the set of rules it uses
e.g., RS(03) = { Rgp, Rpm, Rps }. Notice the rule sct
of an irredundant strategy corresponds to an irredun-
dant knowledge base, which means we can use [Smith,
1989)’s algorithm to find the optimal strategy in linear
time. Hence, we can reduce the problem of finding the
“optimnal derivation strategy” to the problem of finding
the “optimal derivation space” (where each “derivation
space” is the rule sel plus the needed lookup steps).

Unfortunalely, there can be an exponential number of
derivation spaces. Consider, for example, the “trellis”
inference graph, formed from the rules

{8:(2) = A1 () iz (ne) U { Ai(®) = Aiga(2) Jicin

shown in Figure 4. It has Fib{n) irredundant deriva-
tion spaces which connect the goal A,;2(x) to the L4
lookup. (“Fib(m)” is m'* Fibanocci number.)

Fortunately, there are often ways of selecting the op-
timal space:

Prefer Space containing a Direct Rule: Let © be
the optimal derivation strategy associated with the top-
level goal, o, within the irredundant knowledge base,
KB; and let {Ry2 R23 --- Rpa L) be a reduction chain
from this query to a lookup, L. Now let R, be an ad-
ditional “direct rule” (not in the initial KB) which im-
mediately connects this & with the A lookup. (This is the
type of rule which most EBL processes would generate,
after solving 0. The R,; rule is an example, as it directly
connects the Guardian(- - -) query with the Father(---)
lookup.) Notice the set RS(©) — {Rna} + {Roa} is

an irredundant derivation space; let © be the opti-
mal strategy for this space. [Likuski, 1988, Lemma 3.2
proves that F(©') < E{(©), which means that an optimal
derivation siralegy (and therefore, the optimal deriva-
tion space} will mclude the direct rule. (This is good
news for EBL fans, as these direct rules are exactly what
EBL systems generate!)

Hence, there is an obviocus linear time algorithm for
finding an optimal derivation stratcgy, for the simple
case of adding a new dircet redundant rule to a (previ-
ously irredundant) knowledge base: Add the new direct
rule, and remove the arc with which it was redundant.
Then use [Smith, 1989] to produce the optimal strategy
for this new KB.

A straightforward extension allows us to find, in lin-
ear lime, the optimal strategy for the ¢ query from any
“g-direct-rule- KB" -~ that is, from any knowledge base
which has the property that every T node under the goal
v includes a direct link {i.e., single rule) joining it to
the goal ¢. (As examples: KB¢ is a “Guardian-direct-
rule-KB”, vacuously, as it includes no T nodes; KBy
qualifies, as ils only T node, Father(x <), connects
to Guardian; but KBse (Figure 5) is not a “G-direct-
rule- K", as it includes the T node, B(x), which does
not connect to G(x).) llere, an optimal strategy for &
can be found in the derivation space which excludes all
of the non-direct links from each T node to . (The
algorithm involves propagating up so-called “worth val-
ues” along these direct rules whenever possible. [Likuski,
1988, Theorem 5.1] proves that this requires examining
cach rule at most once.)

Task is NP-hard: Unfortunately, the general “OptD§”
task — of finding the optimal search strategy in an arbi-
trary redundant search space — is NP-hard. The proof
reduces this task to the NP-complete “Exact Covering”
task {Garey and Johnson, 1979]; and appears in full in
[Greiner, 1989].

3.2 Optimal Strategies for Multiple Queries

The previous subsection dealt only with a single guery;
in general, we may have a range of queries. This sub-
section assumes that we know which queries our system
will be asked.® We would like to define a single general
strategy which works for any anticipated query, within
a forest of inference graphs.

This leads Lo a related, but distinct, perspective of this
“worth of EBL.” issue. This subsection provides four ob-
servations about these systems, which basically illustrate
the additional complexity of this situation.

When Not To Add Direct Rules: When considering
only one query, we argued above that we should always
use the derivation space which includes the direct rules
(whose conclusion matches that query). Unfortunately,
this derivation space is less expressive than the original
one, as we have to remove some rule to “make room” for

’In general, we may also know the frequency of these
queries — e.g., that 3% of our queries will be of the form
Guardian(s 4) where x and v will be bound in the query,
and that 8% will be of the form Mother(x z) where x is
bound and z is free, etc.

Greiner and Likuski 747

the new direct one — i.e., to reduce the extended KH
to be irredundant. For example, we had to remove Ryy
to accommodate Ry, forming KB, = KBg ~ {Rp;} +
{Rgs}. Notice this KBg is not “complete”, in that it
can no longer use facts like Father{(Abe Bart) to answer
questions like Parent (Abe Bart).

If we know that such Parent (Abe Bart) queries will
be asked (and that facts like Father{Abe Bart) will be
in the KB), then we cannot afford to actually change
KBg into KBg. Instead, we assume there is a strategy
associated with each query, which controls the derivation
— here, Guardian(«x +)’s strategy will include R
but not Rp;, while Father(& v)’s strategy will include

. (This is easy to implemnent using a system like
MRS [Russell, 1985).}

We might consider a heuristic of performing such KB-
modifications (e.g., augmenting KBg with I;;) only if
ihis addition leads to a real benefit — i.e., if the opti-
mal strategy with the new rule is sirictly better than the
original optimal strategy, for the given query. Unfortu-
nately, this approach can miss really good stralegies.

Consider asking the queries Guardian{Abe Bart) and
Guardian(Abe Cici) from the KBg knowledge base,
which includes Father(Abe Bart) and Mother(ibe
Cici). We begin with the sirategy which is optimal for
our values of i and d, ©3 = (Ryp Rpmm Lmn Rpy Ly L,).

After the first query, the EBL systemn would propose
the direct rule R s, and suggest adding it to KBgs. No-
tice the optimal Guardian strategy, in this derivation
space, is8 ©g = {(Rgp Rpm Lm Rgy Ly L;), whose ex-
pected cost matches E(©3). Hence, the above heuris-
tic would veto this rule, and tell us to keep the original
KBg, and continue using the original ©4 strategy.

After solving the second query, this EBL system would
propose the rule

Rym:

and suggest adding it to K{Bg. As the optimal strategy
using this new rule — ©y = (Rym L, Ryp Rpp Ly Ly}
— is better than ©3 (as E(©7) = 2.5 + 2.425d <
E(©3)), we would then add this R, to KBg.

Notice we are still missing the big win, which in-
volves both new direct rules. Here, the optimal strategy
would be Og = (Ryp Ln Ryp Ly Ly}, with expected cost
E(©3) = 1.75i + 2.425d, which is much less than E(©y)
as it no longer even considers the Parent(...) subgoal!

Mother{p q) = Guardian(p q)

Use a Fixed Ordering of Steps? Consider an in-
ference graph which has the goal G(x) leading down to
the (inferior) subgoal S(«x), and let Og (resp., ©¢) be
the optimal strategy for S (resp., G). It would be conve-
nient if ©¢ necessarily “includes” ©g — i.e., if each of
Oy steps appear in ©g, and they all appear in the same
order as they occur in Og.

This would mean, in particular, that after finding the
optimal strategy for the “root” of an inference “tree”,
one could re-use that ordering on every node in that
tree. For example, we could then “subset” the opti-
mal strategy for the Guardian(x <) query to form
the optimal strategy for Parent(x <) queries: while
that strategy would include only R,y and R,m and the

748 Machine Learning

i.il:iJ

Reza

0]

Fa = 090 []
Figure 5: Inference Graphs for $(x} and G(x) — KBs¢

relevant lookups (but not Rg,), it wounld include these
steps in the same order here as they appeared wilhin
Guardian{ x v)’s strategy.

This would greatly simplify the task of finding the
optimal derivation strategies for a set of queries from
a given KB: one need only find the strategy for each
root of the “inference forest”. It would also mean that
a ProOLOG system could achieve optimal performance
by simply asserting its rules and data base facts in Lhis
order.

Fortunately, this “fixed ordering” property holds for
any irredundant knowledge base; see |Likuski, 1988,
Lemma 4.5]. Unfortunately, it does net hold for redun-
dant knowledge bases; see [Likuski, 1988, Lemma 4.6).

Use a Fixed Set of Rules? The situation is really even
worse: not only might we have to find a different ordering
on the steps as we go from one goal to its “superior”
goal, we might, in fact, have to use a completely different
derivation space! That is, there can be steps within Gg
which do not even appear anywhere within 6.

Figure 5 is an example. The optimal strategy
for 8{x) is B85 = <R§1 Ryg Rog La Rop Lﬂ}. No-
tice, however, the optimal strategy for G{(x) is @¢ =
(Rea La Rgs Rss Rap Ly), which does not include
any of ©g’s reduction steps!

When are Efficient Algorithms Possible? While
the general OptDS problem is NP-hard, we presented
efficient (in fact, linear time) algorithms which work
in some specific situations. This final portion sug-
gests a way of characterizing which situations may be
tractable.’

This fixed-ordering property is essential to [Smith,
1989)’s algorithm for finding optimal strategies. That
algorithm works in a “bottom-up” fashion: propagating
so-called “worth values” up from lookups, via reduction
steps. It works in linear time because the decision of
which step to use, at a given subgoal, depends only on
these steps and their “children”. As this property also
holds in the “direct-rule” case, we could use (a trivially
modified version of) Smith’s algorithm here as well.

1®We assume, of course, that P # NP — i.e., that all
NP-hard problems are intractable.

Unfortunately, the above points show that redundant
inference graphs, in general, need not have this nice
property. That is, an optimal strategy found for an
inferior S(k) node may be completely irrelevant, when
seeking the optimal strategy for its superior G(k) node,
meaning our algorithm would have backtrack to consider
other possibilities, as it works its way up towards the top
goal. We feel that this back-tracking is what leads to the
intractability of the general task, which is why we expect
there are efficient algorithms for finding optimal strate-
gies only in situations where the decisions made at one
node are "honored" at all superior nodes.

4 Conclusions

This concluding section first ties this work back into the
framework of EBL systems in general, and then lists
some obvious extensions to this work.

Tie to EBL Systems: The positive result mentioned
above — that a direct redundant rule (i.e., the result of
an EBL system) can never slow down a derivation system
— should be viewed as only a partial vindication of EBL
systems and techniques. Below are four comments about
this claim:

* Most EBL systems leave in both the direct rule, and
the rules from which it was derived — e.g., both the
derived Ry and the pair Ry and R, We showed
that this is never efficient, even for the query itself.

* Most EBL systems move this new rule to the begin-
ning of the system's derivation strategy; this is not
always the optimal place. (Recall that we added
Rgr towards the back of the 06 strategy. In fact,
the expected cost of the strategy which includes Ry
in the front of the strategy is strictly worse than the
original, \ne-Rys strategy, 03!)

+ Section 1 mentioned two ways of improving the ex-
pected cost of a derivation — (1) by determining the
best strategy, and (2) by adding redundancies. As
empirical evidence has shown that using (2) with-
out (1) can produce arbitrarily inefficient systems,
this report has examined ways of combining both of
these.

* This result applies only when the prior knowledge
base is irredundant, and it only deals with a single
query. As shown above, the situation is much more
complicated when we consider multiple questions,
and arbitrarily redundant knowledge bases.

Extensions: We have only scratched the surface of this
analysis; there are many other areas to consider as well.
The first obvious arena is handling conjunctive and re-
cursive knowledge bases. Another is to combine this ap-
proach with other control strategy mechanisms — in-
cluding conjunct ordering [Smith and Genesereth, 1985]
and forward chaining [Treitel and Genesereth, 1987].
The third is to obtain more accurate empirical values.
For example, we have assumed that the costs of reduc-
tions and lookups (read "i" and "d'") are uniform. Pre-
liminary empirical observations show that these costs de-
pend on the number of variables, etc.

Results: This report takes seriously the view that
Explanation-Based Learning is a method for improving
the future performance of a reasoning system. This leads
to the formal foundation for analysis presented in Sec-
tion 2, which is based on the expected cost for solv-
ing certain queries from a given knowledge base (based
on a given distribution of facts). Section 3 uses this
framework to describe both the complexities (read "NP-
hardness") inherent in this undertaking; and certain re-
stricted situations where efficient algorithms (based on
[Smith, 1989]'s work) are possible. Section 4 uses this
framework to understand why EBL systems do, and do
not, succeed in their attempts to improve the perfor-
mance of their underlying systems.

References

[Dedong and Mooney, 1986] Gerald DedJong and Raymond
Mooney. Explanation-based learning: An alternative view.
Machine Learning, 1(2):145-76, 1986.

[Garey and Johnson, 1979] Michael R. Garey and David S.
Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. 1l. Freeman and Com-
pany, New York, 1979.

[Genesereth and Nilsson, 1987] Michael R. Genesereth and
Nils J. Nilsson. Logical Foundations of Atrtificial Intelli-
gence. Morgan Kaufmann Publishers, Inc., Los Altos, CA,
1987.

[Greiner, 1989] Russell Greiner. Incorporating redundant
learned rules: A preliminary formal analysis of EBL. Tech-
nical report, University of Toronto, 1989.

[Likuski, 1988] Joseph Likuski.
learned rules in a knowledge base.
versity of Toronto, October 1988.

Integrating redundant
Master's thesis, Uni-

[Minton, 1988] Steven Minton. Quantitative results concern-
ing the utility of explanation-based learning. In AAAI-S8,
pages 564-69, San Mateo, CA, August 1988. Morgan Kauf-
mann Publishers, Inc.

[Mitchell et ai, 1986] Thomas M. Mitchell, Richard M.
Keller, and Smadar T. Kedar-Cabelli. Example-based gen-
eralization: A unifying view. Machine Learning, 1(1):47-
80, 1986.

[Rosenbloom and Newell, 1982] Paul S. Rosenbloom and Al-
lan Newell. Learning by chunking: Summary of a task and
a model. In AAA/-&2,*Pittsburgh, August 1982.

[Russell, 1985] Stuart Russell. The Compleat Guide to MRS,
June 1985. Stanford KSL Report HPP-85-12.

[Smith and Genesereth, 1985]
David E. Smith and Micheal R. Genesereth. Ordering con-
junctive queries. Artificial Intelligence: An International
Journal, 26(2):171-215, May 1985.

[Smith, 1989] David E. Smith. Controlling backward infer-
ence. Artificial Intelligence: An International Journal,
39(1), 1989. (Also Stanford Technical Report LOGIC-86-
68).

[Treitel and Genesereth, 1987] Richard J. Treitel
and Michael R. Genesereth. Choosing orders for rules.

Journal of Automated Reasoning, 3(4):395-432, December
1987.

[Treitel, 1986] Richard J. Treitel. Sequentialization of Logic
Programs. PhD thesis, Stanford University, November
1986. Technical Report STAN-CS-86-1135.

Greiner and Likuski 749

