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Abstract

As a prerequisite for system identifica-
tion based on c-mean clustering (FCM),
it is necessary to assign the number of
underlying partitions to be used for a
given data set. However, for the FCM
clustering algorithm it is not known how
to assign the number of clusters opti-
mally a priori, and the problem of se-
lecting an appropriate number of clus-
ters is usually treated heuristically. In
this paper we derive a theoretical crite-
rion for assigning the appropriate num-
ber of clusters. We use a generaliza-
tion of Stein’s unbiased risk estimator
(SURE) to derive a generic criterion that
defines the optimum number of clusters
to use for a given problem. The effi-
cacy of this criterion is illustrated in dif-
ferent experiments, including a bench-
mark problem involving the prediction
of a chaotic time series.

1 Introduction

Fuzzy system identification has attracted a lot
of interest in the past. With this technique, it
is usually assumed that there is no prior knowl-
edge about the system, or that the expert’s knowl-
edge is not sufficiently trustworthy. In this case,
instead of using a fixed prior interpretation of
the system, one often uses raw input-output data
to augment one’s prior knowledge or perhaps
even generate new knowledge about the system.
This approach was initially proposed by Takagi-

Sugeno-Kang [10] under the name of TSK fuzzy
modeling. Inspired by classical systems theory,
TSK modeling is also referred to as system iden-
tification [9].

The problem of fuzzy system identification in-
volves eliciting IF_THEN rules from raw input-
output data. It usually proceeds in two steps:
1) clustering; and 2) specification of the input-
output relations (IF_THEN rules). In this pa-
per, we consider fuzzy clustering as an intuitive
approach for generating objective rules in fuzzy
modeling. We propose a method for improving
the objectivity of this technique by deriving a
suitable criterion for selecting the number of clus-
ters for a fuzzy c-mean (FCM) [1][2] clustering
process. The FCM clustering algorithm suffers
from a major weakness that is usually treated
heuristically[7]: it is not obvious how to assign
the number of clusters a priori. To develop a
theoretically well motivated criterion for choos-
ing an appropriate number of clusters, we derive
a generalization of Stein’s unbiased risk estimator
(SURE) [5] that can be used to define a generic
criterion which defines the optimum number of
clusters to use in a given problem.

In Section 2 of this paper we review fuzzy sys-
tem identification. We then explain the under-
fitting and over-fitting effects caused by using an
inappropriate number of clusters for fuzzy system
identification in Section 3. In Section 4 we derive
a generalization of SURE, and in Section 5 show
how it can be applied to fuzzy system identifica-
tion based on FCM. Experimental results of the
proposed criterion and its performance are pre-
sented in Section 6.



2 Fuzzy System Identification

Fuzzy system identification normally proceeds
through two phases: clustering, and specifica-
tion of input-output relations (IF_-THEN rules).
Clustering is a process whereby numerical data
is placed into groups or clusters, such that data
in a cluster tends to be similar, and data in dif-
ferent clusters tends to be dissimilar. Clustering
is normally applied in situations where it is not
known a priori how many groups are (or should
be) present in a given data set. When cluster-
ing is applied to a set of input-output data, each
cluster center can be considered as a fuzzy rule
that describes the characteristic behavior of the
system.

Consider a collection of data in an M-dimensional
space, where the first N dimensions correspond to
input variables, and the remaining M — N dimen-
sions correspond to output variables. Then clus-
tering on this M-dimensional space divides data
into fuzzy clusters that overlap with each other,
and the membership of each data vector to each
cluster can be defined by a membership grade in
[0,1]. The data vector with membership grade
equal to one is called the cluster center. Sup-
pose that a set of s cluster centers {c},c3,...ck}
has been generated by a clustering method. Each
cluster center ¢; can be decomposed to two vec-
tors 27 and y, such that = represents the first vV
dimensions (the coordinates of the cluster centers
in input space) and y; represents the last M — N
dimensions (the coordinates of the cluster centers
in output space).

The membership grade of each data vector is de-
fined as follows:
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where z is the input vector.

Each cluster center ¢; corresponds to a fuzzy rule
17, and the cluster identified above by the expo-
nential membership function represents the an-
tecedent of this rule. If A; notifies the exponen-
tial membership function of cluster 2, then rule ¢
can be represented as:

IF X is Ay THEN Y; is B;

where X is the vector of input variables, Y; is the
ith output variable and Bj is a singleton defined
as a linear or quadratic combination of input vari-
ables.

When B is defined as a linear combination, the
model is called the first order model, and when
B is a quadratic combination, the model is called
the second order model. For the first order model
we consider in this study, B is: Eévzl PijT; + Pio,
where p;; is the coefficient of z; in rule 7.

Employing traditional fuzzy IF_THEN rules, the
first order model would be expressed as follows:

ri: IF X is Ay THEN Y1 (X) = YN, pij + p1o

ry: IF X is A, THEN Y,(X) = N pexj + pso

For a given z,, the output of the model yq, is
computed as:

=1 Mi(70)Yi(w0)
T )

Yo =

This equation can be converted into a linear
least-squares estimation problem by the following
definition:

__ Hi(zo)
b= S (o)
So

o =Y BiYi(xo)
=1

When there are n data vectors:

y1 = Pu (ipljl‘j +P1o) + -+ Pis (ipsjrj +Pso)

j=1 j=1

N N
Yn = Pn1 (Zpljrj +P1o) + 0+ Bus (Zpsjiﬂj -I-Pso)

ji=1 j=1

This is a least square estimation problem and can be
represented as:

Y = AP (1)

where Y is a matrix of output values, A is a constant
matrix, and P is a matrix of parameters to be esti-
mated. A mnecessary condition for ||[Y — AP|* to be
minimized is that, P be: P = (AT A)~14ATY



3 Model validation

Fuzzy system identification is a parameter estimation
problem. One problem with model validation is se-
lecting parameters that show good performance both
on training and testing data. In principle, a model is
selected to have parameters associated with the best
observed performance.

Not surprisingly, a model selected on the basis of train-
ing data does not exhibit as good performance on the
testing data. When squared error is used as the perfor-
mance index, a zero-error model on the training data
can always be achieved by using an adequate num-
ber of cluster centers. However, training error err and
testing error Err do not demonstrate a linear relation-
ship. In particular, a smaller training error does do not
necessarily result in a smaller testing error. In prac-
tice, one often observes that, up to a certain point, the
model error on testing data tends to decrease as the
training error decreases. However, if one attempts to
decrease the training error too far by increasing model
complexity, the testing error often can take a dramatic
increase.

The basic reason behind this phenomenon is that in
the process of minimizing training error, after a certain
point, the model begins to over-fit the training set.
Over-fitting in this context means fitting the model to
training data at the expense of losing generality. In
the extreme form, a set of n training data points can
be modeled exactly with n rules. Such a model follows
the training data perfectly. However, these rules are
not representative features of the true underlying data
source, and this is why they fail to correctly model
new data points.

In general, the training error rate err will be less than
the testing error on the new data, Frr. A model typi-
cally adapts to the training data, and hence the train-
ing error err will be an overly optimistic estimate of
the generalization error Err. An obvious way to esti-
mate generalization error is to estimate the degree of
optimism OP inherent in a particular estimate, and
then add a penalty term to the training error to com-
pensate, i.e., such that Err = err + OP. The method
described in the next section works in this way.

4 Estimating the optimism

Let: R

MSE(f) = B(F - /).

F(X): Prediction model, estimated from a training
sample by the TSK method.

F(X): Real model.

err: Training error, which is the average loss over the
training sample.

Err : Generalization error, which is the expected
prediction error on test sample.

Recall that the training error, err = Y1 (¥ — y)?, is
an estimate of the expectation of the squared error on
the training data, E(y — y)?, while the generalization
error (test error) Err is an estimate of mean squared
error, MSE = (]?— f)?, where f(X) is the estimated
model and f(X) is the true model.

Now suppose y; = f(z;)+¢&;, where ¢ is additive Gaus-

sian noise N (0, 0%). We need to estimate ]?from train-
ing data D = {(z;,y;)}?. Consider

El(fo — w)*] = E[(f - f - ¢)*]
= E[(f = /)] + E[’] = 2E[e(f — )] (2)

= E[(f - /)] + 0% = 2E[e(f - 1)) (3)
Here, the last term can be written as:
E2e(f = £)] = 2E[(y0 — N)(] = £)] = cov(yo, /)

We consider two different cases.

Case 1. Consider the case in which a new data
point has been introduced to the estimated model,
i.e.(zo,y0) ¢ D. Since yo is a new point, f and yo

are independent. Therefore cov(yo, f) = 0 and (3) in
this case can be written as:

E[(f=H1 = o= E(H —w)’ (4)
This is the justification behind the technique of cross
validation. In cross validation, to avoid overfitting or
underfitting, a validation data set is used which is in-
dependent from the estimated model. The optimal
model parameters should be selected to have the best
performance index associated with this data set. Since
this data set is independent from the estimated model,
it is a fair estimate of E(f — f)? and consequently of
generalization error Err as indicated in (4).

Case 2. A more interesting case is the case in which
we do not use new data points to assess the perfor-
mance of the estimated model, and the traing data is
used for both estimating and assessing a model f. In
this case the cross term in (3) cannot be ignored be-
cause ]? and yo are not independent. Therefore the
cross term, which is cov(yo, f), is not zero. How-
ever the cross term can be estimated by Stein’s lemma
[5] [8], which was originally proposed to estimate the
mean of a Guassian distribution [8].

According to Stein’s lemma if X ~ N(6,0?) and
g(z) is differentiable function then E(g(z)(z — 6)) =



o2E(g'(z)). So we let g(¢) = f— f= f— y — ¢ and
z = €. Then by applying Stein’s lemma we obtain

df

PEW(E) = B()

E(f-f) =

Summing over all y we get

o~

Err Zn:(:f]— y)? — no? + 20 2”: df (@)

i=1 = dui
. Y o df (2
= err— no? + 202 ; %f) (5)

This is known as Stein’s Unbiased Risk Estimator

(SURE).

5 Determining the optimum number
of clusters

Based on this criterion, the optimum number of clus-
ters should be assigned to have the minimum general-
ization error Err in (5). However, in f(z;) all of the
parameters corresponding to rules Y;(zq) and to p; (o)
are functions of y;. Therefore, taking the derivative of
f(z;) with respect to y; is not easily accomplished.
This difficulty can be resolved by applying SURE to
the alternative form shown in (1). From the least

squared solution of (1) we have:

P =

f =

(AT A)~'ATY
AP = A(ATA)7'ATY = HY (6)

where H is an N x N matrix that depends on the input
vector z; but not on y;. From (6) we can easily obtain

o~

the required derivative of f(z;) with respect to ;.

> d(yf) :Z;H“

i=1

Now, substituting this into (5) we obtain

Err = err—no?+ 202 ZH“

i=1

Here we observe that Y& H;; = Trace(H),
the sum of the diagonal elements of H.
Thus, we can obtain the further simplifica-

tion that Trace(H) = Trace(A(AT A)~1AT)
Trace(AT A(AT A)=1) = Trace(I) = P, where P is
the dimension of A. Since A is a projection of input
matrix X onto a basis set spanned by C', the number
of clusters, and the dimension of the original input X
is N, one can show generally P = C'(N + 1).
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Figure 1: (a) Overfitting, underfitting, and the best
SMT(x) (b) Err obtained in
(7) used to find the optimum number of clusters for
model y = %ﬂ (c) The best estimated model for
Mackey-Glass time series. (d) Err otained in (7) used

estimated model for y =

to find the optimum number of clusters for Mackey-

Glass time series.



| v || SURE |
Target function | n || Test error ratio | Cluster diff. | Test error ratio | Cluster diff.

step(z > 0.5) | 100 1.027 -0.42 1.017 0.09
sin(1) 100 1.039 -1 1.027 0.06
sin?(2nz) 100 1.022 -0.24 1.02 -1.24
step(z > 0.5) | 200 1.003 0.05 1.001 0.04
sin(L) 200 1.012 -0.35 1.001 -0.03
sin®(2nz) 200 1.004 -0.04 1.008 -0.96

Table 1: Fitting different target functions with ¢ = 0.25. Table reports ratio of test errors relative to best

possible test error achieved by different methods. A smaller ratio is better. Results are reported at training

sample sizes n = 100 and n = 200 and averaged over 100 repeated trials in each case. Columns 4 and 6 show

the difference between the optimum number of clusters and the number of clusters chosen by CV and SURE

respectively.

To use this method to find the optimum number of
clusters, we simply choose the model that obtains the
smallest E'rr over the set of models considered. Given
a set of models fc () indexed by the number of clus-
ters, C, denote the training error for each model by
err(C). We then obtain

Err(C) = err(C)—no? +20°C(N+1) (7)
where n is the number of training samples and the
noise, o2, can be estimated from the mean squared
error of the model.

6 Experimental results

To explore the effectiveness of our complexity control
method, we considered the problem of fitting a first or-
der TSK model to a set of points (Figure 1). The goal
is to minimize the squared generalization error Err.
To determine the efficacy of the method we compared
its performance to the well studied standard cross val-
idation [3].

We first conducted a simple series of experiments by
fixing a uniform distribution on the unit interval [0,1],
and then fixing various target functions f: [0, 1] — R.
To generate training samples, a sequence of values
z1, ..., 2¢ is drawn from [0, 1], the target function values
f(z1), .., f(x) are computed, and independent Gaus-
sian noise is added to each value. For a given training
sample, the series of best fit functions corresponding
to a number of clusters C= 1, 2, .. ,etc. are computed.
Given this sequence, the cross validation strategy will
choose some particular model f on the basis of the
observed empirical errors on the validation data set
(generated the same way as training data). Our tech-
nique will alternatively chose the model corresponding
to minimum Err in (7). To determine the effective-
ness of these two strategies, the ratio of the test error

of the model selected by them to the best test error
on a new test data set among the models in sequence
C =1,2,..is measured.

Table 1 shows the results obtained for fitting various
functions. These results are obtained by repeatedly
generating training samples of a fixed size, and record-
ing the ratio of test error achieved relative to the best
possible test error, for each technique (CV and SURE).

In another experiment we considered a benchmark
problem in system identification: predicting the time
series generated by the chaotic Mackey-Glass (MG)
differential delay equation [6]. Here the goal is to pre-
dict the value of z at some time ¢ + At, using the past
values of z up to the time t. We use 7 = 17, N = 4,
S =6, At = 6 and same data set that was used in [4].
In this experiment, our proposed criterion SURE and
cross validation CV chose the same number of clus-
ters, and therefore they achieved the same generaliza-
tion error 0.005 on the test data. However, the SURE
technique does not require an extra validation set to
choose its cluster number, and in fact used half the
data available to CV in this case. Therefore, we claim
that it achieved more effective performance on this ex-
ample. Figure 1.d shows a comparison of the training
error for each number of clusters and compares this to
the Err for each.

7 Conclusion

We have proposed a new approach to choosing the
optimum number of clusters for FCM in system iden-
tification. Our approach minimizes a theoretically un-
biased estimate of generalization error of the model.
Our experimental results validate the effectiveness of
this approach. A comparison cross validation illus-
trates that the generalization error of the models se-
lected by our approach is usually less than models se-



lected by cross validation technique. Importantly, this
is achieved while requiring much less computation than
cross validation. The utility of our method is greatest
when there is insufficient data to hold out a validation
set for cross validation.
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