# The Budgeted Multi-Armed Bandit Problem 

Omid Madani ${ }^{1}$, Daniel J. Lizotte ${ }^{2}$, and Russell Greiner ${ }^{2}$<br>${ }^{1}$ Yahoo! Research Labs 74 N. Pasadena Ave, Pasadena, CA 91101<br>omid.madani@overture.com<br>${ }^{2}$ Dept. of Computing Science<br>University of Alberta<br>Edmonton, T6J 2E8<br>\{dlizotte|greiner\}@cs.ualberta.ca

The following coins problem is a version of a multi-armed bandit problem where one has to select from among a set of objects, say classifiers, after an experimentation phase that is constrained by a time or cost budget. The question is how to spend the budget. The problem involves pure exploration only, differentiating it from typical multi-armed bandit problems involving an exploration/exploitation tradeoff [BF85]. It is an abstraction of the following scenarios: choosing from among a set of alternative treatments after a fixed number of clinical trials, determining the best parameter settings for a program given a deadline that only allows a fixed number of runs; or choosing a life partner in the bachelor/bachelorette TV show where time is limited. We are interested in the computational complexity of the coins problem and/or efficient algorithms with approximation guarantees.

## 1 The Coins Problem

We are given:

- A collection of $n$ independent coins, indexed by the set $\mathcal{I}$, where each coin is specified by a probability density function (prior) over its head probability. The priors of the different coins are independent, and they can be different for different coins.
- A budget $b$ on the total number of coin flips.

We assume the tail and the head outcomes correspond to receiving no reward and a fixed reward (1 unit) respectively. We are allowed a trial/learning period, constrained by the budget, for the sole purpose of experimenting with the coins, i.e., we do not collect rewards in this period. At the end of the period, we are allowed to pick only a single coin for all our future flips (reward collection).

Let the actual head probability of coin $i$ be $\theta_{i}$. We define the regret from picking coin $i$ to be $\theta^{*}-\theta_{i}$, where $\theta^{*}=\max _{j \in \mathcal{I}} \theta_{j}$. As we have the densities only, we basically seek to make coin flip decisions and a final choice that lead to minimizing our expected regret. It is easy to verify that when the budget is 0 , the choice of coin that minimizes expected regret is one with maximum expected head probability over all the coins, i.e., $\max _{i} E\left(\Theta_{i}\right)$, where $\Theta_{i}$ denotes the random variable corresponding to head probability of coin $i$, and the expectation $E\left(\Theta_{i}\right)$ is taken over the density for coin $i$.

A strategy is a prescription of which coin to flip given all the coins' flip outcomes so far. A strategy may be viewed as a finite directed rooted tree, where each node indicates
a coin to flip, each edge indicates an outcome (heads or tails), and the leaves indicate the coin to choose [MLG04]. No path length from root to leaf exceeds the budget. Thus the set $S$ of such strategies is finite. Associated with each leaf node $j$ is the (expected) regret $r_{j}$, computed using the densities (one for each coin) at that node. Let $p_{j}$ be the probability of "reaching" leaf $j: p_{j}$ is the product of the probabilities of coin flip outcomes along the path from root to that leaf. We define the regret of a strategy to be the expected regret, where the expectation is taken over the coins' densities and the possible flip outcomes: $\operatorname{Regret}(s)=\sum_{j \in \text { Tree Leafs of } s} \quad p_{j} r_{j}$. The optimal regret $r^{*}$ is then the minimum achievable (expected) regret and an optimal strategy $s^{*}$ is one achieving it ${ }^{1}$

$$
\begin{equation*}
r^{*}=\min _{s \in S} \operatorname{Regret}(s), \quad s^{*}=\arg \min _{s \in S} \operatorname{Regret}(s) \tag{1}
\end{equation*}
$$

We assume the budget is no larger than a polynomial in $n$, and that we can represent the densities and update them (when the corresponding coin yields a heads or tails outcome), and compute their expectation efficiently (e.g., the family of beta densities). With these assumptions, the problem is in PSPACE [MLG04].
Open Problem 1 Is computing the first action of an optimal strategy NP-hard?

## 2 Discussion and Related Work

We explore budgeted learning in [MLG04,LMG03]. We show that the coins problem is NP-hard under non-identical coin flip costs and non-identical priors, by reduction from the Knapsack problem. We present some evidence that the problem remains difficult even under identical costs. We explore constant-ratio approximability for strategies and algorithms ${ }^{2}$ : an algorithm is a constant ratio approximation algorithm if its regret does not go above a constant multiple of the minimum regret. We show that a number of algorithms such as round-robin and greedy cannot be approximation algorithms. In the special case of identical priors (and coin costs), we observe empirically that a simple algorithm we refer to as biased-robin beats the other algorithms tested, and furthermore, its regret is very close to the optimal regret on the limited range of problems for which we could compute the optimal. Biased-robin sets $i=1$, and continues flipping coin $i$ until the outcome is tails, at which time it sets $i$ to $(i \bmod n)+1$, and repeats until the budget is exhausted. Note that biased-robin doesn't take the budget into account except for stopping! An interesting open problem is then:

Open Problem 2 Is biased-robin a constant-ratio approximation algorithm, for identical priors and budget of $b=O(n)$ ?

## References

[BF85] D. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments. Chapman and Hall, New York, NY, 1985.

[^0][LMG03] D. Lizotte, O. Madani, and R. Greiner. Budgeted learning of Naive Bayes classifi ers. In UAI-2003, 2003.
[MLG04] O. Madani, D. Lizotte, and R. Greiner. Active model selection (submitted). Technical report, University of Alberta and AICML, 2004. http://www.cs.ualberta.ca/~madani/budget.html.


[^0]:    ${ }^{1}$ No randomized strategy has regret lower than the optimal deterministic strategy [MLG04].
    ${ }^{2}$ An algorithm defi nes a strategy (for each problem instance) implicitly, by indicating the next coin to flp [MLG04].

