
Crafting Data Structures: A Study of Reference

Locality in Refinement-Based Pathfinding?

Robert Niewiadomski, José Nelson Amaral, Robert C. Holte

{niewiado, amaral, holte}@cs.ualberta.ca
Department of Computing Science, University of Alberta

Edmonton, AB, Canada

Abstract. The widening gap between processor speed and memory la-
tency increases the importance of crafting data structures and algorithms
to exploit temporal and spatial locality. Refinement-based pathfinding
algorithms, such as Classic Refinement, find near-optimal paths in very
large sparse graphs where traditional search techniques fail to gener-
ate paths in acceptable time. In this paper we present a performance
evaulation study of three simple data structure transformation oriented
techniques aimed at improving the data reference locality of Classic Re-
finement. In our experiments these techniques improved data reference
locality resulting in consistently positive performance improvements up-
wards of 51.2%. In addition, these techniques appear to be orthogonal to
compiler optimizations and robust with respect to hardware architecture.

1 Introduction

Pathfinding has applications in many industries such as computer games, freight
transport, travel planning, circuit routing, network packet routing, etc. For in-
stance, in the Real Time Strategy (RTS) video-game genre refinement-based
search and its variants are used to conduct pathfinding for movements on the
game map [6]. In these games pathfinding consumes up to half of total computa-
tion time [1, 15]. Using a modification to Dijkstra’s algorithm, the shortest path
between two vertices in a graph G(V, E) can be computed in O(E log V) [4].
However, in some time sensitive applications where |V | is very large we may
want to visit only a fraction of the vertices in V to find an approximation of the
shortest path [10]. Refinement-based search (RBS) is often used to restrict the
search space to generate quality paths [9]. Classic Refinement (CR), a variation
of RBS, partitions a large graph into many subgraphs, and generates an abstract

graph that describes the interconnections among the subgraphs. A path between
two vertices, u and v in the original graph is found by: (1) identifying the vertices
in the abstract graph that correspond to the partitions containing u and v; (2)
finding a path, in the abstract graph, between the identified vertices; (3) using
this abstract path to find a path in the original graph.

? This research is partially funded by grants from the Natural Sciences and Engineering
Research Council of Canada and by the Alberta Ingenuity Fund.

This paper presents a performance evaluation study of three techniques for
improving the data reference locality of CR: (1) data duplication; (2) data re-
ordering; (3) and merging of independent data structures into a common memory
area. We demonstrate that combining these techniques can result in performance
improvements upwards of 51.2% and that, through analysis of hardware event
profiles, these results stem from improved page level and cache line level locality.
By testing on four systems with various compilers and optimization settings we
also demonstrate that our techniques are robust to changes in hardware archi-
tecture as well as the level of compiler optimization.

Section 2 presents the CR algorithm. Section 3 describes the baseline imple-
mentation and our three techniques. Section 4 presents experimental results and
analysis. Section 5 discusses related work.

2 Abstraction and Search

Let G0(V0, E0) be the input graph to CR. Let G1(V1, E1) be an abstraction of
G0. G0 and G1 are both undirected, unweighted graphs. G0 is partitioned into
connected subgraphs. G1 must have one vertex for each subgraph of G0. If vertex
v0

i in G0 maps to vertex v1
p in G1, v1

p is called the image of v0
i at abstraction

level 1 (Note: v1
p should be read as “vertex p at abstraction level 1”). The set

of vertices in G0 that map to vertex v1
p in G1 is the pre-image of v1

p . G1 has an
edge (v1

p , v1
q) if and only if there is an edge (v0

i , v0
j) in G0 such that v0

i is in the

pre-image of v1
p and v0

j is in the pre-image of v1
q . This ensures that paths in G0

can be mapped to corresponding paths in G1. Because we can create an abstract
graph for any undirected graph we can create an abstraction of an abstraction
to generate a hierarchy of abstractions. A sequence of graphs {G0, G1 . . . , Gn−1}
is an abstraction hierarchy for source graph G0 if for 0 ≤ i < n − 1 Gi+1 is an
abstraction of Gi. To generate an abstraction hierarchy we use the “max-degree”
STAR algorithm [9]. Given G0 and a constant r, the STAR algorithm partitions
G0 into subgraphs whose maximum diameter is at most 2r.

Definition 1. An ordered list of Ga vertices, P = {va
0 , va

1 , . . . , va
k−1}, is a path

in Ga if and only if Ga contains the edges (va
0 , va

1), (va
1 , va

2), . . ., (va
k−2, v

a
k−1).

We use P [j] to refer to the jth element in path P .

Definition 2. A path P = {va
0 , va

1 , . . . , va
k−1} in Ga is a constrained path

if and only if it is the shortest path between va
0 and va

k−1, such that vertices

va
0 , va

1 , . . . , va
k−1 belong to the pre-image of the same vertex va+1

p . Because the

pre-image of va+1
p is a connected subgraph of Ga, when computing a constrained

path, a search algorithm restricts its search space to the vertices in the pre-image

of va+1
p .1

1 In a constrained path all vertices are in the same pre-image. G0 may contain a shorter
path between v

a
0 and v

a
k−1 than the constrained path P , but any such path contain

at least one vertex outside the pre-image of v
a+1
p , and therefore is not a constrained

path.

Definition 3. Let va+1
p and va+1

q be two vertices in Ga+1 such that (va+1
p , va+1

q)
is an edge in Ga+1. Let va

i be a vertex in the pre-image of va+1
p . Then there exist

a path from va
i to any vertex in the pre-image of va+1

q . A constrained jump

path J from va
i to the pre-image of va+1

q is the shortest path between va
i and

any vertex in the pre-image of va+1
q , such that any edge traversed by J connects

vertices that belong either to the pre-image of va+1
p or to the pre-image of va+1

q .2

ClassicRefinement(A, s0, g0, n)
1: sn−1 ← LookupVertexImage(s0, n− 1)

2: gn−1 ← LookupVertexImage(g0, n − 1)

3: Pn−1 ← FindPath(sn−1, gn−1, n− 1)
4: if |Pn−1| = 0 then

5: return NULL

6: for i = n− 2 to i = 0
7: Pi ← {}
8: b← LookupVertexImage(s0, i)
9: for j ← 0 to j = |Pi+1| − 1
10: J ← FindConstrainedJumpPath(Gi, b,

Pi+1[j + 1])
11: Pi ←Append(Pi , J)
12: b←LastVertex(J)
13: endfor

14: gi ← LookupVertexImage(g0 , i)
15: C ← FindConstrainedPath(b, gi, i)
16: Pi ←Append(Pi , C)
17: endfor

18: return P0

Fig. 1. Classic Refinement Algorithm.

EmbeddedQueueConstrainedPath(G(V, E), s, I)
1: EQP (s)←NULL
2: w ← s

3: w′ ← NULL
4: while TRUE
5: while w 6= NULL
6: for v ∈ V such that (w, v) ∈ E

7: if Image(v) = I
8: BST BP (v)← w
9: return v

10: if Image(v) 6= Image(s)
11: continue

12: if TV M(v) = TRUE
13: continue

14: BST BP (v) ← w

15: EQP (v) ← w′

16: w′ ← v
17: TV M(v) ← TRUE
18: endfor

19: w ← EQP (w)
20: endwhile

21: w ← w′

22: w′ ← NULL
23: endwhile

Fig. 2. Embedded Queue Constrained
Path Algorithm with Abstract Map

Figure 1 presents pseudocode for the CR algorithm. Given a source graph
G0 and an abstraction hierarchy A = {G0, G1, . . . , Gn−1} CR finds a path in
G0 between a source vertex s0 and a goal vertex g0. The CR algorithm starts
by finding a path, Pn−1, between sn−1 and gn−1, the images of the source and
goal vertices in the highest level of the hierarchy, Gn−1. If no such path exists
then the algorithm returns NULL (steps 1-5). LookupVertexImage(g0, n−1)
returns the image of g0 at abstraction level n− 1. FindPath(sn−1, gn−1, n− 1)
returns a path from sn−1 to gn−1 at abstraction level n − 1. If a path is found,
CR iterates through each level of abstraction (for loop at step 6). Let Pi+1 =
{si+1, vi+1

1 , . . . , vi+1
k−2, g

i+1} be the path in Gi+1. To compute the path Pi, CR
initializes b to the image of s0 at abstraction level i. CR then computes the
constrained jump path J from b to a vertex in the pre-image of the next Pi+1

vertex, Pi+1[j +1] (step 10). By definition the last vertex in J is the first vertex

2 Again, a shorter path from v
a
i to the pre-image of v

a+1
p may exist in G0, but it would

have to include at least one vertex outside the pre-image of v
a+1
p or v

a+1
q and thus

not be constrained.

in the pre-image of Pi+1[j + 1] visited by J . CR appends the constrained jump
path J to Pi, updates b to be the first vertex visited in Pi+1[j + 1] and iterates
until the pre-image of gi+1 is reached. Finally, when b is the initial vertex in the
pre-image of gi+1, CR computes a constrained path C between b and gi, the
image of g0 in Gi (step 15) and appends C to Pi. When the recursion finishes,
CR returns the path P0.

3 The Three Data Layout Techniques

Our baseline implementation of CR uses an adjacency list representation. We
use the graph in Figure 3 as an example. In the baseline the vertex v0

0 of Figure 3
has the data structure shown in Figure 4(a). ID is a unique identification field,
the traversal visit marker (TVM) indicates if the vertex has been visited, BP is
a back pointer, IMG is a pointer to the vertex’s image, and DEG is the number
of neighbors. The use of a 32-bit field for the TVM allows us to not have to
reinitialize it upon the start of each search. All TVMs are initialized to zero and
henceforth a global search counter is maintained. Whenever a vertex vi

a is visited
during the zth search, its TVM is set to z. Therefore any vertex that has a TVM
smaller than z during search z, has not been visited yet.

We use Breadth First Search (BFS) to search for constrained paths and
constrained jump paths. BFS stores vertices to be visited in a working queue.
This queue is sometimes implemented as a circular buffer due to performance
and memory considerations [4]. However we found that the overhead of checking
for wrap-around and overflow is high. We eliminate this bookkeeping by simply
allocating enough memory to contain a pointer to each vertex in the graph.

Vertex Clustering: Figure 5 shows a layout of the vertex data structures in
memory for the graph of Figure 3. Each small box represents a 32-bit memory
field. For convenience of drawing we present eight 32-bit fields per line. We
identify the 32-bit field where the data structure corresponding to each vertex
starts. Consider a search, in Figure 3, for a constrained jump path from v1

0 to v1
2

starting at v0
0 and ending at v0

3 . The shaded areas in Figure 5 show the memory
locations that are accessed in this search. Besides the irregular memory access
pattern shown in Figure 5, the baseline implementation also keeps a work queue
in a separate region of memory. Accesses to this queue are interleaved with the
accesses shown in Figure 5. Such accesses hurt spatial locality and are potential
source of data cache conflict misses. Our vertex clustering technique re-arranges
the vertices, such that vertices that map to the same image are located in close
proximity of each other in memory. Figure 6 shows the memory layout after
vertex clustering has been applied Shaded areas are locations accessed for the
same constrained jump path search. Notice how the memory accesses are much
closer to each other in memory. Though not addressed in this paper we expect
vertex clustering benefit abstractions generated with larger radius.

0v0

0v7

0v4

0v5

0v6
0v1

0v3

0v8

0v2

1v0
1v1

1v2

0v0
0v0
0v0

0v7
0v7
0v7

0v4
0v4
0v4

0v5
0v5
0v5

0v6
0v6
0v6

0v1
0v1
0v1

0v3
0v3
0v3

0v8
0v8
0v8

0v2
0v2
0v2

1v0
1v0

1v1
1v1

1v2
1v2

Fig. 3. Running Example.

(a) Baseline.

(b) Abstract map.

(c) Abstract map with embedded queue.

Fig. 4. Fields in the data structure of a vertex.
0x000

0x020

0x040

0x060

0x080

0x0A0

0x0C0

0x0E0

0x100

0x120

0v5

0v1

0v2

0v3

0v4

0v6

0v7

0v8

0v0

Fig. 5. Memory Layout without
Vertex Clustering.

0x000

0x020

0x040

0x060

0x080

0x0A0

0x0C0

0x0E0

0x100

0x120

0v5
0v5

0v1
0v1

0v2
0v2

0v3
0v3

0v4
0v4

0v6
0v6

0v7
0v7

0v8
0v8

0v0
0v0

Fig. 6. Memory Layout with Ver-
tex Clustering.

Image Mapping: Even after vertex clustering, the constrained jump path dis-
cussed above still has poor spatial locality. In order to search a path of vertices
that map to v1

0 we need to access the IMG field of each vertex encountered during
the search. As a result the search accesses memory locations that are far from
the clustered vertices (see the shaded box at the bottom of Figure 6). Our image

mapping augments the vertex data structure as shown in Figure 4(b) to include
the IMG field of each neighbor of the vertex. Thus when finding constrained
jump paths or constrained paths the search does not access remote memory
locations to determine the pre-image of a neighboring vertex.

Embedded Queue: The next source of poor memory reference pattern is the
working queue of BFS that resides in a remote memory region. The interleaving
of accesses between the vertex cluster region and the working queue region may
cause cache thrashing — entries that will be used later are discarded because of
memory conflicts — and reduces the benefits of the free prefetching due to large
cache lines. Ourembedded queue technique stores the information about vertices

yet to be visited by BFS within the vertex’s data structures. To implement a BFS
embedded queue we augment the vertex data structure with an additional field,
the embedded queue pointer (EQP), as shown in Figure 4(c). The EQP field
contains a pointer to the last vertex that was added to the working queue. Using
this technique entails a modification to the manner in which BFS is performed.

The pattern of vertex visitation in BFS can be viewed as an expanding wave
that starts at the initial vertex. If we divide this expansion into phases, in phase
0 we visit the starting vertex s, in phase 1 we visit all the immediate neighbors
of s. In phase 2 we visit all the vertices that are two hops away from the starting
vertex, and so on. The embedded queue algorithm, shown in Figure 2, uses w to
access the linked list formed by the EQP’s of the vertices that are being visited
in the current phase. It uses w′ to build the linked list of the vertices to be visited
in the next phase.

When traversing a list in a given phase of BFS, we use EQP to find the next
vertex to be visited. In the initialization (steps 1-3) the EQP of the starting
vertex s is assigned NULL to ensure that the phase 0 will terminate. NULL is
also assigned to w′ to ensure that the next phase will also terminate. The first
vertex of phase 0 is s. The algorithm will terminate when a vertex whose image
is I is encountered (step 7).3 Adjacency lists ensure that the accesses in the for
loop (step 6) benefit from spatial locality. Vertices that are not in the same image
as the starting vertex (step 10) or that have already being visited (step 12) are
not included in the working list for the next phase. Spatial locality is promoted
because: (1) the comparison between the image of v and the image of the starting
vertex s (step 10) accesses data within v (image mapping); and (2) accesses to
EQP (steps 15 and 19) are also within v and w (embedded queue). The direction
in which the embedded queue is constructed and traversed matters. We build
a backward queue in the sense that the newly discovered vertex v is placed at
the front of w′, not the rear. The advantage of this traversal direction is that
when we finish building the queue, we start to visit vertices in the reverse order
in which they were added to the queue. Thus we are likely to visit vertices that
we have recently visited and benefit from temporal locality.

4 Experimental Results

We studied embedded queues (Q), vertex clustering (V), and image mapping (I)
by writing eight versions of CR: Baseline, Q--, -V-, --I, QV-, Q-I, -VI, and QVI

(the three characters in the version denotes either the presence or the absence
of each one of the features). We used three graph types: (1) 2D-Plane, a h × w

two-dimensional plane, (2) 3D-Cube, a h × w × d three-dimensional cube, and
(3) Airway-Road, an airline route network where each vertex is an instance of a
road network graph of the city of Pittsburgh. Multiple instances were generated
for each graph type. For 2D-Plane and 3D-Cube graphs we varied dimensions
while for Airway-Road graphs we varied the size of the road network graph.

3 The algorithm assumes that if the start vertex s is in abstraction level a, then Ga+1

has an edge between the image of s and the destination image I.

The average vertex degree was 4 in 2D-Plane graphs, 6 in 3D-Cube graphs, and
between 2.4 and 2.7 in Airway-Road graphs. Table 1 contains a summary of
the systems utilized in our experiments as well as the compilers used to compile
the implementions. For each system we used GCC and the processor vendor’s
compiler to compile each implementation with -O0 and -O3 (all results presented
in this paper were obtained with -O3 and a vendor compiler, except for SGI where
we used GCC). All measurements encompassed the computation of 10, 000 paths
between random pairs of vertices.4 Computing each path involved searching for it
and reconstructing it into linked list form via BP pointer traversal.5 To generate
abstraction hierarchies we used the STAR method with a radius of 2. We recursed
until an abstraction graph with a single vertex was constructed. 6

We found that combining all three techniques results in the best overall
performance improvements over Baseline. Although -VI ocassionally produced
better performance gains than QVI, we prefer QVI because it always improved
performance, whereas -VI did not. Figure 7 shows the percentage reduction
in execution time produced by QVI over Baseline for all systems and graph
instances. The figure shows consistently positive improvements on all systems
ranging from 1.0% to 51.2%, highlighting QVI being robust to changes in hard-
ware architecture. Is QVI also robust to compiler changes? In short the answer
is Yes. Figure 8 presents the average percentage reduction in execution time
produced by QVI over Baseline using all compilers with -O0 and -O3. In all
instances QVI produced non-trivial performance gains. In addition, because of
the relative similarity of the performance gains obtained with -O0 and -O3, it
would seem that the manner in which QVI improves performance is orthogonal
with respect to compiler driven optimizations.

Hardware event profiles indicate that in the case of 2D-Plane graphs QVI

improved data reference locality at the page level while degrading it at the
cache line level. The same profiles show QVI improving locality at both levels for
3D-Cube and Airway-Road graphs. As an example, we present Figures 9 and 10.
The figures show the percentage reductions produced by QVI over Baseline in
the total number of L1 and L2 cache misses and TLB misses on the IBM and
INTEL systems. We also observed that queue embedding eliminated code other-
wise required to maintain a detached working queue. As a result, QVI generally
graduated about 10% less instructions than Baseline. Our results suggest that
the bulk of QVI performance gains stem from data reference locality improve-
ments at the page level and to a lesser degree at the cache line level.

When in isolation, the technique of vertex clustering proved to be the most
effective, followed by image mapping and queue embedding. Our techniques ap-
pear to compliment each other since when combined they produced better per-
formance gains than when on their own. Applying image mapping and/or queue
embedding increases the memory footprint of the abstraction hierarchy (between

4 Because every graph is connected our experiments never include dead-end searches.
5 Reconstruction of paths took between 1% and 17% of the measured execution times.
6 When generating Gi+1 we sequentially iterated through all vertices in Gi using yet

to be classified vertices as starting points for new subgraphs.

Table 1. Systems and compilers used in
our experiments (All systems had 1GB of
main memory and a UNIX based OS).

System Processor Compilers Caches

SGI
R12K MIPSPro (7.2.1) L1 32KB

350Mhz GCC (2.7.2) L2 4MB

IBM
Power3 IBM XLC (6.0) L1 64KB
450Mhz GCC (2.9) L2 8MB

AMD
XP Intel (6.0) L1 64KB

1667Mhz GCC (2.96) L2 256KB

INTEL
P4 Intel (6.0) L1 8KB

2260Mhz GCC (2.96) L2 256KB

Fig. 7. Execution time reductions pro-
duced by QVI over Baseline.

Fig. 8. Average execution time reductions
produced by QVI over Baseline using var-
ious compilers with -O0 and -O3.

Fig. 9. L1, L2, and TLB miss-total reduc-
tions by QVI over Baseline on the IBM sys-
tem.

Fig. 10. L1, L2, and TLB miss-total reduc-
tions by QVI over Baseline on the INTEL

system.

Fig. 11. Execution time reductions pro-
duced by QVI over Baseline with scram-
bled input graph vertex order.

8.7% and 65% compared to Baseline). However, the increase often translated
into a decrease in the overall amount of heap memory touched during search,
especially at page sized granularities. We note that our experiments generated
virtually no page faults, which is indicative of memory traffic being exclusive to
internal memory.

In the absence of vertex clustering our implementations place vertices in
memory in G0 in the order in which they appear in the input graph. Vertices in
our input graphs are ordered in a manner that reflects the topology of the graph.
For instance, vertices in our 2D-Plane input graphs are ordered as left-to-right

rows stacked in a top-down fashion. When we scrambled our orderings we ob-
served dramatic increases in performance gains. Figure 11 shows QVI producing
improvements ranging from 28.4% to 85.2% under these circumstances. Scram-
bling reduced the likelihood of vertices in the same pre-image appearing in close
proximity of each other in memory, thus making vertex clustering and image
mapping more viable. Although such a scenario may seem artificial, consider a
graph representing a national road system, where vertices correspond to cities
and junctions. Here, it is possible for vertices to end-up in memory in an order
based on an alphabetical sort of their labels (ie. city names), thereby having a
similar effect on pre-image data proximity that vertex order scrambling had on
our graphs.

5 Related Work

Edelkamp and Schrödl address the problem of thrashing of pages at the virtual
memory level [7]. They apply their localized A* to improve the page level locality
of a route planning system. In the field of external memory algorithms we find
various techniques aimed at improving the I/O efficiency of graph search [12,
13]. Typically these methods use techniques akin to vertex clustering (grouping)
and image mapping (data redundance). For instance, blocking is used to mini-
mize the number of page faults incurred during the traversal of paths in planar
graphs. Variants of vertex grouping are also used to increase the performance
of sparse matrix multiplication [14]. Graph partitioning, needed for abstraction
generation, is a well studied problem [5, 8, 11]. Better partitioning could yield
improvements in page level locality.

The Artificial Intelligence community focuses on reducing the search space
(for example, [16]), which can produce improvements of orders of magnitude.
The gains obtained with the data structure transformation oriented techniques
presented in this paper are orthogonal to the search space reduction, and the two
techniques can be easily combined. They are also in line with performance im-
provements obtained through compiler transformations that improve data place-
ment [2, 3]. Notice however that the automated techniques found in contempo-
rary compilers are quite inept at improving data locality with respect to graph
search in general. Even with the ongoing development of profile oriented com-
pilation we forsee this to continue to be the case because techniques such as
our embedded queue and image mapping methods not only require a change in
the manner data is layed out in memory but also require changes to the search
algorithms themselves.

6 Conclusion

Research in the Artificial Intelligence and computer game communities has pro-
duced algorithms to quickly find short paths in very large sparse graphs. How-
ever, the effects of temporal and spatial locality in the implementation of these

algorithms has been mostly overlooked. This paper demonstrates that three sim-
ple data structure transformation oriented techniques can consistently improve
the performance of CR pathfinding for sparse graphs. In our experiments these
techniques improved data reference locality resulting in performance gains rang-
ing from 1.0% to 51.2%. In addition, these techniques appear to be orthogonal
to compiler optimizations and robust with respect to hardware architecture.

References

1. Personal correspondence with David C. Pottinger of Ensemble Studios.
2. B. Calder, K. Chandra, S. John, and T. Austin. Cache-conscious data placement.

In In Proceedings of the Eighth International Conference on Architectural Support
for ProgrammingLanguages and Operating Systems, pages 139–149, 1998.

3. Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure
layout. In SIGPLAN Conference on Programming Language Design and Imple-
mentation”, pages 1–12, 1999.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition, chapter Chapter 24, Dijkstra’s algorithm, pages
598–599. MIT Press, September 2001.

5. Josep Daz, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM
Computing Surveys (CSUR), 34(3):313–356, 2002.

6. Mark DeLoura. Game Programming Gems Vol 1. Charles River Media, 2000.
7. S. Edelkamp and S. Schrödl. Localizing A*. In 17th National Conference on

Artificial Intelligence (AAAI-2000), pages 885–890, 2000.
8. Norman E. Gibbs, Jr. William G. Poole, and Paul K. Stockmeyer. A comparison

of several bandwidth and profile reduction algorithms. ACM Transactions on
Mathematical Software (TOMS), 2(4):322–330, 1976.

9. R. C. Holte, T. Mkadmi, R. M. Zimmer, and A. J. MacDonald. Speeding up
problem solving by abstraction: A graph oriented approach. Artificial Intelligence,
85(1-2):321–361, 1996.

10. R.C. Holte, C. Drummond, M.B. Perez, R.M. Zimmer, and A.J. MacDonald.
Searching with abstractions: A unifying framework and new high-performance al-
gorithm. In 10th Canadian Conf. on Artificial Intelligence (AI’94), pages 263–270,
1994.

11. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph par-
titioning: application in vlsi domain. In Proc. 34th annual conference on Design
automation conference, pages 526–529. ACM Press, 1997.

12. U. Meyer, P. Sanders, and J. F. Sibeyn, editors. Algorithms for Memory Hier-
archies, Advanced Lectures [Dagstuhl Research Seminar], volume 2625 of Lecture
Notes in Computer Science. Springer, 2003.

13. M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external graph
searching. Algorithmica, 16(2):181–214, 1996.

14. Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector
multiplication. In Proceedings of the 1999 ACM/IEEE conference on Supercom-
puting (CDROM), page 30. ACM Press, 1999.

15. David C. Pottinger. Terrain analysis in realtime strategy games. In Game Devel-
opers Conference Proceedings, 2000.

16. Stuart J. Russell. Efficient memory-bounded search methods. In 10th European
Conference on Artificial Intelligence Proceedings (ECAI 92), pages 1–5, 3–7 Au-
gust” 1992.

