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Abstract

The“minimum margin” of anensembleclassifieron a given
trainingsetis, roughlyspeaking,thesmallestvoteit givesto
any correcttraining label. Recentwork hasshown that the
Adaboostalgorithmis particularlyeffective at producingen-
sembleswith large minimum margins, and theory suggests
that this mayaccountfor its successat reducinggeneraliza-
tionerror. Wenote,however, thattheproblemof findinggood
marginsis closelyrelatedto linearprogramming,andweuse
this connectionto derive and test new “LPboosting” algo-
rithmsthatachieve betterminimummarginsthanAdaboost.

However, thesealgorithmsdonotalwaysyieldbettergeneral-
izationperformance.In fact,moreoftentheoppositeis true.
We reporton a seriesof controlledexperimentswhich show
that no simpleversionof the minimum-margin story canbe
complete. We concludethat the crucial questionas to why
boostingworks so well in practice,andhow to further im-
prove uponit, remainsmostlyopen.

Someof our experimentsareinterestingfor anotherreason:
we show thatAdaboostsometimesdoesoverfit—eventually.
This may take a very long time to occur, however, which is
perhapswhy thisphenomenonhasgonelargelyunnoticed.

1 Introduction
Recently, therehasbeengreat interestin ensemblemeth-
ods for learning classifiers,and in particular in boosting
[FS97] (or arcing [Bre96a]) algorithms.Thesemethodstake
a given“base”learningalgorithmandrepeatedlyapplyit to
reweightedversionsof theoriginal trainingdata,producing
a collection of hypotheses�����	�
���
����
 which are then com-
bined in a final aggregateclassifiervia a weightedlinear
vote. Despitetheir “black box” construction—onetypically
doesnot needto modify thebaselearnerat all—thesetech-
niqueshave provensurprisinglyeffectiveat improving gen-
eralizationperformancein a wide variety of domains,and
for diversebaselearners.

For theseproceduresthereareseveral conceivableways
to determinetheexamplereweightingsat eachstep,aswell
as the final hypothesisweights. The bestknown boosting�
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Adaboost.M1(� traininginstances� andlabels� ,
baselearner� ,
maxboostingrounds� )����������� � �!���
��� �"� ��# ;(exampleweights)

for $ �%� �
���&��(' �&� � � �)�*�+� � # ;(basehypothesis), ' �&�.-0/21 3	4 5
687:9*;<>= 7@? / ;(weightederror)
if , 'BA ���DC , � �&� $FE � , breakG ' ���IH�JDKML 4� N L 4 ;(hypothesisweight)
for each? /

if � ' �:O / #QP�SR / , ? / �&�S? / �T�UC , ' #
else, ? / �&�S? / �T�UCV�W� E , ' #�#

end
end
return X �Y� �����!�����
����
Z# , [ ���:G �\�!���
��� G 
�# , �

Figure1: ProcedureAdaboost

procedure,Adaboost [FS97], computesthemin a particu-
lar way: at eachround $ , theexampleweightsfor thenext
round$)] � areadjustedsothatthemostrecentbasehypoth-
esisonly obtainserrorrate1/2onthereweightedtrainingset
(Figure1). Theintuition behindthis is to forcethelearnerto
focusonthe“dif ficult” trainingexamplesandpaylessatten-
tion to thosethat themostrecenthypothesisgot right. Ad-
aboostthenusesa specificformula for hypothesisweights
that yields a nice theoreticalguaranteeabouttraining per-
formance:if the baselearnercanalwaysfind a hypothesis
with error boundedstrictly below ���DC for any reweighting
of thetrainingdata,thenAdaboostis guaranteedto produce
afinal aggregatehypothesiswith zerotrainingseterrorafter
afinite numberof boostingrounds[FS97].

Of course,this only addressestraining error, and there
is no real reasonfrom this to believe thatAdaboostshould
generalizewell to unseentestexamples.In fact,onewould
naively expect the opposite: sinceAdaboostproducesin-
creasinglycomplex hypothesesfrom a larger space,one
wouldthink thatAdaboostshouldquickly “overfit” thetrain-
ing dataandproducea final hypothesiswith worsetester-
ror thanthesingleoriginal hypothesisreturnedby thebase
learner. However, there is a growing body of empirical
evidencethat suggestsAdaboostis remarkablyeffective at
reducingthe test set error of several well-known learning
algorithms,often significantlyand acrossa variety of do-



mains(moreor lessrobustly, butwith occasionalexceptions)
[FS96a^ , Qui96, MO97, BK97].

This raisesa centralquestionof the field: why is boost-
ing so successfulat improving the generalizationperfor-
manceof alreadycarefully designedlearningalgorithms?
One thing that is clear is that boosting’s successcannot
be directly attributed to a notion of variance reduction
[Bre96b, BK97]. Thismysteryis furthercompoundedby the
observationthatAdaboost’s generalizationerroroftencon-
tinuesto decreaseevenafterit hasachievedperfectaccuracy
on thetrainingset.Whatmoreinformationcouldit possibly
beobtainingfrom the trainingdata?If we could “explain”
boosting’s real-world successsatisfactorily, we might hope
to constructbetterproceduresbaseduponthatexplanation.

Recentprogressin understandingthis issue has been
made by [SFBL97] who appeal to the notion of mar-
gins. Ratherthanfocusexclusively on classificationerror,
Schapireet al. considerthe strengthof the votesgiven to
the correctclasslabels. They observe that even after zero
trainingerrorhasbeenachieved,Adaboosttendsto increase
thevoteit givesto thecorrectclasslabel(relativeto thenext
strongestlabel vote), andthey posit this asan explanation
for why Adaboost’s testseterrorcontinuesto decrease.

[SFBL97] examinestheeffect of Adabooston thedistri-
bution of marginsasa whole. However, oneof their exper-
imentalobservationsis that Adaboostseemsto be particu-
larly effectiveat increasingthemarginsof “dif ficult” exam-
ples(thosewith small margins), perhapseven at the price
of reducingthe margins of otherexamples. This suggests
the moreconcretehypothesisthat the sizeof the minimum
(worst)margin is thekey to generalizationperformance,and
thatAdaboost’s successis dueto its ability to increasethis
minimum. Supportingthis conjectureare two theoretical
results,also from [SFBL97]: (1) in the limit, Adaboostis
guaranteedto achieveaminimummargin thatis at leasthalf
the bestpossible,and(2) given that a minimum margin of_ Aa` can be achieved, then thereis a b ����� _ # boundon
generalizationerror that holds independentlyof the sizeof
theensemble.(SeeSection2 for moreaboutthis theory.)

This,then,is thebackgroundfor ourwork. As weobserve
in Sections3 and4 it is oftenquiteeasyto improveuponthe
minimummarginsfoundby Adaboostby usingLinearPro-
gramming(LP) techniquesin a varietyof ways.So if mini-
mummarginsreallyaretheprincipledeterminerof learning-
success,this shouldlead to even more effective ensemble
methods.Thetruth,though,seemsto bemorecomplex. We
runaseriesof controlledexperimentsto testthesignificance
of margins,usingvariousrealworld data-setsfrom theUCI
repository. As wediscussin Section5 theresultsareattimes
mixed,but overall it seemsclearthatthesingle-mindedpur-
suit of goodminimummarginsis detrimental.�

A differentsetof experiments,in Section6, considersthe
long run behavior of Adaboost. When we boostwell be-
yondtherangeof previously reportedexperiments,margins
mayimprovefor a long time—but beyondsomepoint,gen-c

Wenotethat[Bre97a] reportsasingleexperimentthatcorrob-
oratesthis point, but asnotedin [Bre97b], thereis somequestion
asto whetherthiscontrolledfor all relevantfactors.

eralizationerror often deterioratessimultaneously. This is
additionalevidenceagainstany simpleversionof the min-
imum margin story. It alsodemonstratesthat (in the limit)
Adaboostis vulnerableto overfitting, which is just asone
would expecta priori , but perhapscontraryto the lessons
onemight take from mostof the short-runexperimentsre-
portedin theliterature.

We would have beenhappierto reportthat theminimum
margin storywasunambiguouslycompleteandcorrect—we
would then truly “understand”boosting’s successand be
able to improve upon it substantially. Our more negative
results,though,arestill important.It is alwaysnecessaryto
testtheoreticalproposalsof this typewith rigorousexperi-
mentation.Weconcludethatthekey problemof discovering
propertiesof trainingsetperformancethatarepredictive of
generalizationerrorin real-world practicestill demandssig-
nificantresearcheffort.

2 The minimum margin
We begin by definingthe margin andotherrelevant termi-
nologymorecarefully. An ensembleX ��� � � �!���
���Z� 
 # is afi-
nitevectorof hypotheses.Givenanensemble,togetherwith
a matchingsetof weights[ �d�:G �"�	�
����� G 
�# , where G 'feg`
and - G ' �h� , oneclassifiesexamplesby takingaweighted
voteamongtheindividualhypothesesandchoosingthelabel
thatreceivesthelargestvote.

Let the training set be a collection of labeled exam-
ples �iO �\� R �!# �	�
���
� �:O�j � R\j # , wherethe labelscomefrom k �l � �	�!�	� �*mon . Each individual hypothesismapsan example
to a single labelp in k . Let q /ir = be the total vote that the
weightedensemblecastsfor label R on example O / ; that isq /:r = �g-03	4Z1 3!4s5
6	7i9 <>= G ' . Notethat - =�tDu q /:r = �%� .

For a givenexample O / , we would like morevotesto go
to thetruelabel R / thanto any otherlabel,becausethenthe
ensemblewouldclassifyO / correctly. Thissuggestsdefining
themargin v /

as q /:r = 7 Exwzy\{ = ;<>= 7 q /ir = ; thatis, thetotalvote
for thetruelabelminusthevotefor themostpopularwrong
label.Thisquantityis in therange |}E � � �!~ andis positive iff
theweightedensembleclassifiesO / correctly. It is 1 when
thereis a unanimousvote for thecorrectlabel. Thedefini-
tion justgivencanbefoundin [SFBL97] and[Bre97b].

However, we insteadconcentrateon a different,but simi-
lar, quantitydefinedby v / � q /ir = 7 E - = ;<>= 7 q /ir = ( �0C q /ir = 7 E� ). When � kQ� ��C this is identical to the previous defini-
tion; but it is only a lower boundin general(and thus, it
canbe negative even whenthe correctlabel getsthe most
votes—i.e., when thereis a plurality but not a majority).�
Thisalternativedefinitionis mucheasierto work with, since
it involvesa sumratherthana max. In fact,mostof thethe-
oreticalwork in theliteratureusesthesecondnotion(or else
considersthe 2-classcasewherethereis no distinction).�
For this reason,wewill dispensewith thefirst definitionen-
tirely, and from this point usethe term margin always to�

Wenotethatit easyto generalizeourresultsto handlethecase
wherehypothesesmapexamplesto distributionsover � .�

Breimanhassometimescalledthissecondquantitytheedge.�
However, seethe extendedversionof [SFBL97], availableat

www.research.att.com/˜schapire.



referto v / � q /:r = 7 E - = ;<>= 7 q /:r = . Thereadershouldremain
aware� of thissubtleterminologicaldistinction.

As discussedin theintroduction,thereis somerecentand
importanttheory involving the margin. [SFBL97] show a
result boundinggeneralizationerror in terms of the mar-
gin distribution achieved on the training set. More pre-
cisely, if the distribution of margins has at most a frac-
tion � � _ # below

_
, the we get a boundon the testerror of� � _ #�]�b�� �"�D� � �s� �Z� j � �*����*� ] H�JDK��W�"�"� #�# ��� p	� , where� is the

size of the training sample, � is the size of the basehy-
pothesisclass,and � is the confidence.� This theoremap-
plies if we know the ��� `D` � � _ #*# %-ile margin

_
for any_ A�` . However, the only a priori theoreticalconnection

to Adaboostweknow of involvestheminimummargin (i.e.,_�� �����V� l _ � � � _ # � ` n ): [SFBL97] show that Adaboost
achievesat leasthalf of thebestpossibleminimum(seeSec-
tion 6 for morediscussion).RecentlyBreimanhasproven
a similar generalizationtheorem[Bre97b], which speaks
only abouttheminimummargin—andtherebyobtainseven
strongerbounds.Of course,neitherof theseresultsis likely
to beaccuratein predictingtheactualerrorsachievedin par-
ticular real-world problems(amongotherreasons,because
of the b �W  # formulationin [SFBL97]); perhapstheir realim-
portanceis in suggestingthe qualitativeeffect of the mini-
mummargin achievedall elsebeingequal.

3 Maximizing margins: A Linear Program
Therecenttheoreticalresultsjustdiscussedsuggestthat,be-
yond minimizing training-seterror, we shouldattemptto
make the minimum margin as large aspossible. It hasal-
readybeenobserved[Bre97a] that this maximizationprob-
lem can be formulatedas a linear program.¡ Here we
quickly re-demonstratethis formulation, becauseit is the
startingpointandbasisto ourwork.

For a fixedensembleX andtrainingset � �)���¢# , definean
error matrix £ which containsentries¤ / ' suchthat ¤ / ' �¥�
if � ' �iO / # �gR / and ¤ / ' � E � if � ' �:O / #FP�gR / . In termsof £ ,
themargin obtainedonexample¦ correspondsto thesimple
dotproductv / � - ' G '	¤ / ' � [  !§ / .O � ¤ �Z�  ! 	  ¤ ��
 v �

...
...

...
...O j ¤ j �  ! 	  ¤ j 
 v j� �  ! 	  � 
G �  ! 	 ¨G 


Our goal is to find a weight vector [ that obtainsthe
largestpossiblemarginsubjectto theconstraintsG 'Fe©` and- G ' �h� . This is amaxi-minproblemwherewechoose[
to maximize w«ª�¬ / [  8§ / subjectto G ' eg` and - G ' �¥� .
We turn this into a linearprogrammingproblemsimply by
conjecturinga lower bound, v , on theminimumvalueand
choosing � v­�*[®# to maximize v subjectto [  T§ / e v ,¯

Theseresults can be extendedto infinite basehypothesis
spacesto appealingto thestandardVC dimensionbounds.°

Seealso [FS96b], which predatesthe “margin” terminology
andalsocaststhe definitionsin termsof gametheoryratherthan
linearprogramming,but otherwisemakesthesamepoint.

LP-Adaboost( � , � , � , � )� X±�*[x�Z�s# ��� Adaboost� �)�*�+�*�²�Z�s#
Constructerrormatrix £ (of dimension�´³x� )� v­�*[®# �&� solve linearprogram:minimize v

subjectto - 
' < � G ' ¤ / 'Fe v ,G 'Beµ` , -�G ' �h�
return X , [

Figure2: ProcedureLP-Adaboost¦ ��� �	�
������� , and G '­e¶` , - G ' ��� . (Note that v is not
constrainedto benonnegative.)

Although straightforward, this suggestsa simple test of
how important “minimum margins” are for real learning
problems. Considerthe ensembleproducedby Adaboost
on a given problem. Although Adaboostalso provides a
weightingover this ensemble,we could simply ignorethis
andinsteadre-solvefor theweightsusingtheLP just formu-
lated. We call this procedureLP-Adaboost; seeFigure2.
Clearlythiswill achievea minimummargin at leastasgood
astheAdaboostweightingdoes. In fact,aswe seein Sec-
tion 5, it generallydoessignificantlybetter. Importantly, this
usesthesameensembleasAdaboostandsocompletelycon-
trols for expressive power (which otherwisecanbea prob-
lem; see[Bre97b]). To theextent to which minimummar-
ginsreallydeterminegeneralizationerror, weshouldexpect
this to improve generalizationperformance.But aswe see
in Section5, thisexpectationis not realizedempirically.

As an aside,we note that LP-Adaboostis clearly more
computationallyexpensive than Adaboost,since it has to
constructthe £ matrixandthensolvetheresultingLP. How-
ever, this is still feasiblefor few thousandsof examplesand
hundredsof hypothesesusingthebetterLP packagesknown
today; this rangecoversmany (althoughdefinitely not all)
experimentsbeing reportedin the literature. The deeper
questionis, of course,whetheronewould want to useLP-
Adaboostatall (evenignoringcomputationalcosts).

4 The Dual Linear Program
Before investigating the empirical performanceof LP-
Adaboost,we first show that thedual of the linearprogram
formulatedin Section3 leadsto anotherboostingprocedure
whichusesanalternativetechniquefor computingtheexam-
ple reweightings.This procedurecanprovably achieve the
optimalmargin over theentirebasehypothesisspace.

From the work of [Bre97a, FS96b] it is known that the
dualof thepreviouslinearprogramhasa verynaturalinter-
pretationin our setting. (For a review of thestandardcon-
ceptsof primality andduality in LP see[Van96, Lue84].) In
thedualproblemwe maintaina weight ? / for eachtraining
example,anda constraint-S/\? / ¤ / 'B·I¸ for eachhypothesis
(i.e., columnin £ ). Here, ¸ is theconjecturedboundon the
dual objective. The dual linear programthen is to choose� ¸ � � # to minimize ¸ subjectto -I/\? / ¤ / '²·¹¸ , $ �º� �	�
���
��� ,
and - ? / �%� , ? / e©` [Van96, p70].

Noticethattheseconstraintshaveanaturalinterpretation.
The vector � is constrainedto be (formally) a probability
distribution over the examples, and the $ ’ th column of £
correspondsto thesequenceof predictions( � if correct, E �



DualLPboost( � , � , � , tolerance, , maxiterations� max)���&���W�"� � �!�����
� ��� ��# , � �&� ` , v �&� E � , ¸ �&���
repeat� �&� �)] �� 
 ��� � � �)���+� � #¸ ���.- j/ < � ? / ¤ / 
 ;(scoreof � 
 on � )

if ¸ E­v�» , or � A � max, � ��� �¼E � , break� v½��[x� ¸ � � # �&� solveprimal/duallinearprogram:
maximizev s.t. - 
' < � G ' ¤ / 'Be v ,G 'Fe©` , -¾G ' �h�
minimize ¸ s.t. - j / < � ? / ¤ / 'F·I¸ ,? / eµ` , -¾? / ���

end
return X , [ , �

Figure3: ProcedureDualLPboost

if wrong)madeby hypothesis�T' on theseexamples.Thus,- /"? / ¤ / ' is simply the(weighted)score achievedby � ' on
the reweightingof the training setgiven by � . (I.e., score
on a scalewhere E � meansit getsall the examplesincor-
rectand ] � meansall werecorrect.)Thus,for each� ' , we
have a constraintthat � ' achievesscoreof at most ¸ . Min-
imizing ¸ meansto find the worst possiblebestscore. We
canthereforerephrasethe dualproblemasfollows: Find a
reweightingof (i.e., probabilitydistribution over) the train-
ing set,suchthat the score ¸ of the besthypothesisin the
ensembleis assmallaspossible.Basically, we arelooking
for ahard distribution.

By duality theory, thereis a correspondencebetweenthe
primal anddualproblems;it is enoughto solve just oneof
them,anda solutionto theotheris easilyrecovered.More-
over, theoptimalobjectivevalueis thesamein boththepri-
mal and the dual. For us, this implies: The largest mini-
mummargin achievablefor given £ (by choosingthe best
weightvectorover theensemble)is exactly thesameasthe
smallestbestscore achievable (by choosingthe “hardest”
reweightingof the training set). This remarkablefact, an
immediateconsequenceof duality theory, also appearsin
[Bre97a, Bre97b] and[FS96b].

This notion of duality canextendto the entirebasehy-
pothesisspace:if we implicitly consideran ensemblethat
containsevery basehypothesisand yet somehow manage
to identify the hardestexamplereweightingthat yields the
lowestmaximumscoreover all basehypotheses,thenthis
will correspondto a (hopefully sparse)weight vectorover
theentirebasehypothesisspacethatyieldsthebestpossible
margin. Oneway of attemptingto do this leadsto our next
boostingstrategy, DualLPboost (Figure3).

Thisprocedurefollowsacompletelydifferentapproachto
identifying hardexamplereweightingsthanAdaboost.The
ideais to take a currentensemble���"�!���
���Z��
�N¿� , solve there-
sulting LP problem,andtake the dual solutionvector � as
thenext examplereweighting. It thencalls thebaselearner
to addanotherbasehypothesisto theensemble.

By construction,� is maximally hard for the given en-
semble,soeitheranew hypothesiscanbefoundthatobtains
a betterscoreon this reweighting,or we have convergedto

anoptimalsolution.Thisgivesusaconvergencetest—ifwe
cannotfind a goodenoughbasehypothesis,thenwe know
that we have obtainedthe bestachievable margin for the
entirespace,even if we have only seena small fraction of
the basehypotheses.À Contrastthis with Adaboost,which
only stopsif it cannotfind ahypothesisthatdoesbetterthan
chance(i.e., scoreof exactly 0). In practice,Adaboostmay
neverterminate.

Proposition 1 Supposewehavea baselearner � that can
alwaysfind thebestbasehypothesisfor anygivenreweight-
ing. Then,if the basehypothesisspaceis finite, DualLP-
boostis guaranteedtoachieveoptimalweightvector[ after
a finitenumberof boostingrounds.

The key point to realizeis that DualLPboostsharesthe
mostimportantcharacteristicof boostingalgorithms:it only
accessesa baselearnerby repeatedlysendingit reweighted
versionsof the given training sample,and incrementally
buildsits ensemble.Theonlydifferenceis thatDualLPboost
keepsmuchmorestatebetweencalls to thebaselearner:it
needsto maintainthe entire £ matrix, whereasAdaboost
only needsto keeptrack of the currentreweighting. How
muchof aproblemthiscausesdependsonthecomputational
effort of LP solvingvs. thetime takenby thebaselearner.

5 Generalization performance
We testedtheseprocedureson severalof thedatasetsfrom
theUCI repository([MM , KSD96]). Generally, we trained
on a randomlydrawn subsetof 90% of the examplesin a
dataset,andtestedon theother10%; we repeatedthis 100
timesfor eachsetandaveragedtheresults.Á For all proce-
dureswe set � max

�hÂ ` , althoughthey couldterminatewith
asmallerensembleif any of thevariousstoppingconditions
weretriggered.By construction,LP-Adaboostusesthesame
ensembleasAdaboost.

We reportaverageerror ratesfor eachmethod.We omit
confidenceintervalsin thetables,but insteadreportwinning
percentagesfor eachmethodagainstAdaboostasthebase-
line; this allows for a statisticallyweaker but distribution-
freecomparison.This numberis thepercentageof the100
runs in which eachmethodhadhigheraccuracy than Ad-
aboost(allocatinghalf credit for a tie). In general,these
winningpercentagescorrelatewell with testerror.

We testedtwo baselearners.Thefirst, [FS96a]’s FindAt-
trTest,searchesa very simplehypothesisspace.Eachclas-
sifier is definedby a singleattribute Ã , a value Ä for that
attribute,andthreelabels m yes�*m no �*m ?. For discreteattributesÃ , onetestsanexample’svalueof Ã againstÄ ; if theexam-
plehasnovaluefor Ã predict m ?, if theexample’svaluefor Ã
equalsÄ thenpredict m yes, otherwisepredict m no. For contin-
uousattributesÄ functionsasathreshold—wepredict m yes if
anexample’s valuefor Ã is · Ä ; otherwisewe predict m no
or m ? asappropriate.This simplehypothesisclasshassome
nicepropertiesfor our experiments:First, it is fastto learn,Å

Note that this dependscrucially on the baselearneralways
beingableto find a sufficiently goodhypothesisif oneexists; see
Section5 for furtherdiscussionof this issue.Æ

However, for somelarge datasets,chessand splice, we in-
vertedthetrain/testproportions.



FindAttrTest Adaboost LP-Adaboost DualLPboost
Dataset error% win% error% margin error% win% margin error% win% margin
Audiology 52.30 50.0 52.30 -1.0 52.30 50.0 -1.0 54.70 47.0 -0.804
Banding 27.00 19.5 18.88 -0.080 22.37 31.0 0.021 23.88 25.0 0.032
Chess 32.60 0.0 5.24 -0.099 6.49 14.0 0.0 6.59 17.5 0.010
Colic 18.68 44.5 17.95 -0.179 23.08 22.5 -0.005 23.59 19.5 0.002
Glass 47.80 50.0 47.80 -1.0 47.80 50.0 -1.0 45.80 55.5 -0.427
Hepatitis 18.38 49.0 18.19 -0.026 21.44 36.0 0.063 21.44 34.0 0.071
Labor 24.00 14.0 6.50 0.255 7.00 48.0 0.295 6.83 49.5 0.298
Promoter 28.09 4.5 8.82 0.165 9.45 47.5 0.212 9.36 46.5 0.223
Sonar 27.29 12.0 16.76 0.052 17.81 42.5 0.113 19.76 37.0 0.099
Soybean 69.50 50.0 69.50 -1.0 69.50 50.0 -1.0 71.70 37.0 -0.733
Splice 37.70 0.0 10.56 -0.695 17.10 7.5 -0.415 12.34 25.0 -0.170
Vote 4.16 40.0 3.43 -0.056 4.00 41.5 0.002 5.50 24.5 0.019
Wine 34.40 0.5 4.00 0.011 3.06 55.5 0.073 5.00 41.5 0.081

Figure4: FindAttrTestResults

C4.5 Adaboost LP-Adaboost DualLPboost
Dataset error% win% error% margin error% win% margin error% win% margin
Audiology 22.70 17.0 16.39 0.446 16.48 49.0 0.501 18.09 38.5 0.370
Banding 25.58 12.5 15.00 0.528 15.42 45.5 0.565 22.50 20.0 0.430
Chess 4.18 12.5 2.70 0.657 2.74 46.5 0.730 2.97 37.0 0.560
Colic 14.46 67.5 17.03 0.051 18.97 31.5 0.182 18.16 44.0 0.108
Glass 30.91 22.0 23.95 0.513 23.91 49.5 0.624 26.86 38.0 0.386
Hepatitis 21.06 38.0 18.94 0.329 17.56 59.0 0.596 20.00 45.5 0.385
Labor 15.33 43.0 12.83 0.535 13.83 47.0 0.684 15.17 42.0 0.599
Promoter 21.09 10.5 7.55 0.599 8.00 47.0 0.694 13.55 29.5 0.378
Sonar 28.81 16.0 18.10 0.628 18.62 48.0 0.685 25.00 23.0 0.478
Soybean 8.86 28.5 6.97 -0.005 6.55 62.0 0.017 8.41 33.5 0.003
Splice 16.18 0.0 6.83 0.535 7.00 25.0 0.569 11.01 0.0 0.393
Vote 4.95 51.0 5.02 0.723 5.30 44.5 0.795 5.27 44.5 0.756
Wine 9.11 27.0 4.61 0.869 4.89 47.5 0.912 4.50 50.5 0.814

Figure5: C4.5Results

so we caneasilyboostfor hundredsof thousandsof itera-
tions (seeSection6). We canalsoexplicitly solve the LP
for thisspaceto determinetheoptimalensemble(according
to the minimum margin criterion). But most importantly,
[FS96a] have shown that the benefitsof Adaboostarepar-
ticularly decisive for FindAttrTest.

The secondlearningmethodwe consideredis a version
of Quinlan’sdecisiontreelearningalgorithmC4.5[Qui93]. Ç
This is at the otherendof the spectrumof baselearnersin
that it produceshypothesesfrom a very expressive space.
Adaboostis generallyeffective for C4.5 but, as [FS96a]
point out, thegainsarenot asdramaticandin fact thereis
sometimessignificantdeterioration[Qui96].

In Tables4 and 5 we presentthe statisticsdiscussed,
alongwith theaverageminimummarginsobtainedover100
runs. (Note that the baselearnersinvariably obtain mar-
gins of E � .) First, considerthe behavior of LP-Adaboost
vs. Adaboost.WhenC4.5is usedasthe baselearner, LP-È

We hedgeby saying“a versionof C4.5” becauseit is in fact
a re-implementationof this program,basedcloselyon thepresen-
tation in [Qui93]. However, it producesidenticaloutputin direct
comparisons.Our programcorrespondsto all C4.5’s default set-
tings includingpruning.

AdaboostalwaysimprovesAdaboost’smargins,by anaver-
ageof about ` � � . Similarly, thereis a fairly consistentin-
creasein the margins with FindAttrTest; generallyaround` � ` Â with greaterrelative increase.And yet we do not see
any consistentimprovementin generalizationerror! For
FindAttrTest,LP-Adaboostis almostalwaysworse,some-
timesmuchso. For C4.5,thetypical caseshowsonly slight
deterioration—wearenotbeinghurtsomuchhere,but there
is definitelyno gainon average.Sinceall elseis controlled
for in this experiment,this seemsto decisively refuteany
simpleversionof the minimum margin story. (Of course,
thisimmediatelyraisesthequestionof whetherthereis some
otherpropertyof themargin distributionwhich is morepre-
dictiveof generalizationperformance;see[SFBL97].)

Next, considerthe behavior of DualLPboostwith Find-
AttrTest. With oneexception(explainedbelow) this yields
evenbettermargins.And yet,in comparisonwith Adaboost,
we arefrequentlyhurt evenmore. (Notehowever, thatDu-
alLPboostconstructsa differentensemble,so this compari-
sonis notastightly controlled.)

The behavior of DualLPboostwith C4.5 is alsocurious.
There is a seeminganomalyhere: why are the margins
sometimesworse? Therearetwo reasons.First, even un-



der ideal conditionsDualLPboostcantake many roundsto
achieÉ ve the bestminimum margin, andwe stoppedit after
only 50. Sohereat least,its convergencerateseemsslower.
Second,DualLPboostreliescruciallyontheassumptionthat
the baselearnerfinds a goodhypothesiswhenever oneex-
ists.If thebaselearneris unable(or unwilling) to find sucha
hypothesis,thenDualLPboostcaneasilybecomestuckwith
no way of continuing.For a classifierlike C4.5,which may
not even try to find the besthypothesis(becauseof prun-
ing), it is notsurprisingthatDualLPboostcanshow inferior
performanceat finding largeminimummargins.

Returningto the generalizationcomparisons,why is all
our extra effort to optimizemargins hurting us? In many
casesthe answerseemsto be the intuitive one;namelywe
are sometimesincreasingthe minimum margin at the ex-
penseof all theothermargins.Essentially, themargin distri-
butionbecomesmoreconcentratednearits lowerend,which
counteractsthefactthatthelower margin is higher. Table6
shows the (average)differencebetweenthe 10’th lower-
percentilemargin andtheminimummargin for a few of the
datasets;notehow thesearemuchclosertogethertheseare
for LP-Adaboost. Quite frequently10% of the points (or
more)all have marginswithin 0.001of theminimum. This
tablealsoshows the medianmargin: notethat even asthe
minimummargin is alwaysimprovedby LP-Adaboost,the
mediannever improvesby asmuchand(especiallyfor Fin-
dAttrTest)oftendecreases.

Thefinal illustrationof theeffect of our optimizationon
the overall margin distribution is given in Figure7. Here
we plot the cumulative margin distributions obtainedby
the threeprocedureson a few datasets. Theseplots show
the distribution obtainedfrom a singlerun, alongwith the
“mean”distributionobtainedover100runs(formedby sort-
ing themarginsfor eachof the100runsandaveragingcor-
respondingvalues). Theseplots graphicallyshow the con-
centrationeffect discussedabove. (Thelocationof themin-
imummarginsarehighlightedby theshortverticallines.)

Ourobservationsabouttheeffectsof margin distributions
on testerroremphasizethecentralopenquestionraisedby
thiswork: preciselywhatcharacteristicof themargin distri-
butionshouldwebetrying to optimizein orderto obtainthe
bestpossiblegeneralizationperformance?The minimum
margin is not theanswer.

6 Boosting in the limit
Our secondset of experimentsinvestigateswhat happens
whenonerunsAdaboostfar beyondthe10’s to 100’s of it-
erationsnormally considered.Herewe focuson the Find-
AttrTestbaselearner, becauseof its greatertractability, and
alsobecausewe areableto exactlysolve thecorresponding
LP over theentirehypothesisspace.In fact,we do this by
runningDualLPboostto completion,which generallytakes
a few hundredroundsatmost.(Thisalwaysworksbecause,
for FindAttrTest,we cancertainlyfind the besthypothesis
for eachreweighting.)

The resultsshow several interestingphenomena.First,
we often continue to see significant changesin perfor-
manceeven after � ` � – � ` ¡ boostingrounds. We observe
that the minimum margin increasesmoreor lessmonoton-

Data/Learner Adaboost LP-AdaboostÊ
min

r �WË�Ì median
Ê

min
r �WË�Ì median

Band–C4.5 0.022 0.584 0.000 0.606
Chess–C4.5 0.025 0.752 0.000 0.859
Colic–C4.5 0.185 0.353 0.021 0.382
Hep–C4.5 0.130 0.626 0.000 0.760
Labor–C4.5 0.018 0.064 0.000 0.749
Splice–C4.5 0.025 0.599 0.000 0.607
Vote–C4.5 0.049 0.890 0.002 0.933
Wine–C4.5 0.018 0.933 0.000 0.968
Band–FindAtt 0.044 0.165 0.000 0.171
Chess–FindAtt 0.110 0.187 0.008 0.142
Colic–FindAtt 0.178 0.173 0.000 0.029
Hep–C4.5 0.031 0.247 0.000 0.171
Labor–FindAtt 0.008 0.368 0.000 0.339
Splice–FindAtt 0.594 0.074 0.104 0.171
Vote–FindAtt 0.198 0.402 0.098 0.350
Wine–C4.5 0.083 0.257 0.000 0.228

Figure6: Propertiesof themargin distributions

ically (excludingfluctuationsnearthebeginning). Further-
more, in our experimentsAdaboost’s minimum margin al-
waysasymptotesat the optimal valuefound by LP.�WË The
theorywe areawareof only guaranteeshalf the value—so
arewe seeinganartifactof FindAttrTest,or doesAdaboost
alwayshave this property?If the latter, Adaboostcanpre-
sumablyturnedinto ageneral,albeitveryslow, LP solver. �Z�
Moreover, if this is the case,thenAdaboostwould be ex-
pectedto do exactly aswell asDualLPboost(or otherexact
LP solvers) in the limit, and thus its empiricalsuperiority
would have to be explained(somehow) usingthe fact that
it is typically not run to anywherenearits asymptoticlimit.
We believe that this theoreticalquestionis oneof the most
significantissuesraisedby ourwork.

Anotherimportantaspectof our resultsis thecorrelation
of minimum margin with generalizationerror. The mini-
mum margin always increases,but the test error often de-
teriorateswith largenumbersof boostingrounds(although
this cansometimestake tensof thousandsof roundsbefore
it becomesapparent).Oneimplication is that theseexperi-
mentsgive another, independent,refutationof thestraight-
forward minimum-margin story—because,again, we see
errorssometimesincreaseeven as the margin getsbetter.
But this phenomenonis also interestingbecauseit coun-
terswhatseemsto beverycommon“folklore” thatboosting
is stronglyresistantto overfitting. To a certainextent this
maybetrue,but ourexperimentssuggestthatthis is perhaps
only the casein certainregimes(which presumablydiffer
with theproblemandthebaselearnerbeingconsidered),and
shouldnotbereliedon in general.

Figures8, 9, and 10 illustrate three typical asymptoticciÍ
But notethat therearetypically many differentsolutionsthat

achieve the samebestminimum margin. Thus, even thoughthe
asymptoticmarginscoincide,thereis no guaranteethat Adaboost
andourparticularLPsolverwill find thesameweightedensembles.cÎc

I.e., an LP solver that doesnot requireany tuning basedon
prior knowledgeof theLP’s solutionvalue. It is in this sensethat
sucha result,if true,wouldstrengthen[FS96b].
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Figure8: Adaboostwith FindAttrTeston“chess”

runs.Hereweconsiderasingletrain/testsplit for eachprob-
lem. Thehorizontalaxismeasuresboostingroundsonalog-
arithmic scale. At the top we show training andtesterror,
andbelow weplot thecorrespondingminimummargin over
the training set. The dottedreferenceline shows the mini-
mummargin obtainedby theexactLP solution.

7 Conclusions
Recentwork in the theoryof ensemblemethodshasgiven
us new insight as to why boosting,and relatedmethods,
areassuccessfulasthey are. But only carefulexperimen-
tationcantell ushow corrector comprehensive this theory
is in explainingthe“real world” behavior of thesemethods.
Theprincipalcontributionof this paperis thatwe have car-
ried out someof the experimentsneededto testthe signif-
icanceof the “minimum margin” in ensemblelearning. In
theprocess,wehave furtherelaboratedon thedeepconnec-
tion betweenboostingandlinearprogrammingtechniques,
suggestingnew algorithmsmoredirectlymotivatedby LP.

Ourexperimentsprovethatincreasingtheminimummar-
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Figure9: Adaboostwith FindAttrTeston “crx”
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Figure10: Adaboostwith FindAttrTeston “allhypo”



gin is not thefinal,or eventhedominant,explanationof Ad-
aboost’Ï s success.The questionof why Adaboostperforms
so well on real problems,andwhetherthereareyet better
techniquesto befound,is still moreopenthanclosed.

Finally, our experimentshave broughtto light other in-
triguingphenomenon,particularlyconcerningthevery long
run behavior of Adaboost.Eventually, it seems,Adaboost
can overfit (as one would naively expect, but contrary to
whatonegetsby extrapolatingmostshort-runexperiments).

8 Further Directions
We closewith a few miscellaneousobservationsaboutthe
connectionbetweenminimummarginsandlinearprogram-
ming which, while interesting,do not directly relateto the
main concernof this work. All suggestadditionalexperi-
mentalresearch.

The first concernsthe duality result mentionedin Sec-
tion 4. This suggestsa new stoppingcriteria for boosting
algorithmsin general,includingAdaboost.At eachstepof
a boostingalgorithm,we cancomputethe margin actually
achieved by the currentweightedensemble.We can also
keeptrack of the lowest(i.e., worst) scorethe baselearner
hasbeenableto achieve(onany reweightingof thetraining
setthat it hasbeenpresentedwith). But duality theory, the
optimalachievablemargin lies betweenthesevalues. Once
thegapbetweentheseis sufficiently small,oneknows that
little additionalimprovementis possibleandsocanstop.As
observedin Section6, thequestionof whenaprocedurelike
Adaboosthasreally “converged” can be a difficult one in
practice.

Second,andalsorelatedto the dual LP formulation,we
notetheexistenceof theellipsoidalgorithm for solvinglin-
ear programs,famousbecauseit was the first guaranteed
polynomial time algorithm for LP [Kha79, Chv83]. But
it hasanotherinterestingpropertythat it doesnot needto
seethe explicit constraintmatrix. Instead,oneonly needs
an “oracle” which—given any proposedassignmentto the
variables—willproducea violatedconstraintif oneexists.
Givensuchan oracle,the algorithmcanfind a solution(to
somegivenprecision)in polynomialnumberof calls to the
oracle(independentof how many constraintsthereactually
are). It is intriguing that in the dual formulationof our LP
thebaselearneris such an oracle: violatedconstraintscor-
respondto basehypothesesthatdo betteron thecurrentex-
amplereweightingthanany memberof thecurrentweighted
ensemble.It thereforeseemspossiblethat this ideacould
leadto another“boosting”algorithmin thestyleof DualLP-
boost,but with perhapsdifferentconvergencepropertiesand
(ateachstep)vastlysuperiorcomputationalcomplexity.

Finally, the ideaof minimizing marginsis reminiscentof
the ideaof supportvectormachines[CV95]. There,how-
ever, onetriesto find a linearcombinationthatachievesthe
bestworstseparationin thesenseof Euclidean(i.e., k p ) dis-
tance,asopposedto the k´� notion usedto definemargins
(in a straightforwardway but onewhich we do not formal-
ize here). It turns out that SVMs maximize k p margins
usingquadraticratherthan linear programs.But a benefit
of maximizing k´� rather than k p margins is that k´� has
a much strongertendency to producesparse weight vec-

tors. This canyield smallerrepresentationsof the learned
ensemble,whichcanbeanimportantconsiderationin prac-
tice [MD97]. In factourexperimentssupportthis. We often
find thatLP-Adaboost,for instance,endsup giving zero(or
negligible)weightto many of thehypothesisin theensemble
andsotheeffectiveensemblesizeis smaller.
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