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Abstract

We introduce a new regularization criteri-
on that exploits unlabeled data to adaptive-
ly control hypothesis-complexity in general
supervised learning tasks. The technique is
based on an abstract metric-space view of
supervised learning that has been successful-
ly applied to model selection in previous re-
search. The new regularization criterion we
introduce involves no free parameters and yet
performs well on a variety of regression and
conditional density estimation tasks. The on-
ly proviso is that sufficient unlabeled training
data be available. We demonstrate the effec-
tiveness of our approach on learning radial
basis functions and polynomials for regres-
sion, and learning logistic regression models
for conditional density estimation.

1. Introduction

In the canonical supervised learning task one is given
a training set (x1,v1),..., (¢, ¥¢) and attempts to in-
fer a hypothesis function h : X — Y that achieves a
small prediction error err(h(z),y) on future test exam-
ples. This general paradigm covers many of the prob-
lems studied in machine learning research, including:
regression, where Y is typically IR and we measure
prediction error by squared difference or some similar
loss err(i),y) = (§ —y)?; classification, where Y is typ-
ically a small discrete set and we measure prediction
error with the misclassification loss err(4,y) = 1(jy);
and conditional density estimation, where we assume,
for example, that Y is a classification label in {0,1}
and Y is a probabilistic prediction in [0,1], and we
measure prediction error using the log loss err(g,y) =
—ylogg — (1 —y)log(1 — §).

Regardless of the specifics of these scenarios, one al-
ways faces the classic over-fitting versus under-fitting
dilemma in supervised learning: If the hypothesis is
chosen from a class that is too complex, there is a

good chance the hypothesis will demonstrate large
test error even when its training error is small. This
is because complex classes generally contain several
hypotheses that behave similarly on the training da-
ta and yet behave quite differently in other parts of
the domain—which destroys the ability to distinguish
good hypotheses from bad. (Note that significantly
different hypotheses cannot all be simultaneously ac-
curate.) Therefore, one must restrict the hypothesis
class in order to reliably distinguish good from bad
hypotheses. On the other hand, choosing hypotheses
from an overly restricted class might prevent one from
being able to express a good approximation to the ide-
al predictor and thereby cause important structure in
the training data to be ignored. Since both under-
fitting and over-fitting result in large test error, they
must be avoided simultaneously.

This of course is an old issue, and a variety of tech-
niques have been proposed for coping with the funda-
mental tradeoff. In this paper, we are primarily in-
terested in investigating automated methods for cali-
brating hypothesis complexity for given training data.
Most of the techniques that have been developed for
this problem fall into one of three basic categories:
model selection, regularization, and model averaging.

In model selection one first takes a base hypothesis
class, H, decomposes it into a discrete collection of
subclasses Hy C Hy C --- = H, and then, given
training data, attempts to identify the optimal sub-
class from which to choose the final hypothesis. There
have been a variety of methods proposed for choos-
ing the optimal subclass, but most techniques fall into
one of two basic categories: complexity penalization
(e.g., the minimum description length principle (Ris-
sanen, 1986) and various statistical selection criteria
(Foster & George, 1994)); and hold-out testing (e.g.,
cross-validation and bootstrapping (Efron, 1979)).

Regularization is similar to model selection except that
one does not impose a discrete decomposition on the
base hypothesis class. Instead a penalty criterion is
imposed on the individual hypotheses, which either



penalizes their parametric form (e.g., as in ridge re-
gression or weight decay in neural network training
(Cherkassky & Mulier, 1998; Ripley, 1996; Bishop,
1995)) or penalizes their global smoothness properties
(e.g., minimizing curvature (Poggio & Girosi, 1990)).

Model averaging methods do not select a single hy-
pothesis but rather take a weighted combination of
base hypotheses to form a composite predictor. Com-
posing base functions in this way can have the ef-
fect of smoothing out erratic hypotheses (e.g., as in
Bayesian model averaging (MacKay, 1992) and bag-
ging (Breiman, 1996)), or increasing the representa-
tion power of the base hypothesis class via linear com-
binations (e.g., as in boosting (Freund & Schapire,
1997) and neural network ensemble methods (Krogh
& Vedelsby, 1995)).

All of these methods have shown impressive improve-
ments over naive learning algorithms in every area of
supervised learning research. However, one difficul-
ty with these techniques is that they usually require
expertise to apply properly, and often involve free pa-
rameters that must be set by an informed practitioner.

In this paper we introduce a new regularization criteri-
on that automatically chooses the right complexity of
hypothesis to fit to given training data. The idea is to
use unlabeled data to penalize hypotheses that behave
erratically off the training set. We show how unlabeled
data can be used to tune the degree of regularization
for a given task without having to set free parameters
by hand. In particular, we show that this technique
automatically adjusts its behavior to a given training
set and can thereby outperform fixed regularizers for a
given task. The technique we propose extends earlier
work on model selection (Schuurmans, 1997; Schuur-
mans et al., 1997) but exhibits superior performance
and can be applied in a wider range of contexts.

2. Geometry of Supervised Learning

Throughout the paper we adopt a metric space view
of supervised learning that was introduced in (Schuur-
mans, 1997). Assume that the examples (z,y) are gen-
erated by a stationary joint distribution Py, on X x Y.
In learning a hypothesis function A : X — Y we are
primarily interested in modeling the conditional distri-
bution B,x. However, here we explore the utility of us-
ing extra information about the marginal domain dis-
tribution Py to choose a better hypothesis. Note that
information about Py can be obtained from a collec-
tion of unlabeled training examples z1, ..., 2. (These
are often in abundant supply in many applications—
e.g., text processing and computer perception.) The

significance of having information about the domain
distribution Py is that it defines a natural metric struc-
ture over the space of hypotheses. That is, for any two
hypothesis functions f and g we can obtain a natural
measure of the distance between them by computing
the expected disagreement in their predictions
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For example, in regression we measure the distance
between two prediction functions by*
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In classification, we measure the distance between two
classifiers by

d(f,g) =
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In conditional density estimation one can measure the
“distance” between two conditional probability models
(that map to predictions in [0,1]) by their Kullback-
Leibler divergence?
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In each case, the resulting distances can be efficient-
ly calculated by making a single pass down a list of
unlabeled examples.

Note that the generic definition of distance given in
(1) can be further extended to include the target con-
ditional distribution in an analogous manner
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So, in regression this yields the root mean squared er-
ror of a hypothesis, in classification it gives the true
misclassification probability, and in conditional prob-
ability modeling it gives the expected log loss (or KL-
divergence to B.x). Thus, definitions (1) and (3) show
how, using unlabeled data, one can generically em-
bed the entire supervised learning problem into a met-
ric space structure: given labeled training examples
(z1,y1), ---, {Z¢,ys), the goal is to find the hypothesis
h € H that is closest to a target conditional B,y while

!Note that the square root is necessary to achieve a met-
ric in this case (hence the need for the scare quotes above).
However, many natural loss functions can be renormalized
to recover the triangle inequality in a similar way.

2Although technically this is not a metric, since KL-
divergence is neither symmetric nor satisfies the triangle
inequality, it nevertheless supplies a useful measure.



using only estimates of the distance d(h, B,x) given by
the estimated distances
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Earlier work (Schuurmans, 1997) showed how these
metric notions could be used to devise effective model
selection procedures. There, the basic idea was to use
the triangle inequality to detect when a series of em-
pirical error estimates, d(ho,Bx), d(h1,Brx), ..., were
no longer trustworthy, and stop the selection process
at an appropriate hypothesis h; in the model selection
sequence. Here we extend these ideas to a more gener-
al regularization criterion that uses the unlabeled data
to decide how to penalize individual hypotheses.

3. An Adaptive Regularization Criterion

The main contribution of this paper is a simple, gener-
ic training objective that can be applied to a wide
range of supervised learning problems. Continuing
from above, we assume that we have access to a siz-
able collection of unlabeled data, which we now use
to penalize complex hypotheses. The intuition behind
our criterion is simple: instead of minimizing empiri-
cal training error alone, we in addition seek hypotheses
that behave similarly both on and off the training da-
ta. This objective arises from the observation that a
hypothesis which fits the training data well but be-
haves erratically off the training set is not likely to
generalize well. To detect erratic behavior we com-
pare a hypothesis’ behavior on the labeled training
data to its behavior on unlabeled data. Specifically,
we measure the distance that the hypothesis exhibits
to a fixed “origin” function ¢ (chosen arbitrarily) on
both data sets. If a hypothesis is behaving erratically
off the labeled training set then it is likely that these
distances will disagree. This effect is demonstrated in
Figure 1 for two large degree polynomials that fit the
training data well, but differ dramatically in their true
error and their differences between on and off training
set distance to a simple origin function.

To formulate a concrete training objective we propose
the following measures: empirical training error plus
an additive penalty

~
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and empirical error times a multiplicative penalty
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Figure 1. Over-fitting effects of polynomial curve fitting.
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In each case we compare the behavior of a candidate
hypothesis h to the fixed origin ¢. Thus, in either case,
we seek to minimize empirical training error d(h, Byx)
plus (or times) a penalty that measures the discrepan-
cy between the distance to the origin on the labeled
training data and the origin distance on unlabeled da-
ta. Somewhat surprisingly, we have found that the
multiplicative objective (4) generally performs much
better, as it more harshly penalizes discrepancies be-
tween on and off training set behavior. Therefore, this
is the form that we adopt below. Note that this penal-
ty works in both directions: hypotheses that are much
further from the origin on the training data than off
are penalized strongly, but so are hypotheses that are
significantly closer to the origin on the training data
than off. The rationale behind this symmetric criteri-
on is that both types of erratic behavior indicate that
the observed training error is likely to be an unrepre-
sentative reflection of the hypothesis’ true error.

Although the max ratio penalty in (4) appears to be
ad hoc, this objective is not entirely unprincipled. One
nice property it has is that if the origin function ¢ hap-
pens to be the target conditional distribution B,x then
minimizing (4) becomes equivalent to minimizing true
prediction error d(h,PB,x). This is easy to see because
when d(h,B,x) < d(h,P,x) (which is almost certain)
the criterion becomes d(h, By )d(h, B )/d(h, Brx) =
d(h,Pux), and otherwise when d(h,Px) > d(h,Pyx)
we obtain d(h,PB,x)2/d(h,B,x) > d(h,B.) and are
minimizing an upper bound on d(h,B,x). Note that
this property would not hold for naively smoothed
versions of this objective. Thus, minimizing (4) will
result in near optimal generalization performance in
this case. However, even if the origin does not exactly
match the target, the objective still provably penalizes
hypotheses that have small training error and large
test error. To see this, note that for any hypothesis h

d(ha ¢) d(h‘a PYIX) - d(¢a PYIX) (5)
d(h,¢) — d(h,Bux) + d(¢, Bx)
by the triangle inequality. Since ¢ and B,x are not op-




timized on the training set we can expect ci(¢, Pox) ~
d(¢, B ) for moderate sample sizes. Thus, (5) shows
that if d(h, B,x) is small (say, less than d(¢, B,x)) and
d(h,PRx) is large (greater than k x d(¢,B/x), & > 3),
then h’s training error must be penalized by a signifi-
cant ratio (at least £51). By contrast, an alternative
hypothesis g that achieves comparable training error
and yet exhibits balanced behavior on and off the la-
beled training set (i.e., such that d(g, Pyx) =~ d(g, Px))
will be strongly preferred; in fact, such a g cannot
over-fit by the same amount as h without violating
(5). Importantly, the Bayes optimal hypothesis h*
will also tend to have d(h* B) ~ d(h*,PBy) and
d(h*,¢) ~ d(h*,¢) since it too does not depend on
the training set. Thus, h* will typically achieve a
small value of the objective, which will force any hy-
pothesis that has a large over-fitting error (relative to
d(¢,Bx)) to exhibit an objective value greater than
the minimum.

Note that the sensitivity of the lower bound clearly
depends on the distance between the origin and the
target. If the origin is too far from the target then the
lower bound is weakened and the criterion (4) becomes
less sensitive to over-fitting. However, our experiments
show that the objective is not unduly sensitive to the
choice of ¢, so long as is not too far from the data. In
fact, even simple constant functions generally suffice.?

The outcome is a new regularization procedure that
uses the training objective (4) to penalize hypotheses
based on the given training data and on the unlabeled
data. Therefore, in effect, the resulting procedure us-
es the unlabeled data to automatically set the level of
regularization for a given problem. One goal of this
research is to apply the new training objective to vari-
ous hypothesis classes and see if it regularizes effective-
ly across different data sets. We demonstrate this for
several classes below. However, the regularization be-
havior is even subtler: since the penalization factor in
(4) also depends on the specific labeled training set un-
der consideration, the resulting procedure regularizes
in a data dependent way. That is, the procedure adapts
the penalization to the particular set of observed data.
This raises the possibility of outperforming any regu-
larization scheme that keeps a fixed penalization level
across different training samples drawn from the same
problem. In fact, we demonstrate below that such an
improvement can be achieved in realistic hypothesis
classes on real data sets.

31t is conceivable to reduce the dependence on a sin-
gle origin function by considering a set of origin functions
&1, ..., ¢n and penalizing according to the maximum ratio.
However, we have not observed any significant improve-
ments in doing this and therefore drop the idea here.

4. Polynomial Regression

The first supervised learning task we consider is regres-
sion. Here Y = IR and we measure prediction errors
by the squared loss err(4,y) = (§ — y)?, yielding the
distance measures based on (2). The regularizer intro-
duced in this paper turns out to perform very well in
such problems. In this case, our training objective can
be expressed as choosing a hypothesis to minimize

i (h(e) = i)/t %
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where {{z;,y;)}!_; is the set of labeled training data,
{{z;)}j=1 is a set of unlabeled examples, and ¢ is a
fixed origin (which we usually just set to be the con-
stant function at the mean of the y labels). Note again
that this training objective seeks hypotheses that fit
the training data while simultaneously behaving simi-
larly on the labeled and unlabeled data. The regular-
ization effect with this multiplicative penalty is strong
and yet surprisingly responsive to good hypotheses.

To give a first concrete demonstration of the new train-
ing objective we consider the problem of polynomial
regression. Here X = IR and we attempt to learn a
polynomial predictor h : X — Y. Thus, H is the class
of polynomials, which can be naturally stratified into
the subclasses of polynomials of degree d = 1,2, .... It
is well known that fitting data with polynomials can
lead to dramatic over-fitting, as shown in Figure 1.

To test the basic effectiveness of our approach, we ran
a series of experiments that considered different tar-
get functions with varying smoothness characteristics.
The idea was to arrange a series of conditions where
polynomials would face varying degrees of difficulty in
modeling the underlying regularities in the domain.

The first class of methods we compared against were
model selection methods, which take the best fit poly-
nomials of degree 0, 1, 2, ..., etc., and attempt to
select the best one using various forms of complex-
ity penalization and hold-out testing. The methods
we compared were: 10-fold cross validation, CVT (E-
fron, 1979); structural risk minimization, SRM (Vap-
nik, 1996; Cherkassky et al., 1996); GCV (Craven &
Wahba, 1979); AIC (Akaike, 1974); BIC (Schwarz,
1978); FPE (Shibata, 1981); CP (Mallows, 1973); RIC
(Foster & George, 1994); and the metric based model
selection strategy, ADJ, introduced in (Schuurmans,
1997). However, since none of the statistical methods,
GCV, BIC, FPE, CP and RIC, performed competi-
tively in our experiments, we report results only for
GCV which performed the best among them.



The second class of methods we compared against were
regularization methods, which consider polynomials
of maximum degree but penalize individual polyno-
mials based on the size of their coefficients or their
smoothness properties. The specific methods we con-
sidered were: a standard form of “ridge” penaliza-
tion (or weight decay) which places a penalty A>", a2
on polynomial coefficients ay (Cherkassky & Mulier,
1998), and Bayesian maximum a posteriori inference
with zero mean Gaussian priors on polynomial coeffi-
cients ay, with diagonal covariance matrix \I (MacKay,
1992; Young, 1977). Both of these methods require a
regularization parameter A to be set by hand. We refer
to these methods as REG and MAP respectively.

To test the ability of our technique to automatically
set the regularization level we tried a range of (four-
teen) regularization parameters A for the fixed regu-
larization methods REG and MAP. For comparison
purposes, we also report the results of the oracle regu-
larizers, REG* and MAP*, that select the best )\ value
for each training set. Our experiments were conduct-
ed by randomly generating training points uniformly
in the unit interval [0, 1], labeling them using a target
function, adding Gaussian noise, and then generating
independent unlabeled points from [0, 1].

Table 1 shows the results of four different test prob-
lems at specified sample sizes and noise levels. The
regularization criterion based on minimizing (4) is list-
ed as ADA in our figures (for “adaptive” regulariza-
tion). We tested ADA using different origin functions
¢ = mean y,maxy,2maxy,4 maxy,8maxy to exam-
ine its robustness to ¢. The results are quite strong.
The first observation is that the model selection meth-
ods did not fare as well as the regularization techniques
on these problems. Here model selection seems prone
to making catastrophic over-fitting errors from time to
time, whereas the regularization techniques appear to
retain robust control. Interestingly, even the trusted
10-fold cross validation procedure CVT did not fare
well in our experiments. The only model selection
strategy to perform consistently is the metric-based
method ADJ that also exploits unlabeled data.

The new adaptive regularization scheme ADA per-
formed the best in all of our experiments. Table 1
shows that it outperforms fixed regularization strate-
gies for all fixed choices of regularization parameter ),
even though the optimal choice varies across problems.
This demonstrates that ADA is able to effectively
tune its penalization behavior to the problem at hand.
Moreover, since it outperforms even the best choice of
A for each data set, ADA also demonstrates the ability
to adapt its penalization behavior to the specific train-

Table 1. A sampling of results from our polynomial exper-
iments showing testing error (distance). Training sam-
ple size 20, unlabeled sample size 50, noise level 0.05.
Results based on 1000 repetitions. ADA uses ¢ =
mean y, 2maxy, ..., $maxy. REG uses A =102, ..., 50.
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target = sin’

éarget = poly

avg med std avg med std

ADA | 0.077 0.060 0.090 | 0.107 0.081 0.066
2max | 0.073 0.059 0.054 | 0.137 0.083 0.168

4max | 0.072 0.059 0.056 | 0.157 0.084 0.273

8max | 0.075 0.059 0.115 | 0.230 0.084 0.844

REG¥ | 0.147 0.082 0.121 | 0.140 0.092 0.099
107° | 0.753 0.099 2.850 | 0.964 0.115 3.850

1077 | 0.514 0.094 1.780 | 0.797 0.124 3.120

1075 | 0.440 0.118 1.330 | 0.660 0.159 2.370

107® | 0.558 0.225 1.190 | 0.582 0.237 1.150

1072 | 0.524 0.360 0.539 | 0.446 0.212 0.940

107! | 0.454 0.337 0.508 | 0.509 0.291 0.500

0.5 0.523 0.396 0.337 | 0.405 0.355 0.145

1.0 0.532 0.499 0.086 | 0.358 0.342 0.066

5.0 0.520 0.511 0.038 | 0.353 0.341 0.040

50 0.519 0.513 0.030 | 0.353 0.342 0.033

MAP* | 0.460 0.352 0.511 | 0.496 0.232 0.983
ADJ 0.116 0.062 0.188 | 0.188 0.114 0.150
10CV | 0.321 0.065 3.160 | 0.559 0.132 1.980
SRM | 0.163 0.062 1.230 | 0.576 0.128 2.430
GCV 2421  0.072 4.2¢4 | 4.8¢3 0.227 5.6e4

target = step target =sinl/x

avg  med std avg  med std

ADA | 0.391 0366 0.113 | 0.444 0.425 0.085
2max | 0.460 0.355 0.319 | 0.495 0.436 0.171

4max | 0.556 0.367 0.643 | 0.533 0.427 0.326

8max | 0.596 0.369 1.004 | 0.591 0.426 0.639

REG¥ | 0.371 0355 0.071 | 0.429 0.424 0.041
107° | 7.940 0.664 38.50 | 4.250 0.758 28.00

1077 | 3.930 0469 13.10 | 3.250 0.588 28.50

1075 | 2.570 0.457 8.360 | 1.830 0.588 12.80

102 | 1.050 0.388 2.620 | 0.774 0.489 1.560

1072 | 0.697 0.397 0.825 | 0.558 0.452 0.550

107" | 0.529 0.407 0.480 | 0.514 0.464 0.156

0.5 0.495 0.416 0.243 | 0.488 0.459 0.104

1.0 0.483 0.468 0.048 | 0.484 0.473 0.040

5.0 0.512 0.498 0.050 | 0.494 0.485 0.032

50 0.554 0.541 0.042 | 0.509 0.502 0.029

MAP* | 0.496 0.400 0.385 | 0.651 0.476 0.989
ADJ 0.458 0.466 0.112 | 0.712 0.504 0.752
10CV | 14.90 0.420 340.0 | 2.410 0.516 14.20
SRM | 29.00 0.510 311.0 | 29.40 0.781 469.0
GCV | 32¢5 51.9 3.1e6 | 1.4e5  11.3  2.6e6




ing set, not just the given problem. It is also clear that
ADA is fairly robust to the choice of ¢: moving ¢ to a
distant constant origin (even up to eight times the max
y value) does not completely damage its performance.

5. Radial Basis Function Regression

To test our method on a more realistic task, we con-
sidered the problem of regularizing radial basis func-
tion (RBF) networks for regression. RBF networks
are a natural generalization of interpolation and spline
fitting methods. Given a set of prototype centers
c1, ..., ¢, an RBF representation of a prediction func-
tion h is given by

e = Ywo(EZ9)

where ||z — ¢;]| is the Euclidean distance between x
and center ¢;, and g is a response function with width
parameter o. Here we use a standard local (Gaussian)
basis function g(z) = e~ /9",

Fitting with RBF networks is straightforward. The
simplest approach is to place a prototype center on
each training example and then determine the weight
vector w that allows the network to fit the training y
labels. This can be obtained by solving for w in*

g(llzlgmll) g(llwlgmll) o, "

g (Ilzt;wlll) < g (Hwt;wtll) wy Yt

Although natural, exactly fitting data with RBF net-
works has the problem that the training data is gener-
ally over-fit in the process of replicating the y-labels.
Many approaches exist for regularizing RBF networks.
However, these techniques are often hard to apply be-
cause they involve setting various free parameters or
controlling complex methods for choosing prototype
centers, etc. (Cherkassky & Mulier, 1998; Bishop,
1995). The simplest regularization approaches are to
add a ridge penalty to the weight vector, and minimize

¢ t
D (b)) —y)® + 2w} (7)
i=1 i=1

where h is given as in (6) (Cherkassky & Mulier, 1998).

An alternative approach is to add a non-parametric
penalty on curvature (Poggio & Girosi, 1990), but the

4This solution is guaranteed to exist and be unique for
distinct training points and most natural basis functions g,
including the Gaussian basis used here.

resulting procedure is similar. To apply these meth-
ods in practice one has to make an intelligent choice
of the width parameter ¢ and the regularization pa-
rameter A\. Unfortunately, these choices interact, and
it is often hard to set them by hand without extensive
visualization and experimentation with the data set.

In this section we investigate how effectively the ADA
regularizer is able to automatically select the width pa-
rameter o and regularization parameter A in an RBF
network on real regression problems. Here again the
basic idea is to use unlabeled data to make these choic-
es automatically and adaptively. We compare ADA
to a large number of ridge regularization procedures,
each corresponding to the penalty (7) with different
fixed choices of o and A (thirty five in total).

In this study we experimented with a number of regres-
sion problems from the StatLib (lib.stat.cmu.edu) and
UCI (www.ics.uci.edu/~mlearn/MLRepository.html)
machine learning repositories. In our experiments, a
data set was randomly split into a training, unlabeled,
and test set, and then each of the methods was run on
this split. We repeated the random splits 100 times to
obtain our results. Table 2 shows that ADA regulariza-
tion is able to choose width and regularization param-
eters that achieve effective generalization performance
across a range of data sets. Here ADA performs bet-
ter than any fixed regularizer on every problem except
one, and moreover it even beats the oracle regularizer
REG* in all but two problems. This shows that the
adaptive criterion is not only effective at choosing good
regularization parameters for a given problem, it can
choose them adaptively based on the given training
data to yield improvements over fixed regularizers.

6. Conditional Density Estimation

The approach we have introduced in this paper is by
no means restricted to regression problems. In fact,
as mentioned in Section 3, the generic regularization
criterion (4) can be applied to a wide range of super-
vised learning tasks, including classification and con-
ditional density estimation. Here we present a short
demonstration of our method for regularizing condi-
tional probability models.

Consider a setting where hypotheses make probabilis-
tic predictions, h(z) € [0,1], of y labels in {0,1}.
Here we use the log loss to measure prediction error,
err(§,y) = —ylog §—(1—y)log(1—7). In this situation
we measure “distances” between conditional probabil-
ity models using the KL-divergence. The goal is to
minimize the true log loss of the hypothesis h, which
amounts to minimizing the KL-divergence between h
and the target conditional density, d(h||Bx).



Table 2. RBF results showing test errors (distances) aver-
aged over 100 splits of the dataset. Standard deviation are
given for ADA and REG*.

AAUP data set

ADA 0.0197 £0.004 | REG* 0.0361 £ 0.009
REG | A=0.0 0.5 1.0 5.0 10
o=0.01 | 0.0393 | 0.0512 | 0.0545 | 0.0597 | 0.0617
0.05 | 0.0460 | 0.0507 | 0.0528 | 0.0562 | 0.0582
0.10 | 0.0498 | 0.0501 | 0.0517 | 0.0547 | 0.0571
0.25 | 0.0551 | 0.0488 | 0.0500 | 0.0531 | 0.0561
0.50 | 0.0592 | 0.0478 | 0.0488 | 0.0522 | 0.0559
0.75 | 0.0617 | 0.0472 | 0.0481 | 0.0519 | 0.0561
1.00 | 0.0641 | 0.0467 | 0.0477 | 0.0517 | 0.0563

ABALONE data set

ADA 0.034 £0.0046 | REG* 0.045 % 0.0055
REG | A=0.0 0.5 1.0 5.0 10
0=0.01 | 0.1717 | 0.0527 | 0.0537 | 0.0565 | 0.0592
0.05 | 0.2131 | 0.0517 | 0.0521 | 0.0546 | 0.0580
0.10 | 0.2986 | 0.0511 | 0.0515 | 0.0541 | 0.0580
0.25 | 0.3999 | 0.0504 | 0.0507 | 0.0539 | 0.0585
0.50 | 0.9654 | 0.0500 | 0.0503 | 0.0540 | 0.0594
0.75 | 0.9073 | 0.0498 | 0.0502 | 0.0542 | 0.0601
1.00 | 0.4030 | 0.0497 | 0.0501 | 0.0545 | 0.0607

BODYFAT data set

ADA 0.131 £0.0171 | REG* 0.129 +0.0150
REG | A\=0.0 0.5 1.0 5.0 10
0=0.01 | 0.1521 | 0.1351 | 0.1366 | 0.1418 | 0.1467
0.05 | 0.1588 | 0.1339 | 0.1356 | 0.1420 | 0.1479
0.10 | 0.1621 | 0.1336 | 0.1354 | 0.1426 | 0.1489
0.25 | 0.1667 | 0.1334 | 0.1353 | 0.1437 | 0.1507
0.50 | 0.1704 | 0.1334 | 0.1354 | 0.1448 | 0.1523
0.75 | 0.1726 | 0.1334 | 0.1355 | 0.1457 | 0.1533
1.00 | 0.1742 | 0.1335 | 0.1356 | 0.1463 | 0.1541

BOSTON-C data set

ADA  0.150 £0.0212 | REG* 0.155 % 0.0197
REG | A=0.0 0.5 1.0 5.0 10
o=0.01 | 0.1626 | 0.1673 | 0.1702 | 0.1782 | 0.1820
0.05 | 0.1631 | 0.1667 | 0.1696 | 0.1774 | 0.1808
0.10 | 0.1643 | 0.1667 | 0.1696 | 0.1774 | 0.1807
0.25 | 0.1668 | 0.1669 | 0.1699 | 0.1777 | 0.1809
0.50 | 0.1698 | 0.1672 | 0.1703 | 0.1781 | 0.1813
0.75 | 0.1719 | 0.1674 | 0.1705 | 0.1784 | 0.1816
1.00 | 0.1737 | 0.1676 | 0.1707 | 0.1786 | 0.1818

STRIKES data set

ADA  0.0249 +£0.0068 | REG* 0.0185 + 0.0058
REG | A=0.0 0.5 1.0 5.0 10
0=0.01 | 0.0456 | 0.0964 | 0.1090 | 0.1439 | 0.1563
0.05 | 0.0334 | 0.0933 | 0.1091 | 0.1483 | 0.1600
0.10 | 0.0291 | 0.0936 | 0.1109 | 0.1510 | 0.1620
0.25 | 0.0243 | 0.0955 | 0.1148 | 0.1548 | 0.1647
0.50 | 0.0212 | 0.0983 | 0.1189 | 0.1578 | 0.1667
0.75 | 0.0196 | 0.1006 | 0.1217 | 0.1595 | 0.1679
1.00 | 0.0185 | 0.1024 | 0.1239 | 0.1607 | 0.1686

J(PYl-Xa )

d(Rox, h) = 30 6
d(Py|x, ) = 4e-6
d(Prx, g) = 0.0249

Figure 2. Maximum likelihood (h) versus ADA-regularized
(g) logistic regression.

A well known problem with using log loss for condi-
tional density estimation is that even trivial probabili-
ty models can over-fit training data. That is, a simple
conditional probability model can get a small negative
log likelihood on the training data

t

3" —yslog h(a) (1) 1og(1—h(z)

i=1

d(h||Pyx) =

and yet still get large log loss errors on test examples.

To illustrate, consider the example of one dimensional
logistic regression where hypotheses are defined by

1
hz) = T
for parameters a and b. This defines a “smoothed”
step function with a crossover value at x = —% (the

point where h(z) = 1 — h(z) = %). Here, given data
(z1,¥1), -, {Z¢, ye), the naive maximum likelihood ap-
proach will attempt to choose parameters a and b that
minimizes d(h||B,x). However, if the data happens to
be separable, as shown in Figure 2, then zero training
error can be achieved by pushing a and b to infinite
values while maintaining any split point —g between
the two classes of y-labels. If, however, this split point
does not correspond exactly to a hard split in the tar-
get conditional B,x (and there is no reason to believe
that it would) the resulting hypothesis h, which makes
hard classifications, will obtain huge (approaching in-
finite) errors on any misclassified test example.

We can avoid this type of over-fitting simply by regu-
larizing the hypothesis h. Doing this with our adap-
tive regularization scheme is straightforward. Figure 2
shows the results of minimizing the penalized objective

d(hll¢) d(hll$)
d(h ||¢)’d< l16)
) =

using the origin function ¢(z . Here we obtained
a smoothed hypothesis that obtalns similar training
and test errors—unlike the naive maximum likelihood
hypothesis that badly over-fits on these problems.

(h||Py|X) X max <



Table 3. Some decision tree pruning results on UCI reposi-
tory data sets, showing size and test error over 100 splits.

un-pruned | C4.5 pruned | ADA-pruned

size  test | size test | size test
random | 120 50.5 | 105 50.5 51 50.2
optdigit | 269 15.3 | 250 15.2 | 234 15.2
iris 7 8.9 6 8.8 6 9.3
glass 11 10.8 11 10.8 10 12.8
ecoli 32 241 22 22.4 22 23.6
vote 21 6.7 8 5.2 14 6.9
crx 56 19.8 28 18.0 23 17.3
soybean | 146 19.7 75 17.5 | 124 19.7
hypo 25 0.94 19 0.83 23 0.87

7. Classification

Finally, we briefly note that the regularization ap-
proach developed in this paper can be easily applied to
classification problems. In this situation, Y is usually
a small discrete set and we measure prediction error
by the misclassification loss, err(y,y) = 1(yx,). Here,
distances are measured by the disagreement probabil-
ity d(f,9) = Px(f(z) # g(x)). Our generic regular-
ization objective (4) could be directly applied in this
setting. However, our preliminary results (on decision
tree pruning) are not strong, and it appears that our
technique will not work as decisively for classification
problems as it does for regression and conditional den-
sity estimation problems; see Table 3.

However, we believe that the difficulty has an intuitive
explanation: Since classification functions are essen-
tially histogram-like, they limit the ability of our meth-
ods to detect erratic behavior off the labeled training
sample. This is because histograms, being flat across
large regions, tend to behave similarly in large neigh-
borhoods around training points—to the extent that
distances on labeled and unlabeled data points are of-
ten very similar, even for complex histograms. Coping
with this apparent limitation in our approach remains
grounds for future research.
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