
Mind Change Optimal Learning of Bayes Net Structure

Oliver Schulte1, Wei Luo1, and Russell Greiner2

1 Simon Fraser University, Vancouver-Burnaby, BC V5A 1S6, Canada,
{oschulte, wluoa}@cs.sfu.ca,

2 University of Alberta, Edmonton, Alberta T6G 2E8, Canada,
greiner@cs.ualberta.ca

Abstract. This paper analyzes the problem of learning the structure of a Bayes
net (BN) in the theoretical framework of Gold’s learning paradigm. Bayes nets
are one of the most prominent formalisms for knowledge representation and prob-
abilistic and causal reasoning. We follow constraint-based approaches to learning
Bayes net structure, where learning is based on observed conditional dependen-
cies between variables of interest (e.g., “X is dependent on Y given any assign-
ment to variable Z”). Applying learning criteria in this model leads to the follow-
ing results. (1) The mind change complexity of identifying a Bayes net graph over
variables V from dependency data is

`

|V|
2

´

, the maximum number of edges. (2)
There is a unique fastest mind-change optimal Bayes net learner; convergence
speed is evaluated using Gold’s dominance notion of “uniformly faster conver-
gence”. This learner conjectures a graph if it is the unique Bayes net pattern that
satisfies the observed dependencies with a minimum number of edges, and out-
puts “no guess” otherwise. Therefore we are using standard learning criteria to
define a natural and novel Bayes net learning algorithm. We investigate the com-
plexity of computing the output of the fastest mind-change optimal learner, and
show that this problem is NP-hard (assuming P = RP). To our knowledge this is
the first NP-hardness result concerning the existence of a uniquely optimal Bayes
net structure.

1 Introduction

One of the goals of computational learning theory is to analyze the complexity of prac-
tically important learning problems, and to design optimal learning algorithms for them
that meet performance guarantees. In this paper, we model learning the structure of a
Bayes net as a language learning problem in the Gold paradigm. We apply identifica-
tion criteria such as mind change bounds [9, Ch. 12.2][20], mind-change optimality [11,
12], and text-efficiency (minimizing time or number of data points before convergence)
[16, 8]. Bayes nets, one of the most prominent knowledge representation formalisms
[18, 19], are widely used to define probabilistic models in a graphical manner, with a
directed acyclic graph (DAG) whose edges link the variables of interest.

We base our model of BN structure learning on an approach known as “constraint-
based” learning [5]. Constraint-based learning views a BN structure as a specification
of conditional dependencies of the form X⊥6⊥ Y |S, where X and Y are variables of
interest and S is a set of variables disjoint from {X, Y }. (Read X⊥6⊥ Y |S as “variable
X is dependent on variable Y given values for the variables in the set S”.) For example,

a conditional dependence statement represented by a Bayes net may be “father’s eye
colour is dependent on mother’s eye colour given child’s eye colour”. In this view, a
BN structure is a syntactic representation of a dependency relation [18, Sec.3.3]. It is
possible for distinct BN structures to represent the same dependency relation; in that
case the equivalent BN structures share a partially directed graph known as a pattern
(defined below), so a BN pattern is a unique syntactic representation of a dependency
relation. A dependency relation meets the mathematical definition of a language in the
sense of Gold’s paradigm, where the basic “strings” are dependence statements of the
form “X⊥6⊥ Y |S”. We show that in this learning model, the mind change complexity
of learning a Bayes net graph for a given set of variables V is

(

|V|
2

)

—the maximum
number of edges in a graph with node set V. Our analysis leads to a characterization
of BN learning algorithms that are mind-change optimal. A learner is mind-change
optimal if it minimizes the number of mind changes not only globally in the entire
learning problem, but also locally in subproblems encountered after receiving some
evidence [11, 12]; see Section 5. Mind-change optimal BN learners are exactly those
that conjecture a BN pattern G only if the pattern is the unique one that satisfies the
observed dependencies with a minimum number of edges.

Applying Gold’s notion of dominance in convergence time [8, p.462], we show that
there is a fastest mind-change optimal learner whose convergence time dominates that
of all other mind-change optimal learners. The fastest learner is defined as follows: If
there is more than one BN pattern G that satisfies the observed dependencies with a
minimum number of edges, output “?” (for “no guess”). If there is a unique pattern
G that satisfies the observed dependencies with a minimum number of edges, output
G. Thus standard identification criteria in Gold’s paradigm lead to a natural and novel
algorithm for learning BN structure. The technically most complex result of the paper
examines the computational complexity of the fastest mind-change optimal BN learner:
we show that computing its conjectures is NP-hard (assuming that P = RP).

Related Work. Many BN learning systems follow the “search and score” paradigm,
and seek a structure that optimizes some numeric score [5]. Our work is in the alter-
native constraint-based paradigm. Constraint-based (CB) algorithms for learning Bayes
net structure are a well-developed area of machine learning. Introductory overviews are
provided in [5], [15, Ch.10]. The Tetrad system [6] includes a number of CB methods
for different classes of Bayes nets. A fundamental difference between existing CB ap-
proaches and our model is that the existing methods assume access to an oracle that
returns an answer for every query of the form “does X⊥6⊥ Y |S hold?” In contrast, our
model corresponds to the situation of a learner whose evidence (in the form of depen-
dency assertions) grows incrementally over time. Another difference is that existing CB
methods assume that their oracle indicates both whether two variables are conditionally
dependent and whether they are conditionally independent. In language learning terms,
the CB method has access to both positive data (dependencies) and negative data (inde-
pendencies). In our analysis, the learner receives only positive data (dependencies). To
our knowledge, our work is the first application of Gold’s language learning paradigm
to Bayes net learning.

A Bayes net that satisfies a set of given dependenciesD is said to be an I-map forD.
We show the NP-hardness of the following problem: for a given set of dependenciesD

represented by an oracle O (Section 6), decide whether there is a unique edge minimal
I-map G for D, and if so, output G. Bouckaert proved that the problem is NP-hard
without the uniqueness condition [2, Lm. 4.5]. However, Bouckaert’s proof cannot be
adapted for our uniqueness problem, which requires a much more complex reduction.
To our knowledge, this is the first NP-hardness result for deciding the existence of a
uniquely optimal Bayes net structure for any optimality criterion.

We introduce concepts and results from both learning theory and Bayes net theory
in the next section. Section 3 presents and discusses our model of BN structure learning
as a language learning problem. Section 4 analyzes the mind change complexity of BN
structure learning. Section 5 characterizes the mind-change optimal learning algorithms
for this problems and describes the fastest mind-change optimal learner. The final two
sections define the problem of computing the output of the fastest mind-change optimal
learner and show that the problem is NP-hard.

2 Preliminaries: Language Identification and Bayes Nets

We first introduce general concepts from learning theory, followed by basic definitions
from Bayes net theory.

2.1 Language Identification with Bounded Mind Changes
We employ notation and terminology from [10], [13, Ch.1], [16], and [8]. We write N

for the set of natural numbers {0, 1, 2, ...}. The symbols⊆,⊇,⊂,⊃, and ∅ respectively
stand for subset, superset, proper subset, proper superset, and the empty set. We assume
that there is an at most countable set E of potential evidence items (strings in language
learning). A language is a subset of E; we write L for a generic language [8, p.449].
A language learning problem is a collection of languages; we write L for a generic
collection of languages. A text T is a mapping of N into E∪{#}, where # is a symbol
not in E. (The symbol # models pauses in data presentation.) We write content(T)
for the intersection of E and the range of T . A text T is for a language L iff L =
content(T). The initial sequence of text T of length n is denoted by T [n]. The set of all
finite initial sequences over E∪{#} is denoted by SEQ. We also use SEQ(L) to denote
finite initial sequences consistent with languages in L. Greek letters σ and τ range over
SEQ. We write content(σ) for the intersection of E and the range of σ. We write σ ⊂ T

to denote that text T extends initial sequence σ; similarly for σ ⊂ τ . A learner Ψ for
a collection of languages L is a mapping of SEQ(L) into L ∪ {?}. Our term “learner”
corresponds to the term “scientist” in [13, Ch.2.1.2]. We say that a learner Ψ identifies
a language L on a text T for L, if Ψ(T [n]) = L for all but a finitely many n. Next we
define identification of a language collection relative to some evidence.

Definition 1. A learner Ψ for L identifies L given σ ⇐⇒ for every language L ∈ L,

and for every text T ⊃ σ for L, the learner Ψ identifies L on T .

Thus a learner Ψ identifies a language collection L if Ψ identifies L given the empty
sequence Λ. A learner Ψ changes its mind at some nonempty finite sequence σ ∈ SEQ
if Ψ(σ) 6= Ψ(σ−) and Ψ(σ−) 6= ?, where σ− is the initial segment of σ with σ’s last
element removed [9, Ch.12.2]. (No mind changes occur at the empty sequence Λ.)

Definition 2. Let MC(Ψ, T, σ) denote the total number of mind changes of Ψ on text T

after sequence σ (i.e., MC(Ψ, T, σ) = |{τ : σ ⊂ τ ⊂ T : Ψ changes its mind at τ}|).
1. Ψ identifies L with mind-change bound k given σ ⇐⇒ Ψ identifies L given σ and

Ψ changes its mind at most k times on any text T ⊃ σ for a language in L after σ

(i.e., if T ⊃ σ extends data sequence σ and T is a text for any language L ∈ L,
then MC(Ψ, T, σ) ≤ k).

2. A language collection L is identifiable with mind change bound k given σ ⇐⇒
there is a learner Ψ such that Ψ identifies L with mind change bound k given σ.

2.2 Bayes Nets: Basic Concepts and Definitions
We employ notation and terminology from [19], [18] and [22]. A Bayes net structure
is a directed acyclic graph G = (V, E). Two nodes X, Y are adjacent in a BN if G

contains an edge X → Y or Y → X . The pattern π(G) of DAG G is the partially
directed graph over V that has the same adjacencies as G, and contains an arrowhead
X → Y if and only if G contains a triple X → Y ← Z where X and Z are not
adjacent. A node W is a collider on undirected path p in DAG G if and only if the left
and right neighbours of W on p point into W . Every BN structure defines a separability
relation between a pair of nodes X, Y relative to a set of nodes S, called d-separation.
If X, Y are two variables and S is a set of variables disjoint from {X, Y }, then S d-
separates X and Y if along every (undirected) path between X and Y there is a node W

satisfying one of the following conditions: (1) W is a collider on the path and neither
W nor any of its descendants is in S, or (2) W is not a collider on the path and W is in
S. We write (X ⊥⊥ Y |S)G if X and Y are d-separated by S in graph G. If two nodes X

and Y are not d-separated by S in graph G, then X and Y are d-connected by S in G,
written (X⊥6⊥ Y |S)G. The d-connection relation, or dependency relation, for a graph
is denoted by DG, that is, 〈X, Y,S〉 ∈ DG iff (X⊥6⊥ Y |S)G. Verma and Pearl proved
that two Bayes nets G1 and G2 represent the same dependency relation iff they have
the same pattern (i.e., DG1 = DG2 iff π(G1) = π(G2) [24, Thm. 1]). Thus we use a
pattern as a syntactic representation for a Bayes net dependency relation and write G to
denote both graphs and patterns unless there is ambiguity. The statement space over a
set of variables V, denoted by UV, contains all conditional dependency statements of
the form (X⊥6⊥ Y |S), where X, Y are distinct variables in V and S ⊆ V \ {X, Y }.

Fig. 1 shows a Bayes net from [19, p.15]. In this network, node wet is an unshielded
collider on the path sprinkler− wet− rain; node wet is not a collider on the path
sprinkler − wet − slippery. The pattern of the network has the same skeleton,
but contains only two edges that induce the collider wet. From d-separation we have
(sprinkler ⊥⊥ rain|{season})G and (sprinkler⊥6⊥ rain|{season, wet})G. Next
we introduce our model of BN structure learning, which associates a language collec-
tion LV with a given set of variables V; the language collection LV comprises all
dependency relations defined by Bayes net structures.

3 Bayes Net Learning With Bounded Mind Changes
This section defines our model of BN structure learning. We discuss the assumptions
in the model and compare them to assumptions made in other constraint-based BN
learning approaches.

season

sprinkler rain

wet

slippery

season

sprinkler rain

wet

slippery

Fig. 1. Sprinkler network and its pattern

General Language Learning Bayes Net Structure Learning
string conditional dependency statement X⊥6⊥ Y |S
language conditional dependency relation
index pattern
text complete dependency sequence

Table 1. The correspondence between constraint-based learning of Bayes Nets from conditional
dependency data and Gold’s language learning model.

3.1 Definition of the Learning Model

Fix a set of variables V. The evidence item set E is the statement space UV. Let
LV be the set of BN-dependency relations over variables V (i.e., LV = {DG :
G is a pattern over V}). A complete dependency sequence T is a mapping of N into
UV∪{#}. A dependency sequence T is for a dependency relationD iffD = content(T).
A Bayes net learning algorithm Ψ maps a finite data sequence σ over UV ∪ {#} to a
pattern G. As Table 1 illustrates, this defines a language learning model, with some
changes in terminology that reflect the Bayes net context.

Example. Let G be the DAG in Figure 1. The dependency relation for the graphDG

contains { 〈season, sprinkler, ∅〉, 〈season, sprinkler, {rain}〉, . . . , 〈sprinkler,
rain, {season, wet}〉, 〈sprinkler, rain, {season, slippery}〉}. Any text enumer-
ating DG is a dependency sequence for DG.

3.2 Discussion

A Bayes net defines a dependency relation via the d-separation criterion. The motivation
for this criterion stems from how a Bayes net represents a probability distribution P .
Let P be a joint distribution over variables V. If X,Y and Z are three disjoint sets of
variables, then X and Y are stochastically independent given S, denoted by (X ⊥⊥
Y|S)P , if P (X,Y|S) = P (X|S) P (Y|S) whenever P (S) > 0. If X, Y, and S are
disjoint sets of nodes in G and X and Y are not empty, then X and Y are d-separated
by S if and only if every pair 〈X, Y 〉 in X×Y is d-separated by S. In constraint-based
BN learning, it is common to assume that the probability distribution generating the
data of interest has a faithful BN representation [22, Thm.3.2], [19, Ch.2.4].

Definition 3. Let V be a set of variables, G a Bayes net over V, and P a joint distri-
bution over V. Then G is faithful to P if (X⊥6⊥ Y|S)P in P ⇐⇒ (X⊥6⊥ Y|S)G in
G.

Assuming faithfulness, the dependencies in the data can be exactly represented in a
Bayes net or a pattern, which is the assumption in our language learning model. It is
easy to see that a graph G is faithful to a distribution P if and only if G is faithful with
respect to variable pairs, that is, if (X⊥6⊥ Y |S)P in P ⇐⇒ (X⊥6⊥ Y |S)G in G for all
variables X, Y . Therefore CB methods focus on conditional dependencies of the form
X⊥6⊥ Y |S, which is the approach we follow throughout the paper.

As Gold’s paradigm does not specify how linguistic data are generated for the
learner, our model does not specify how the observed dependencies are generated. In
practice, a BN learner obtains a random sample d drawn from the operating joint dis-
tribution over the variables V, and applies a suitable statistical criterion to decide if a
dependency X⊥6⊥ Y |S holds. One way in which data for our model can be generated
from random samples is the following: For every triple X⊥6⊥ Y |S with {X, Y }∩S = ∅,
a statistical test is performed with X ⊥⊥ Y |S as the null hypothesis. (For small num-
bers of variables, this is a common procedure in statistics called “all subsets variable
selection” [25, p.59].) If the test rejects the null hypothesis, the dependency X⊥6⊥ Y |S
is added to the dependency data; otherwise no conclusion is drawn. Many CB systems
also use a statistical test to answer queries to a dependency oracle: given a query “Does
X⊥6⊥ Y |S hold?”, the system answers “yes” if the test rejects the hypothesis X ⊥⊥ Y |S,
and “no” otherwise. The assumption that this procedure yields correct results is called
the assumption of valid statistical testing [5, Sect.6.2]. Our model is more realistic in
two respects. First, the model assumes only that dependency information is available,
but does not rely on independence data. In fact, many statisticians hold that no indepen-
dence conclusion should be drawn when a statistical significance test fails to reject an
independence hypothesis [7]. Second, our model does not assume that the dependency
information is supplied by an oracle all at once, but explicitly considers learning in a
setting where more information becomes available as the sample size increases.

Since the set of dependency relations LV constitutes a language collection in the
sense of the Gold paradigm, we can employ standard identification criteria to analyze
this learning problem. We begin by applying a fundamental result in Bayes net theory
to determine the mind change complexity of the problem.

4 The Mind Change Complexity of Learning Bayes Net Structure
Following Angluin [1, Condition 3] and Shinohara [21], we say that a class of lan-
guages L has finite thickness if the set {L ∈ L : s ∈ L} is finite for every string
or evidence item s ∈

⋃

L. For language collections with finite thickness, their mind
change complexity is determined by a structural feature called the inclusion depth [12,
Def.6.1].

Definition 4. Let L be a language collection and L be a language in L. The inclusion
depth of L in L is the size n of the largest index set {Li}1≤i≤n of distinct languages
in L, such that L ⊂ L1 ⊂ · · · ⊂ Li ⊂ · · · ⊂ Ln. The inclusion depth of L is the
maximum of the inclusion depths of languages in L.

The next proposition establishes the connection between inclusion depth and mind
change complexity. It follows immediately from the general result for ordinal mind
change bounds established in [12, Prop. 6.1].

Proposition 1. Let L be a language collection with finite thickness. Then there is a
learner Ψ that identifies L with mind change bound k ⇐⇒ the inclusion depth of L is
at most k.

Since we are considering Bayes nets with finitely many variables, the statement space
UV is finite, so the language collection LV containing all BN-dependency relations is
finite and therefore LV has finite thickness. Hence we have the following corollary.

Corollary 1. Let V be a set of variables. There exists a learner Ψ that identifies LV

with mind change bound k ⇐⇒ the inclusion depth of LV is at most k.

A fundamental result in Bayes net theory allows us to determine the inclusion depth of
a dependency relation in LV. An edge A→ B is covered in a DAG G if the parents of
B are exactly the parents of A plus A itself (see Figure 2). The operation that reverses
the direction of the arrow between A and B is a covered edge reversal. The following
theorem was conjectured by Meek [14] and proven by Chickering [3, Thm.4].

D

��
''PPPPPPPPPPPPPP E

~~~~
~~

~~
~

  
@@

@@
@@

@ F

��
wwnnnnnnnnnnnnnn

A // B

Fig. 2. Edge A → B is covered, whereas D → A is not covered.

Theorem 1 (Meek-Chickering). Let G and H be two DAGs over the same set of
variables V. Then DG ⊆ DH ⇐⇒ the DAG H can be transformed into the DAG
G by repeating the following two operations: (1) covered edge reversal, and (2) single
edge deletion.

The next corollary characterizes the inclusion depth of the BN dependence relationDG

for a graph G in terms of a simple syntactic feature of G, namely the number of missing
adjacencies.

Corollary 2. Let G = (V, E) be a Bayes net structure. Then the inclusion depth of the
BN-dependence relation DG equals

(

|V|
2

)

− |E|, the number of adjacencies not in G.
In particular, the totally disconnected network has inclusion depth

(

|V|
2

)

; a complete
network has inclusion depth 0.

Proof. We use downward induction on the number of edges n in graph G. Let N =
(

|V|
2

)

. Base case: n = N . Then G is a complete graph, so DG contains all dependency
statements in the statement space UV, and therefore has 0 inclusion depth. Inductive
step: Assume the hypothesis for n + 1 and consider a graph G with n edges. Add an
edge to G to obtain a BN G′ with n +1 edges that is a supergraph of G′. The definition
of d-separation implies that DG ⊂ DG′ . By inductive hypothesis, there is an inclusion
chain DG′ ⊂ DG1 · · · ⊂ DGN−(n+1)

consisting of BN dependency relations. Hence the
inclusion depth of G is at least N − (n + 1) + 1 = N − n.

To show that the inclusion depth of G is exactly N − n, suppose for contradiction
that it is greater than N − n. Then there is an inclusion chain DG ⊂ DH1 ⊂ DH2 ⊂



· · · ⊂ UV of length greater than N − n. So the inclusion depth of DH2 is at least
N − (n + 1) and the inclusion depth of DH1 is at least N − n. Hence by inductive
hypothesis, the number of edges in H2 is at most n + 1 and in H1 at most n. So at least
two of the graphs G, H1, H2 have the same number of edges. Without loss of generality,
assume that H1 and H2 have the same number of edges. SinceDH1 ⊂ DH2 , Theorem 1
implies that H1 can be obtained from H2 with covered edge reversals. But covered edge
reversals are symmetric, so we also have DH2 ⊆ DH1 , which contradicts the choice of
H1 and H2. So the inclusion depth of DG is N − n, which completes the inductive
proof.

Together with Proposition 1, the corollary implies that the mind change complexity of
identifying a Bayes Net structure over variables V is given by the maximum number of
edges over V.

Theorem 2. For any set of variables V, the inclusion depth of LV is
(

|V|
2

)

. So the mind
change complexity of identifying the correct Bayes Net structure from dependency data
is

(

|V|
2

)

.

The next section characterizes the BN learning algorithms that achieve optimal mind
change performance.

5 Mind-Change Optimal Learners for Bayes Net Structure

We analyze mind-change optimal algorithms for identifying Bayes net structure. The
intuition underlying mind-change optimality is that a learner that is efficient with re-
spect to mind changes minimizes mind changes not only globally in the entire learning
problem, but also locally in subproblems after receiving some evidence [12, 11]. We
formalize this idea as in [12, Def.2.3]. If a mind change bound exists for L given σ,
let MCL(σ) be the least k such that L is identifiable with k mind changes given σ. For
example, given a sequence σ of dependencies, let G = (V, E) be a BN that satisfies
the dependencies in σ with a minimum number of edges. Then the mind change com-
plexity MCLV

(σ) is
(

|V|
2

)

− |E|. Mind change optimality requires that a learner should
succeed with MCL(σ) mind changes after each data sequence σ.

Definition 5 (based on Def.2.3 of [12]). A learner Ψ is strongly mind-change optimal
(SMC-optimal) for L if for all data sequences σ the learner Ψ identifies L given σ with
at most MCL(σ) mind changes.

The next proposition characterizes SMC-optimal learners for language collections with
finite inclusion depth. It follows from the general characterization of SMC-optimal
learners for all language collections established in [12, Prop.4.1].

Proposition 2. Let Ψ be a learner that identifies a language collection L with finite
inclusion depth. Then Ψ is SMC-optimal for L if and only if for all data sequences σ: if
Ψ(σ) 6= ?, then Ψ(σ) is the unique language with the largest inclusion depth for σ.

Applying the proposition to Bayes net learners yields the following corollary.



Corollary 3. Let Ψ be a Bayes net learner that identifies the correct Bayes net pattern
for a set of variables V. The learner Ψ is SMC-optimal forLV ⇐⇒ for all dependency
sequences σ, if the output of Ψ is not ?, then Ψ outputs a uniquely edge-minimal pattern
for the dependenciesD = content(σ).

It is easy to implement a slow SMC-optimal BN learner. For example, for a given set
of dependencies D it is straightforward to check if there is a pattern G that covers
exactly those dependencies (i.e., DG = D). So an SMC-optimal learner could output a
pattern G if there is one that matches the observed dependencies exactly, and output ?
otherwise. But such a slow learner requires exponentially many dependency statements
as input. There are SMC-optimal learners that produce a guess faster; in fact, using
Gold’s notion of “uniformly faster”, we can show that there is a unique fastest SMC-
optimal learner. Gold proposed the following way to compare the convergence speed of
two learners [8, p. 462].

Definition 6. Let L be a language collection.
1. The convergence time of a learner Ψ on text T is defined as CP(Ψ, T ) ≡ the least

time m such that Ψ(T [m]) = Ψ(T [m′]) for all m′ ≥ m.
2. A learner Ψ identifies L uniformly faster than learner Φ ⇐⇒

(a) for all languages L ∈ L and all texts T for L, we have CP(Ψ, T ) ≤ CP(Φ, T ),
and

(b) for some language L ∈ L and some text T for L, we have CP(Ψ, T ) <

CP(Φ, T ).

For a language collection L with finite inclusion depth, Proposition 2 implies that if
there is no language L that uniquely maximizes inclusion depth given σ, then a learner
that is SMC-optimal outputs ? on σ. Intuitively, the fastest SMC-optimal learner delays
making a conjecture no longer than is necessary to meet this condition. Formally, this
learner is defined as follows for all sequences σ ∈ SEQ(L):

ΨL
fast(σ) =

{

? if no language uniquely maximizes inclusion depth given σ

L if L ∈ L uniquely maximizes inclusion depth given σ.

The next observation asserts that ΨL
fast

is the fastest SMC-optimal method for L.

Observation 3 Let L be a language collection with finite inclusion depth. Then ΨL
fast

is SMC-optimal and identifies L uniformly faster than any other SMC-optimal learner
for L.

Proof. The proof is a variant of standard results on text-efficiency (e.g., [13, Ch.2.3.3])
and is omitted for space reasons.

Observation 3 leads to the following algorithm for identifying a BN pattern.

Corollary 4. Let V be a set of variables. For a given sequence of dependencies σ,
the learner ΨV

fast
outputs ? if there is more than one edge-minimal pattern that covers

the dependencies in σ, and otherwise outputs a uniquely edge-minimal pattern for the
dependencies D = content(σ). The learner ΨV

fast
is SMC-optimal and identifies the

correct pattern uniformly faster than any other SMC-optimal BN structure learner.



The remainder of the paper analyzes the run-time complexity of the ΨV

fast
method; we

show that computing the output of the learner is NP-hard (assuming that P = RP).

6 Computational Complexity of Fast Mind-Change Optimal
Identification of Bayes Net structure

This section considers the computational complexity of implementing the fastest SMC-
optimal learner ΨV

fast
. We describe the standard approach of analyzing the complexity of

constraint-based learners in the Bayes net literature and state some known results from
complexity theory for background.

As with any run-time analysis, an important issue is the representation of the input
to the algorithm. The most straightforward approach for our learning model would be
to take the input as a list of dependencies, and the input size to be the size of that list.
However, in practice CB learners do not receive an explicitly enumerated list of depen-
dencies, but rather they have access to a dependency oracle (cf. Section 3.2). Enumerat-
ing relevant dependencies through repeated queries is part of the computational task of
a CB learner. Accordingly, the standard complexity analysis takes a dependency oracle
and a set of variables as the input to the learning algorithm (e.g., [4, Def.12],[2]).

Definition 7. A dependency oracle O for a variable set V is a function that takes as
input dependency queries from the statement space UV and returns, in constant time,
either “yes” or “?”.

The dependency relation associated with oracle O is given by DO = {X⊥6⊥ Y |S ∈
UV : O returns “yes” on input X⊥6⊥ Y |S}. We note that our model of learning Bayes
net structure can be reformulated in terms of a sequence of oracles: Instead of a com-
plete sequence of dependency statements for a dependence relation DG, the learner
could be presented with a sequence of dependency oracles O1, O2, . . . , On, . . . such
that DOi

⊆ DOi+1 and
⋃∞

i=1
DOi

= DG. The mind change and convergence time
results remain the same in this model.

We will reduce the problem of computing the output of the fastest mind change
optimal learner ΨV

fast
to deciding the existence of a unique exact cover by 3-sets.

UEC3SET
Instance A finite set X with |X | = 3q and a collection C of 3-element subsets of X .
Question Does C contain a unique exact cover for X , that is, a unique subcollection

C ′ ⊆ C such that every element of X occurs in exactly one member of C ′?

We apply the following well-known result. The class RP comprises the decision prob-
lems that can be decided in polynomial time with a randomized algorithm [17, Def.11.1].

Proposition 3. A polynomial time algorithm for UEC3SET yields a polynomial time
algorithm for the satisfiability problem SAT provided that P = RP. So UEC3SET is
NP-hard under that assumption.

The proposition follows from the famous theorem of Valiant and Vazirani that gives a
probabilistic reduction of SAT to UNIQUE SAT [23]. Standard reductions show that
UNIQUE SAT reduces to UEC3SET. Computing the conjectures of the learner ΨV

fast

poses the following computational problem.



UNIQUE MINIMAL I-MAP
Input A set of variables V and a dependency oracle O for V.
Output If there is a unique DAG pattern G that covers the dependencies in O with a

minimal number of edges, output G. Otherwise output ?.

This is a function minimization problem; the corresponding decision problem is the
following.

UNIQUE I-MAP
Instance A set of variables V, a dependency oracle O for V, and a bound k.
Question Is there a DAG pattern G such that: G covers the dependencies in O, every

other DAG pattern G′ covering the dependencies in O has more edges than G, and
G has at most k edges?

Clearly an efficient algorithm for the function minimization problem yields an efficient
algorithm for UNIQUE I-MAP. We will show that UNIQUE I-MAP is NP-hard, assuming
that P = RP. Let ≤P denote polynomial-time many-one reducibility.

Theorem 4. UEC3SET≤P UNIQUE I-MAP≤P UNIQUE MINIMAL I-MAP. So UNIQUE
MINIMAL I-MAP is NP-hard provided that P = RP.

Proof. We give a reduction from UEC3SET to UNIQUE I-MAP. Consider an instance
of UEC3SET with sets universe U of size |U | = 3m, and c1, .., cp, where |ci| = 3 for
i = 1, .., p and U = ∪m

i=1ci. Define the following set V of variables.

1. For every set ci, a set variable Ci.
2. For every element xj of the universe U , a member variable Xj .
3. A root variable R.

Set the bound k = 3p+m. The following program M implements a dependency oracle
O over the variables V , in time polynomial in the size of the given UEC3SET instance.

Definition of Dependency Oracle
Input A dependency query V1⊥6⊥ V2|S.
Output Oracle Clauses

1. If V1 = Ci, V2 = Xj , and xj ∈ ci, then return “dependent”.
2. If V1 = Xi, V2 = Xj , and there is a set ck ⊇ {xi, xj} such that Ck ∈ S, then

return “dependent”.
3. If V1 = R, V2 = Xj ,S = ∅ then return “dependent”.
4. If V1 = R, V2 = Xj , |S| = 1, and S 6= {C} where xj ∈ c, then return

“dependent”.
5. In all other cases, return ?.

We argue that there is a unique exact set cover for an instance 〈U, {ci}〉 iff there is a
unique I-map with at most k edges for O. So if there were a polynomial time algorithm
A for UNIQUE I-MAP, we could solve the UEC3SET instance in polynomial time by
using the program M to “simulate” the oracle O and use A to solve the corresponding
instance of UNIQUE I-MAP. Our proof strategy is as follows. The basic graph for O



Fig. 3. The basic graph for the NP-hardness proof. A set cover of size m corresponds to m edges
of the form C → R.

is the following DAG B: (1) for every two variables Xj , Ci, the graph contains an
arrow Xj → Ci iff xj ∈ ci, and (2) for every variable Ci, there is an arrow Ci → R.
The basic graph is also a pattern because all arrows correspond to unshielded colliders;
see Figure 3. We show that if there is a unique I-map G for O with at most k edges,
then G is a subgraph of the basic graph, with possibly edges Ci → R missing for
some sets ci, such that the set of variables {C1, C2, ..., Cm} with the edge Ci → R

in G corresponds to an exact cover {c1, .., cm}. Conversely, any unique exact cover
corresponds to a subgraph of the basic graph in the same manner. For reasons of space,
we just illustrate most of the following assertions rather than giving full proofs. It is
easiest to consider separately the constraints imposed by each clause of M . Let Di be
the set of dependencies corresponding to Clause i. For example, D1 = {〈Ci, Xj ,S〉 :
xj ∈ ci}.
Assertion 1 Let DAG G be an I-map for D1. Then any two variables X and C are
adjacent whenever x ∈ c.
Assertion 2 Let DAG G be an I-map for D1 ∪ D2, and suppose that xi, xj are two
elements of a set c. Then Xi and Xj are adjacent in G, or G contains a component
Xi → C ← Xj .
Clause 3 requires that every member variable X be d-connected to the root variable.
The intuition is that the basic graph B contains the most edge-efficient way to achieve
the connection because with just one edge C → R the graph d-connects three member
variables at once. We show that any I-map for D3 can be transformed into a subgraph
of B without increasing the number of edges. We begin by establishing that in an I-map
G of D3, all arcs originating in the root variable R can be reversed with the result G′

still an I-map ofD3.
Assertion 3 Let DAG G be an I-map of D3. Let G′ be the graph obtained by reversing
all edges of the form R→ V . Then G′ is an I-map of D3.
Illustration: Suppose G contains a component R→ X → X ′. Reverse the edge R→ X

to obtain G′. Consider the d-connecting path R → X → X ′ in G. We can replace
the edge R → X by R ← X in G′ without introducing additional colliders, so d-
connection still holds. The next assertion shows that inductively, all nodes can be ori-
ented towards R.
Assertion 4 Let DAG G be an I-map of D3, with some node A an ancestor of R. Let
G′ be the graph obtained by reversing all edges of the form A → V where V is not an
ancestor of R. Then G′ is an I-map of D3.



Illustration: Suppose G contains a component X ′ ← X → C → R. Reverse the edge
X ′ ← X to obtain G′. Consider the d-connecting path X ′ ← X → C → R in G.
In any such directed path in G′ we can replace the edge X ′ ← X by X ′ → X in G′

without introducing additional colliders, so d-connection still holds.

Assertion 5 Let DAG G be an I-map of D3. Suppose that for some node V , there are
two directed paths V → U1 → · · · → Up → R and V → W1 → · · · → Wq → R. Let
G′ be the graph obtained from G by deleting the edge V → U1. Then G′ is an I-map of
D3.

Illustration: Suppose G contains two paths X → C → R and X → X ′ → R. Delete
the edge X → X ′ to obtain G′. Then X remains d-connected to R. In general, a d-
connecting path to R in G using the edge X → X ′ can be “rerouted” via either X or
X ′.

For a DAG G, let sets(G) = {C : C is adjacent to R in G} comprise all set vari-
ables adjacent to R; these set variables are covered. A member variable X is covered
in G if there is a covered set variable C such that x ∈ c. The covered component of G

consists of the root variable R, and the covered set and member variables of G (so the
covered component is {R} ∪ sets(G) ∪ {X : ∃C ∈ sets(G) s.t. x ∈ c}). A DAG G is
normally directed if all covered components of G are ancestors of the root variable R.
By Assertion 4 we can normally direct every DAG G and still satisfy the dependencies
in D3.

Assertion 6 Let DAG G be a normally directed I-map of D1 ∪ D2 ∪ D3. Suppose
that G contains an adjacency V − V ′ where V is covered in G and V ′ is not. Unless
V − V ′ = X → C for x ∈ c, there is a normally directed I-map G′ of D1 ∪ D2 ∪ D3

such that V ′ is covered in G′, all covered variables in G are covered in G′, and G′ has
no more edges than G.

Illustration: Suppose G contains an edge X → C where X is not covered, and a path
X → X ′ → C ′ → R. Add the edge C → R and delete the edge X → X ′ to obtain
G′. Then X is d-connected to R via C. In general, a d-connecting path in G using the
edge X → X ′ can be “rerouted” via either X or X ′.

Assertion 7 Suppose that DAG G is an I-map of D1 ∪ D2 ∪ D3 and not all member
variables X are covered in G. Then there is an I-map G′ of D1 ∪ D2 ∪ D3 that covers
all member variables such that G′ has no more edges than G, and sets(G′) ⊃ sets(G).

Illustration: Suppose that X is uncovered, and that G contains an edge X → C. Since
X is not covered, the edge C → R is not in G. Since G coversD3, the variable X must
be d-connected to the root variable R; suppose that G contains an edge X → R. We can
add an edge C → R to obtain G∗ without losing any d-connection. Now there are two
directed paths connecting X to R, so by Assertion 5 deleting the edge X → R yields a
graph G′ with the same number of edges as G that is still an I-map of D1 ∪ D2 ∪ D3.

Assertion 8 No I-map of D1 ∪ D2 ∪ D3 has fewer than k edges.



Proof: Let G be an I-map ofD1 ∪D2 ∪D3. By Assertion 1, every I-map G of D1 ∪D2

contains 3p edges connecting each member variable with the set variables for the sets
containing it. By Assertion 6 we can transform G into a graph G′ such that G′ is an
I-map of D1 ∪ D2 ∪ D3, covers all its member variables, and has the same number of
edges as G. Thus sets(G′) is a set cover for U , and so the size of sets(G′) is at least
m, which means that we have at least m edges connecting the root variable R to set
variables. Hence overall G′ and hence G has k = 3p + m edges.
Assertion 9 Let DAG G be an I-map of D1 ∪ D2 ∪ D3 with k edges. Then for every
uncovered member variable X of G, there is exactly one undirected path from X to R

in G.
Illustration: Suppose that G contains an edge X → R and a path X → X ′ → C ′ → R

where X is not covered. Then as in Assertion 5, we can delete the edge X → R to
obtain a graph with fewer than k edges that is still an I-map of D1 ∪ D2 ∪ D3. But this
contradicts Assertion 8. The final assertion adds the constraints of Clause 4.
Assertion 10 Let DAG G be an I-map of O with k edges. Then G is normally directed,
every member variable in G is covered, and sets(G) is an exact set cover of U .
An exact set cover corresponds to a unique normally directed I-map for the dependency
oracle O with k = 3p + m edges (the I-map contains m edges C → R for each set
c in the cover). Conversely Assertion 10 implies that every I-map for O with k edges
corresponds to a unique exact set cover. Hence there is a 1-1 and onto correspondence
between exact set covers and I-maps for O.

7 Conclusion
This paper applied learning-theoretic analysis to a practically important learning prob-
lem: identifying a correct Bayes net structure. We presented a model of this task in
which learning is based on conditional dependencies between variables of interest. This
model fits Gold’s definition of a language learning problem, so identification criteria
from Gold’s paradigm apply. We considered mind-change optimality and text efficiency.
The mind change complexity of identifying a Bayes net over variable set V is

(

|V|
2

)

, the
maximum number of edges in a graph with node set V. There is a unique mind-change
optimal learner ΨV

fast
whose convergence time dominates that of all other mind-change

optimal learners. This learner outputs a BN pattern G if G is the unique graph satisfying
the observed dependencies with a minimum number of edges; otherwise ΨV

fast
outputs

? for “no guess”. In many language learning problems, it is plausible to view the mind
change complexity of a language as a form of simplicity [12, Sec.4]. Our results es-
tablish that the mind-change based notion of simplicity for a Bayes net graph G is the
inclusion depth of G, which is measured by the number of edges absent in G. Using the
number of edges as a simplicity criterion to guide learning appears to be a new idea in
Bayes net learning research.

The technically most complex result of the paper shows that an exact implementa-
tion of the unique mind-change optimal learner ΨV

fast
is NP-hard because determining

whether there is a uniquely simplest (edge-minimal) Bayes net for a given set of depen-
dencies is NP-hard. To our knowledge, this is the first NP-hardness result for deciding
the existence of a uniquely optimal Bayes net structure by any optimality criterion.



Acknowledgements

This research was supported by NSERC discovery grants to the first and third author.
We are indebted to Josh Buresh-Oppenheim for discussions of complexity theory. Kevin
T. Kelly suggested considering Bayes net learning based on conditional dependencies
rather than independencies.

References

1. D Angluin. Inductive inference of formal languages from positive data. I&C, 45:117–135,
1980.

2. R. Bouckaert. Bayesian belief networks: from construction to inference. PhD thesis, U.
Utrecht, 1995.

3. D. Chickering. Optimal structure identification with greedy search. JMLR, 3:507–554, 2003.
4. D. Chickering, D. Heckerman, and C. Meek. Large-sample learning of bayesian networks is

NP-hard. JMLR, 5:1287–1330, 2004.
5. G. Cooper. An overview of the representation and discovery of causal relationships using

bayesian networks. In Computation, Causation, and Discovery, pages 4–62. 1999.
6. R. Scheines et. al. TETRAD 3 User’s Manual. CMU, 1996.
7. R. Giere. The significance test controversy. BJPS, 23(2):170–181, 1972.
8. E. M. Gold. Language identification in the limit. Info. and Cont., 10(5):447–474, 1967.
9. S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems That Learn. MIT, 2 edition, 1999.

10. S. Jain and A. Sharma. Mind change complexity of learning logic programs. TCS, 284:143–
160, 2002.

11. W. Luo and O. Schulte. Mind change efficient learning. In COLT’05, pages 398–412, 2005.
12. W. Luo and O. Schulte. Mind change efficient learning. Info. & Comp., 204:989–1011, 2006.
13. E. Martin and D. N. Osherson. Elements of Scientific Inquiry. MIT, 1998.
14. C. Meek. Graphical Models: Selecting causal and stat. models. PhD thesis, CMU, 1997.
15. R. E. Neapolitan. Learning Bayesian Networks. Pearson Education, 2004.
16. D. Osherson, M. Stob, and S. Weinstein. Systems that learn. MIT, 1986.
17. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
18. J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauffmann, 1988.
19. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge university press, 2000.
20. H. Putnam. Trial and error predicates and the solution to a problem of mostowski. JSL,

30(1):49–57, 1965.
21. T. Shinohara. Inductive inference of monotonic formal systems from positive data. New

Gen. Comp., 8(4):371–384, 1991.
22. P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search. MIT, 2000.
23. L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. TCS, 47:85–93, 1986.
24. T. Verma and J. Pearl. Equiv. and synth. of causal models. In UAI’90, pages 220–227, 1990.
25. W. Zucchini. An introduction to model selection. J. Math. Psyc., 44:41–61, 2000.


