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Abstract

This paper describes the design and implementation of
an automated system for interpreting impulse radar signals
for ice thickness profiling. We have adopted an integrated
approach which includes numeric computation in the form
of deconvolution filtering with rule-based classification of
signal features at multiple levels. Noise reduction and de-
convolution techniques are used to enhance the radar sig-
nals for better resolution of overlapping events. Motivated
by human perceptual (visual) knowledge, a hierarchy of
data structures is constructed as representations of signal
characteristics at various levels of abstraction. Classifica-
tion rules, based on the protocols collected from an expert,
physical constraints on the helicopter motion and the na-
ture of the radar signals are used to produce the current
signal interpretation. A prototype system has been imple-
mented on the Symbolics Lisp Machine and tested on real
data.

I. Introduction

Making measurements of the thickness of river or sea ice
over large distances is important in polar regions for the
study of ice dynamics, the tactical planning of transporta-
tion routes and the location of under-ice oil entrapment
for Arctic petroleum exploration. Because of the enor-
mous size of the ice cover over water, traditional surface
measurement method has been gradually given way to im-
pulse radar sounding from the air using either helicopters
or small-fixed wing aircraft. Ice thickness can be calcu-
lated from radar impulse traveling time between top and
bottom reflections, given the speed of radar signal through
the ice. In practice, each radar return signal is put side by
side to form a signal image which is then analyzed for an
interpretation of the ice thickness distribution, types and
other structural information. The performance objective
is to correctly recognize scenes that can be reliably deter-
mined from visual interpretation of the data by the human
expert.

Among numerous ways of remotely determining the
properties of floating ice, radar sounding appears to have
better potential to give a continuous profile of ice thick-
ness along a given track for relatively non-saline ice types.
Impulse radar [10] differs from more conventional types
of subsurface radar in that instead of transmitting many

cycles of a particular frequency, a broad-band monocycle
pulse is transmitted. The advantages of impulse radar are
that relatively low frequencies can be used, giving the abil-
ity of penetrating “lossy” materials, while retaining ade-
quate time resolution for accurate depth estimates. The
main disadvantage is that it is not possible to focus the
antenna radiation pattern, which is similar to that of a
half-wave dipole. Therefore it is necessary to make mea-
surements on or near the surface in order to achieve rea-
sonable spatial resolution and to receive a strong enough
return signal.

The physical principle upon which the method is
based is the reflection that occurs when an electromag-
netic wave is incident upon an interface where a change in
electrical properties occurs. In the impulse radar system
under discussion, an extremely short electromagnetic pulse
is generated by the radar device mounted under a low-
flying helicopter and is radiated downwards towards the
ice. Primary reflections or echoes from the top and bottom
of the ice are received. The time separation between the
top and bottom echoes represents the travel time from the
top ice surface to the bottom interface and back. Once the
speed of propagation within the ice is known, either from
a knowledge of the electrical properties (speed = ﬁ, € is
the ice dielectric constant) or from direct mechanical cal-
ibration by measurement of ice thickness, then the travel
time can be converted directly to ice thickness. Subsurface
is assumed to be consisted of homogeneous, isotropic and
parallel layers and secondary reflections are negligible.

A signal image, I[z, j] is formed by putting consecutive
traces side by side ( I[¢, j] = yi[j])- In the signal image,
the x-axis represents horizontal displacement, the y-axis
represents vertical depth from the impulse radar while in-
tensity values are proportional to the strength of return
radar echoes. Such an image can be interpreted as de-
picting the ice layer’s substructure along a vertical cross-
sectional plane. Each trace yi[n] (¢ is the trace index and
n represents depth) will consist of an ice surface reflection
followed by an ice-bottom reflection for the case of ice, or
just an air-water reflection from open water if there is no
ice.
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II. System Overview

~We decompose the interpretation task as follows: (A) Im-
.age processing to enhance the radar image for visual clar-

" ity. (B) Construction of a hierarchy of signal abstractions
corresponding to the signal structures the human expert
visually concentrates on. (C) Interpretation using classifi-
cation rules. The overall architecture of the impulse radar
signal interpretation system based on the above decompo-
sition is shown in Figure 1.

III. Preprocessing and

Deconvolution

Several radar traces are stacked (averaged) to reduce jit-
ter ‘noise and the amount of subsequent processing is
also alleviated. A Gaussian kernel N(0,0), defined as
- Gaussy(,e(1,7) = # ezp(-i;—tli), is convolved with
the signal image to smooth out sharp changes. It is a 2-D
low pass filtering operation.
The probing waveform of our impulse radar system is
“not.a true impulse, but a wavelet (triplet) of very short
duration. The echoes from various (lossy) interfaces will
appear as time-shifted and distorted versions of this prob-
ing wavelet. Visual identification of these interface bound-
.“aries is particularly difficult when distances between inter-
faces are small, causing wavelets from different interfaces to
merge together. The idea of deconvolution is to remove the
. effect of the probing wavelet by collapsing each “replica”
of the probing wavelet to an impulse at the appropriate
position and with the appropriate amplitude and phase.
The resulting simplified waveform will then be a sequence
of impulses where various reflecting interfaces can be iden-
tified more easily.

In ice thickness profiling applications, the signal at the
receiver at-a particular position can be represented as
z(n) * h(n) + u(n) 1)
“-where u(n) is the measurement noise, z(n) is a sequence

associated with the basic signature wavelet, and h(n) is
-the reflection coefficient sequence corresponding to various
“stratigraphic” events.

y(n) =

. To implement deconvolution, an average wavelet se-
lected from a region of strong reflections from open-water
. was taken as the signature wavelet. Based on preliminary
_ analyses and experimental testing of several simple decon-
volution filters, Riad compensator [9], defined in equa-
“tion 2, is best suited to our problem with its flexibility
‘and low computational cost.
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-The filter parameter « is usually optimized using heuristic
criteria.

IV. Signal Absyt»rr‘action

Motivated by human perceptual (visual) knowledge, a hi-
erarchy of data structures is constructed as representations
of signal characteristics at various levels of abstraction [1,
7]. Instead of doing the classification by a one-step (direct)
discriminant function-like mapping, intermediate symbols
are constructed, which are then used as attributes to a
higher-level classification process. Symbols at each level
are produced by a classification process using the symbols
from the previous level as attributes. Each such computa-
tional process is much moretractable. We define five levels
of abstractions (see Figure 2), based on protocols collected
from an expert. B

The Base level or Level 0 abstraction is simply the
deconvolved image itself which is an array of intensity val-
ues. We will regard the image as a collection of POINTs.
Level 1 abstraction is derived from the deconvolution the-
ory which implies that each reflection interface manifests
itself in each trace (intensity as a function of y-coordinate)
of the deconvolved image as an impulse (or a “sharp” pulse
in reality). Peaks of a radar trace correspond to local max-
ima, therefore they are located at zero crossings of the first
difference of the trace. We define a PEAK to denote such
a pulse and its associated features. .

At each trace, PEAKs that are potential reflection
interfaces must be chosen. The essential attributes that
characterize a PEAK are: Strength - the normalized in-
tensity of the PEAK; and Symmetry - the symmetry of
the PEAK shape. Histogram statistics of the Strength
and Symmetry attributes of PEAKs selected from a re-
gion of open water have been used to guide the separation
of those candidate PEAKs from noise PEAKs. Open wa-
ter region statistics were used because the deconvolution
signature wavelet was derived from such region and such
statistics are reliable and easy to interpret. Guided by
these histograms, strong and symmetric PEAKSs are se-
lected as candidate PEAKSs for interfaces.

The Level 2 abstraction is aimed to create more
global structures based on contextual information. A se-
quence of neighboring PEAKs with similar characteristics
are linked together. Sequences of PEAKs are referred to
as EDGELs. Similarity requirements for PEAK linking
are simple but very conservative. Only PEAKs in the im-
mediate neighborhood are considered. EDGELs are in-
crementally built from PEAKs. . A PEAK is joined to an
EDGEL if the following two conditions are satisfled: (1)
small pixel distance between 2 candidate PEAKSs; and (2)
similar PEAK intensity values. The resulting EDGELSs are
the “islands of reliability”. !

These basic edge eléments, serving as seeds for re-
gion growing, are then extended to fill small gaps to form
LINEs which are at Level 3 abstraction. Each LINE is
a list of edgels and artificial joints (which connect 2 adja-
cent edgels). The local geometric constraints for the for-
mation of LINEs fiom EDGELs [6] based on human visual
grouping criteria include: similar EDGEL average inten-
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sity, close physical proximity, tolerance for overlap, similar
orientations, and smooth connection.

Finally, the highest level or Level 4 abstraction is a
LAYER which is essentially an interval together with its
constituent lines. The top reflecting LINE from the top
of the ice is strong and consistent, so that the problem
is to identify the bottom boundary LINEs for various ice
floes. Picking the longest and strongest LINE below the
top LINE as the bottom-boundary LINE is the heuristic
used to partition LINEs into LAYERs. These high level
symbolic structures, LAYERs, constitute the data base
which our rule-based deduction system will make inference
on.

V. Rule-based Classification

Complex symbolic structures built up from the lower lev-
els are fed into a rule-based interpreter which is a form of
production rule system [2]. Domain knowledge for ice char-
acterization and classification is derived from the domain
expert and is encoded in typical IF-THEN rules to run in
the forward chaining mode. Examples of these rules are
shown below, with $x denoting a variable.

If $x is an interval

an
It cannot be proved that $x does not have a bottom boundary

then $x isice

If $x is ice

an
$x has hyperbolae in its bottom
then there are sharp-pointed features in the bottom of $x

VI.

The complete system was implemented in Zeta Lisp and
Common Lisp, running on Symbolics Lisp 3640 Machine.
The low level processing involved the use of two software
packages: an object-oriented (1-D) signal processing envi-
ronment - KBSP [3] and a two-dimensional image process-
ing package - ImageCalc [8]. Signal Abstraction employed
the Flavors mechanism of Zeta Lisp and rule-based classi-
fication used MRS [4].

The system was tested with several data sets from two
different field trips. Detailed interpretation results can be
found in [5]. A glossary for ice interpretation is shown in
Figure 3. Experiments with these data sets have yielded
encouraging results about the validity of the approach.

VII.

Based on an approximate signal model, human percep-
tual (visual) knowledge and heuristics, signal abstractions
appropriate for the two dimensional signals obtained as
reflections from layered propagation media have been de-
veloped as a means to integrate pure signal processing al-
gorithms with rule-based signal classification. Our struc-
tured framework provides a strong basis for improving the

Implementation and Results

Concluding Remarks

performance of the system. Further research includes au-
tomation of threshold setting by establishing feedback be-
tween high and low level processes, a more intelligent user
interface and incorporating uncertainty handling to deal
with noisy data and incomplete knowledge.
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Figure 1: Architecture of the overall system.

Figure 3: A glossary for Ice Interpretation
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