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ABSTRACT

One general strategy for accelerating the learning of cooper-
ative multiagent tasks is to reuse (good or optimal) solutions
to the task when each agent is acting alone. In this paper,
we formalize this approach as dynamically merging solutions
to multiple Markov decision processes (MDPs), each repre-
senting an individual agent’s solution when acting alone, to
obtain (good or optimal) solutions to the overall multia-
gent MDP when all the agents act together. We present a
new temporal-difference learning algorithm called MAPLE
(MultiAgent Policy LEarning) that uses Q-learning and dy-
namic merging to efficiently construct global solutions to the
overall multiagent problem from solutions to the individual
MDPs. We illustrate the efficiency of MAPLE by compar-
ing its performance with standard Q-learning applied to the
overall multiagent MDP. We also describe a corresponding
planning algorithm that, given complete knowledge of the
underlying single agent MDPs, uses dynamic merging to ef-
ficiently solve the multiagent MDP. We also illustrate how
the dynamic merging framework can be extended to the case
when agents use temporally extended actions, by using semi-
Markov decision processes (SMDPs) to represent variable-
length decision epochs.

1. INTRODUCTION

In this paper, we are interested in planning and learning in
cooperative multiagent systems, where agents learn the co-
ordination skills by trial and error. The main point of the
paper is simply that coordination skills are learned much
more efficiently if agents have already learned the task indi-
vidually, and use this knowledge to find an efficient multia-
gent solution.
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Consider sending a team of robots to carry out a task such as
inspecting an indoor environment for intruders. This prob-
lem is naturally viewed as a multiagent task [15]. The most
effective strategy will require coordination among individ-
ual robots. We are faced with similar teamwork problems
in our every day life. Frequently, we know how to perform a
task in isolation and we reuse the information we have about
the individual execution of the task and combine it with the
information of our teammates to efficiently find an optimal
solution for doing the task cooperatively.

In this paper, we formulate this problem as that of dynam-
ically merging multiple single agent tasks and present al-
gorithms for efficient planning and learning of multiagent
tasks by reusing agents’ knowledge about the execution of
the same task when acting alone.

We adopt the framework of Markov decision processes [10],
which has been well-studied in both single agent and multia-
gent domains. Planning and learning in multiagent systems
is much more challenging since the number of states, actions
and parameters to be learned increases exponentially with
the number of agents. In addition, since agents carry out ac-
tions in parallel, the environment is usually non-stationary
and often non-Markovian as well [8]. We do not address
these aspects of multiagent planning and learning in this
paper. In this paper, we assume that decision-making is
synchronous meaning all agents make decisions at the same
time.

We model the single agent task as an MDP and its multi-
agent version as a multiagent MDP. We illustrate how the
whole problem could be formulated as that of dynamically
merging multiple single agent MDPs into a multiagent MDP.
Then, we present an algorithm similar to value iteration,
and a new TD learning algorithm called MAPLE (MultiA-
gent Policy LEarning) for efficient planning and learning in
the composite multiagent domains. MAPLE uses Q-learning
and dynamic merging to efficiently construct global solutions
to the overall multiagent problem from solutions to the in-
dividual MDPs.

We can scale up planning and learning and make them more
efficient by using high-level (temporally extended) actions
instead of low-level (primitive) actions. In this paper, we



show that a multiagent system in which agents may choose
temporally extended actions can be formulated as a mul-
tiagent semi-Markov decision process (multiagent SMDP),
if the underlying temporally extended actions executed by
all agents are restricted to Markov options. We also illus-
trate how the multiagent dynamic merging framework and
the multiagent learning algorithm proposed in this paper
(MAPLE) can be extended to the case when agents use tem-
porally extended actions.

The rest of this paper is organized as follows. We introduce
MDPs, multiagent MDPs, and multiagent SMDPs in Section
2. Section 3 introduces the concept of dynamic merging in
multiagent systems and describes MAPLE and correspond-
ing planning algorithm for efficient planning and learning
through dynamic merging in multiagent domains by exploit-
ing the knowledge of individual agents about the single agent
execution of the same task. Section 4 presents experimental
results of using the proposed algorithms in a multiagent taxi
problem and demonstrate their effectiveness over standard
value iteration and Q-learning. Section 5 illustrates how the
dynamic merging framework and the proposed algorithms
can be extended to the case when agents use temporally
extended actions, by using semi-Markov decision processes
(SMDPs) to represent variable-length decision epochs. Fi-
nally, section 6 summarizes the paper and discusses some
directions for future work.

2. SEQUENTIAL DECISION-MAKING
FRAMEWORK

Many sequential decision making tasks are naturally formu-
lated as Markov Decision Processes (MDPs). In this section,
we begin by presenting the standard (single agent) MDP
framework and describe planning and learning using this
model. Then we illustrate the case when a collection of
agents is controlling the process and briefly present multia-
gent MDP. We also address the case when agents use tem-
porally extended actions and show how these systems can
be modeled by multiagent SMDPs.

2.1 Markov Decision Processes (MDPs)

An MDP is defined as a 4-tuple (S, A, P, R), in which S is
a finite set of states, A is a finite set of actions, P is the
transition probability function, and R is the reward func-
tion. Dynamics of the environment is defined by a transition
probability function P : S x A xS — [0, 1], where P2, de-
notes the probability that action a, when executed in state s,
transfers the system to state s’. The reward function is de-
fined as a real valued bounded function R: Sx AxS — R,
where R, is the reward of taking action a in state s and
observing state s' as the next state. In this model, a de-
terministic policy is defined as a function that assigns an
action to each state of the MDP. The value of a state under
a policy w, V™ (s), is the expected discounted sum of rewards
obtained by following policy w starting in that state. The
action value of a state under a policy 7, @™ (s,a), is the ex-
pected discounted sum of reward obtained by taking action
a at that state and following policy n afterward. The ob-
jective is to find an optimal policy 7* that maximizes the
value of every state.

When the model of an MDP is known, the optimal value

function is the solution to the Bellman optimality equations:
for all s € S,

V(s) =max() Pl [Rly + 4V (s)]) (1)

acA

The Bellman optimality equations can be solved using it-
erative algorithms such as value iteration [2, 13]. In this
algorithm, we start with an initial guess Vo and iterate for
every state s

Vi+1(s) = max( E:S Py [Riy +9Vi(s)
s'e

As k goes to infinity, V4 converges to the value of optimal
policy, V*.

Alternatively, if the model of environment’s dynamics is un-
known, the optimal action value function can be learned
using Q-learning [13].

2.2 Multiagent MDPs

In the last section, we showed that we can find the opti-
mal policy for a single agent task represented by an MDP.
However, if multiple similar agents work together in an envi-
ronment, each is modeled by its own MDP, optimal behavior
is not automatically defined. We assume that the total re-
ward of the system is the summation of the rewards of the
individual MDPs. Therefore, the goal of the system is to
select actions for each MDP at every time step so as to
maximize the expected discounted total reward over time.
If each agent can choose its action independent of the other
agents’ actions, then the solution to the composite multi-
agent MDP is the combination of optimal action for each
agent. But the individual actions of agents usually interact
with each other, the effect of one agent’s action may depend
on the actions taken by others or choosing an action by an
agent may constrain actions that can be chosen by others.

We model these composite systems as a multiagent MDP
[3], which is similar to an MDP, except that actions are
distributed among multiple agents. A multiagent MDP is
a 5-tuple (a,S, A, P,R), in which « is a finite collection
of N agents, S = S* x ... x SV is the joint state set and
A = A' x ... x AV is the joint action set. A joint action
(al,...,aN ) represents the concurrent execution of the ac-
tions a’ by each agent 4. In this model the transition prob-
abilities and rewards are as in the standard MDP, except
that they are defined over joint states and joint actions.

Taking the joint state space and joint action space to be the
set of basic states and actions, a multiagent MDP can be
viewed as a standard MDP. In this model, the optimal pol-
icy is defined as optimal joint action for each joint state and
can be computed by solving the multiagent MDP using an
algorithm like value iteration or can be learned by an algo-
rithm like Q-learning. Since multiagent MDPs usually have
huge state and action spaces (because they grow exponen-
tially with the number of agents) and complexity of these
algorithms depends on the number of states and actions,
thus applying these algorithms directly to solve multiagent
MDP would not be very efficient or likely to scale.



2.3 Multiagent Semi-Markov Decision Processes

Hierarchical methods constitute a general framework for scal-
ing planning and learning to large domains by using the task
structure to restrict the space of policies. In hierarchical
methods, actions are a generalization of primitive actions
that include temporally extended courses of action. Tem-
porally extended actions are closed-loop policies for taking
action over a period of time, such as picking up an object,
getting out of the room, and traveling to a distant city.

Hierarchical methods have been used in cooperative multi-
agent systems to speed up planning and learning by using
explicit task structure [6, 7]. A further advantage of the
use of hierarchy in multiagent planning and learning is that
it makes it possible to plan and learn coordination skills at
the level of high-level (temporally extended) actions, which
is faster and more efficient.

In order to use hierarchical methods in multiagent systems,
we define the action set of each individual agent as a collec-
tion of primitive and high-level actions. In this paper, we
model high-level actions using the options framework [14],
because this framework defines both temporally extended
and primitive actions in a general way. Options consist of
three components: a policy 7 : S x A — [0, 1], a termina-
tion condition S : S — [0, 1], and an initiation set I C S,
where I denotes the set of states s € S in which the op-
tion can be initiated. For any state s, if option = is taken,
then primitive actions are selected based on 7 until it ter-
minates according to 8. An option o is a Markov option if
its policy, initiation set and termination condition depend
stochastically only on the current state s € S. It has been
shown [14] that a set of temporally extended actions defined
over an MDP constitutes a semi-Markov decision process
(SMDP), and the theory of SMDPs provides the foundation
for the theory of temporally extended actions. Therefore,
each single agent task in which the action set is a collection
of options can be formulated as an SMDP.

Now consider a multiagent system, in which the action set of
each component agent is a collection of primitive and high-
level actions modeled by options. This multiagent system
with temporally extended actions can be defined similar to
the multiagent MDP explained in the last section, except
the joint action set is replaced by joint option set, O =
O' x...x OV . In this model the transition probabilities and
rewards are defined over joint states and joint options. Here
we assume that decision-making is synchronous, where all
agents take actions concurrently at each decision epoch. We
do not address asynchronous decision-making in this paper,
where agents take actions at individual decision epochs.

In a multiagent system with temporally extended actions, a
joint option'(ol, vy o ) represents the concurrent execution
of options o* each agent . We also need to define the event
of termination of a joint option to determine the next deci-
sion epoch of the multiagent system. When a joint option
o = (o!,...,0") is executed in state s, a set of N options
o' € o are initiated, each by an agent. Each option will ter-
minate at some random time ¢,;. We can define the event of
termination for a joint option based on either of the follow-
ing events: (1) when any of the options o° € o executed by
an agent terminates, joint option o is declared terminated

and the rest of the options being executed by agents that
are not terminated at that point in time, are interrupted, or
(2) when all of the options are terminated. Rohanimanesh
and Mahadevan showed that the set of decision epochs for
concurrent options defines a semi-Markov decision process,
if the underlying temporally extended actions being paral-
lelized are restricted to Markov options [11]. Similarly, we
can show that the set of decision epochs for joint options
in a multiagent system with temporally extended actions,
with either of the termination conditions presented above,
defines a semi-Markov decision process, if the underlying
temporally extended actions executed by all agents are re-
stricted to Markov options. This property allows us to use
SMDP planning and learning algorithms for planning and
learning over joint options.

3. MULTIAGENT DYNAMIC MERGING
ALGORITHMS

Given a task, and a collection of agents, each of which has
already computed/learned ! the optimal solution of this task
individually, we would like to efficiently compute/learn the
optimal solution for the same task when it is being executed
by all the agents at the same time. This is the situation
where a group of agents that already computed/learned the
optimal solution of a specific task in isolation (single agent
task), and now decide to do the same task together (multia-
gent task). The agents want to exploit their prior knowledge
about the single agent task to efficiently compute/learn the
optimal solution for the multiagent task. More formally, we
would like to compute/learn the optimal policy for the mul-
tiagent MDP given the optimal solutions for single agent
MDPs. We can also relax the problem and say we would
like to compute/learn the optimal policy for multiagent task
given only upper and lower bounds on the value functions
or action value functions of the single agent tasks. Given
bounds on the value functions or action value functions of
the single agent MDPs, several heuristics can be used to find
a policy for the multiagent MDP, however, these policies are
usually sub-optimal.

The benefit of using dynamic merging in multiagent systems
is to speed up computing/learning the optimal policy in a
multiagent MDP by exploiting the prior knowledge about
single agent tasks. Moreover, it could be useful to reduce
the amount of communication required for coordination in
multiagent planning, when the model of the environment is
known.

Consider a collection of N agents, each of which has already
computed/ learned the optimal solution (or upper and lower
bounds on the optimal solution) for a specific task, modeled
by a standard MDP. Now, these N agents decide to per-
form this task together and would like to compute/learn
the joint optimal policy of this multiagent task, modeled
by a multiagent MDP. The MDP for agent i is defined as
MDP* = (S%, A%, P*, R"). In the multiagent MDP of the
composite multiagent task, the state space is a subset of the
joint state space of N agents (because some state variables
are independent of the agents), the action space is the joint

!These two cases correspond to when the model of the en-
vironment’s dynamics is known and when the model of the
environment’s dynamics is unknown.



action space of N agents, the transition probabilities and
rewards are factorial and defined for joint states and joint
actions as: for all states s,s' € S and for all actions a € A,

e, = [IY, P%,» and RS, = N R% .. In the algo-
rithm proposed in this section, we assume that rewards are
non-negative for all transitions. We also assume that the
system is fully observable to each agent.

One approach to computing/learning the optimal policy for
the multiagent task would be to directly perform value it-
eration/ Q-learning to solve/learn the multiagent MDP. A
more efficient approach would make use of the existing so-
lutions (or upper and lower bounds on the solutions) of the
corresponding single agent tasks to solve/learn the compos-
ite multiagent task. In the following two subsections, we
introduce planning and learning algorithms for doing this.

3.1 Planning Algorithm

In planning, each agent knows the complete and accurate
model of the environment’s dynamics, the transition proba-
bilities and rewards of single agent MDPs and therefore, the
corresponding multiagent MDP. The goal is to compute the
optimal policy for the multiagent MDP.

In this case, we can use an algorithm based on one proposed
by Singh and Cohn [12] to find the optimal joint policy for
the multiagent system. Singh and Cohn assume that an
agent knows the optimal solutions (or more general, upper
and lower bounds on the optimal value functions) for a col-
lection of sub-tasks (MDPs) and would like to compute the
optimal solution for the composite task of executing these
sub-tasks simultaneously. They propose a dynamic pro-
gramming algorithm to exploit the agent’s knowledge about
the sub-tasks to efficiently compute the optimal solution for
the composite task. Pseudo-code for this algorithm is shown
in Algorithm 1.

Algorithm 1 Modified Value Iteration Algorithm
: Initialize (Vs € S)
i Ly(s) = maz¥  V*i(st,al)
L Uy(s) = T, V4i(s, a)
P A(s)=A
: Initialize s
: repeat
Ly(s) = mazaca(s)(Xo Pyt [Re, +7Lu(s)])
Uy(s) = mazaca(s) (o Pl [Rey +Uu(s")])
A(s) =Ua € A(s) A X2, PE, (RS, + vUu(s")]

> MATpe A(s) M P2, [R:sl+7Lv(5,)]
10: s =s" € S such that 3a € A(s), P%, >0
11: until algorithm converges

This algorithm terminates when only one joint action re-
mains for each joint state, or when the range of all joint
actions for any state are bounded by a parameter e.

In the first 4 steps of this algorithm, we define upper and
lower bounds on the value function of the multiagent MDP
denoted as U, and L, respectively, and initialize them as
Ly(s) = mazf,Li(s"), and Uy(s) = S, Ui(s*) (U and
Li are the upper and lower bounds on the value function
of MDP?). We also create the initial set of possible joint
actions for every joint state. In steps 7 and 8, this algorithm

backs up the upper and lower bounds on the value of com-
posite states using a form of equation 1. As successive back-
ups narrow the upper and lower bounds on states, the set of
actions that are considered in each state are pruned by elim-
inating any action whose upper bound value is dominated by
the best lower bound value of some other action in the action
set of that state (step 9 of the algorithm). One important
aspect of this algorithm is that it focuses the backups on
states that are reachable on currently available joint actions
from the last state (step 10 of the algorithm). It is simi-
lar to Real Time Dynamic Programming (RTDP) method
[1], which updates states on trajectories through the state
space. This property can lead to significant computational
savings. Ideas based on prioritized sweeping [9] could also
be combined into this algorithm to increase its efficiency.

3.2 Learning Algorithm (MAPLE)

In learning, the model of the environment’s dynamics, the
transition probabilities and rewards of single agent MDPs
and therefore, the corresponding multiagent MDP is un-
known to the agents. Agents learn the optimal solution of
the problem (modeled by MDP or multiagent MDP) directly
from interaction with the environment.

In this case, we assume that there is a set of IV agents that
already learned the optimal solution (or more generally, up-
per and lower bounds on the optimal action value function)
for a specific single agent task and would like to exploit it to
efficiently learn the optimal policy when they all are doing
the same task together (the multiagent version of the same
task). Therefore, the task is to learn the optimal policy
for the multiagent task modeled by a multiagent MDP. If
each agent can choose its action independent of the actions
of other agents, then the solution to the multiagent MDP
is the combination of optimal action for each agent. But
usually the effect of one agent’s action depends on the ac-
tions taken by others or choosing an action by an agent may
constrain actions that can be chosen by others. Therefore,
each agent should change its local learned policy in order to
achieve a multiagent global optimal policy.

The new learning algorithm that we present in this section
is called MAPLE (MultiAgent Policy LEarning). It uses Q-
learning and dynamic merging to efficiently construct global
solutions to the overall multiagent problem from solutions
to the individual MDPs.

In MAPLE, we use symbols Lg and Ug for the lower and
upper bounds on the action value function of the multiagent
MDP. We use Lﬁg and Ué as symbols for the lower and
upper bounds on the action value function of MDP?, If
the optimal action value function for the ** agent’s MDP is
available, then L"Q = Ué = Q"

This algorithm uses upper and lower bounds on action values
of single agent MDPs to initialize upper and lower bounds
on the action values of the multiagent MDP, and then incre-
mentally updates and narrows these bounds during interac-
tion with the environment using a form of Q-learning that
allows pruning the actions whose bounded values are domi-
nated by the bounded value of some other action. Pseudo-
code for this algorithm is shown in Algorithm 2.



Algorithm 2 MAPLE

1: Initialize (Vs € S,Va € A)

2: Lo(s,a) = mazN Q*i(st,a?)

3: Ug(s,a) = N, Q*i(s,a?)

4: A(s) = A

5: repeat

6: Initialize s

7: repeat

8: Choose a from A(s) using policy derived from Ug

(e.g., e-greedy)

9: Take action a, observe reward r and state s’
10: Lg(s,a) = (1—a)Lg(s,a)+a[r+ymaz,Lo(s',a’)]
11: Ug(s,a) = (1—a)Uq(s,a)+alr+ymaz,1Ug(s',a’)]
12: A(s) =Ua € A(s) AUg(s,a)

> mazscas)Lq(s,b)
13: s¢+— s

14:  until s is terminal
15: until algorithm converges

This algorithm first computes the initial upper and lower
bounds on the action value function in steps 2 and 3. It also
initializes the set of possible actions for each state s € S to
the action set of the multiagent MDP, A, in step 4.

During the agents’ interaction with the environment, when
the algorithm visits a state s € S, it chooses a joint action
a from the current set of available actions for state s, A(s),
using a policy derived from Ug and backs up the upper and
lower bounds on the value of the chosen action at the current
state, using a form of Q-learning backup equation (steps 10
and 11). The set of possible actions in state s is pruned by
eliminating any action whose upper bound is worse than the
best lower bound (step 12). The algorithm terminates when
only one joint action remains for each state, or when the
range of all available joint actions for any state are bounded
by a predefined parameter e.

An important aspect of this algorithm is that in each state,
only remaining actions are backed up and system transfers
to states resulting from these remaining actions. Since after
each visit of a state, usually many actions are eliminated
from the set of possible actions for that state, this property
significantly reduces the computational cost and speeds up
the learning algorithm.

This algorithm has also a desirable anytime characteristic.
If we have to pick an action in state s before the algorithm
converges (while multiple joint actions remain in the action
set for state s), we pick the action with the highest lower
bound. If a new agent (single agent MDP) arrives before the
multiagent algorithm converges, it can be accommodated
dynamically using whatever lower and upper bounds exist
at the time it arrives.

3.3 Analysis of the Learning Algorithm

In this section we analyze various aspects of the proposed
learning algorithm, including the upper and lower bound
initialization, action selection, pruning actions, and conver-
gence.

Upper Bound Initialization: For any joint state s =
(s, ...,s") and any joint action a = (a’,...,a”), the algo-

rithm initializes the upper bound on the multiagent MDP
action value function to the sum of the optimal action value
functions of the single agent MDPs,

N
Q (s=s"...,s",a=ad",..,a") < ZQ*’”(s’,ai)
i=1

Since the total reward of the system is the summation of the
rewards of single agent MDPs, if there were no constraints
among the actions of the single agent MDPs, then Q*(s,a)
would equal Efvzl Q*(s*,a’). The presence of constraints
implies that the sum is just an upper bound.

Lower Bound Initialization: For any joint state s =
(s',...,s") and any joint action a = (a’,...,a”), the algo-
rithm initializes the lower bound on the multiagent MDP
action value function to the maximum of the optimal action
value functions of the single agent MDPs,

Q*(s=s'.,s",a=a',...,a") > mazll,Q"'(s',a")

Again, since the total reward of the system is the summation
of the rewards of single agent MDPs, and since rewards are
all non-negative, if the agent with the largest optimal ac-
tion value for state s always chooses its optimal action first
and then other agents take their own actions, then the value
of the joint action will be equal at least to the optimal ac-
tion value of that agent, mazi_,;Q*(s',a’). Therefore, the
maximum of the action value functions of the single agent
MDPs is the lower bound on the action value function of the
multiagent MDP.

Action Selection: At each step, MAPLE chooses action
from the set of possible actions for current state, using policy
derived from Ug such as e-greedy.

The MAPLE algorithm prunes the set of possible actions for
current state by eliminating any action whose upper bound
is worse than the best lower bound. Therefore, after the
first visit of a state s, the upper bound on the value of each
remained action in the set of possible actions for state s, is
not less than the best lower bound. Thus, actions greedy
with respect to Up would be greedy with respect to both
Lg and Ug. The initialization of this algorithm guaranties
this property even at the first visit of each state.

Action Pruning: For any joint state s = (s*,...,s"), if
the upper bound on any joint action, a, is lower than the
lower bound on some other joint action, then joint action
a cannot be optimal and can safely be discarded from the
possible action set of state s and never needs to be reconsid-
ered. This is exactly the criterion used by our algorithm to
prune actions. Our algorithm also maintains the upper and
lower bound status as it updates them to satisfy the above
condition.

Convergence: Given enough time the proposed algorithm
converges to the optimal policy and optimal action value
function for the multiagent MDP.

If every state action pair is updated infinitely often, Q-
learning converges to the optimal policy for the multiagent
MDP independent of the initial guess Qo. The difference
between standard Q-learning and our algorithm is that we
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Figure 1: The Multiagent Taxi Domain

discard actions from the set of possible actions for each state.
The actions we discard in a state are guaranteed not to be
optimal and cannot have any effect on the action value of
that state.

4. EXPERIMENTAL RESULTS

We now apply the proposed planning and learning algo-
rithms to a modified version of the well-known taxi problem
[5]. The single agent taxi problem used in this paper is a
5-by-5 grid world inhabited by a taxi agent as shown in fig-
ure 1. The taxi problem is episodic. In each episode, the
taxi starts in a randomly chosen location. There are two
specially designated locations in this world for passenger lo-
cations (source), P1 and P2, and two for passenger destina-
tions, D1 and D2. The passenger in location P1 wishes to
be transported to location D1 and passenger in location P2
wishes to be transported to location D2. The taxi must go
to the location of a passenger, pickup up the passenger, go
to its destination location, and deliver the passenger there.
The episode ends when passengers are deposited at their
destination locations.

There are 75 states (25 locations and whether taxi is empty,
carrying passengerl or carrying passenger2) and 6 actions
(move one square in four directions, North, West, South
and East, Pickup and Putdown passenger) in this problem.
Each action is deterministic. There is a reward of -1 for
each action and an additional reward +20 for successfully
delivering the passenger. There is a reward of -10 if the taxi
attempts to execute the Putdown or Pickup actions illegally.
If a navigation action would cause the taxi to hit the wall,
the action is a no-op, and there is only the usual reward of
-1. The optimal policy in the single agent task is to find the
closer passenger and transport it first.

The multiagent version of the taxi problem is exactly the
same as the single agent problem, except now there are two
taxis in the environment. The multiagent MDP of the multi-
agent task has 5625 (75 x 75) states and 36 (6 x 6) actions.
It is easy to show that the optimal policy for this multia-
gent task is not the joint optimal policy of individual single
agent tasks. Consider the case that both taxis are closer to
one passenger than the other, then the joint optimal policy
of single agent tasks says that both taxis should move to
the location of that passenger to pick it up. But, obviously
in this case, only one of the taxis will be able to pickup the
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Figure 2: This figure shows that the MAPLE al-
gorithm proposed in this paper learns faster than
standard Q-learning in a multiagent taxi problem.

passenger and the other one fails and should re-plan to move
and pickup the other passenger.

If we apply value iteration directly to the multiagent taxi
problem, it converges and computes the optimal policy and
optimal value function for the corresponding multiagent MDP
after 12 sweeps 2, which is about 67500 (75 x 75 x 12)
backups. Whereas, the modified value iteration algorithm
proposed in this paper, initialized with the optimal solution
of single agent tasks, solve the multiagent taxi problem us-
ing less than 30000 backups. The value iteration algorithm
using dynamic merging reduces the number of backups by
pruning actions from the set of possible action set of each
state and updating states on trajectories through the state
space.

Figure 2 compares the performance of MAPLE with stan-
dard Q-learning and shows that MAPLE learns faster than
standard Q-learning in the multiagent taxi problem. In this
figure, the horizontal axis represents the number of episodes,
and the vertical axis shows the median of number of steps
until success across episodes. For each episode, the median
is the median of last 10000 episodes, calculated in terms of
the number of actions per episode. In this experiment, we
use the optimal action value functions of single agent tasks
to initialize the upper and lower bounds on action value
function in MAPLE.

In the second experiment, we terminate learning of the single
agent taxi problem after a fixed number of episodes (before
it converges) and use its non-optimal action value function
to initialize the upper and lower bounds on the action value
function in MAPLE. Figure 3 compares the performance
of MAPLE initialized with non-optimal action value func-
tion (non-optimal action value function of single agent tasks
when learning is stopped after 200 and 400 episodes) with
standard Q-learning in multiagent taxi problem. This figure

2A sweep consists of applying a backup operation to each
state in the state space.
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Figure 3: This figure shows that the MAPLE algo-
rithm proposed in this paper learns faster than stan-
dard Q-learning in multiagent taxi problem, even
when it is initialized with non-optimal action value
function on single agent tasks. MAPLE (200) and
(400) denote MAPLE initialized with non-optimal
action value functions when we terminate learning
of single agent tasks after 200 and 400 episodes, re-
spectively.

shows that despite non-optimal initialization of MAPLE, it
still learns faster than standard Q-learning.

5. EXTENSION TO MULTIAGENT SMDPS

In section 2.3, we showed that a multiagent system in which
agents may choose high-level (temporally extended) actions,
can be formulated as a multiagent semi-Markov decision
process (multiagent SMDP), if the underlying temporally
extended actions executed by all agents are restricted to
Markov options. It allows us to apply SMDP learning al-
gorithms such as SMDP-based Q-learning to these multia-
gent systems. Each joint option is viewed as an indivisible,
opaque unit of action. When joint option o is initiated in
state s, it transitions to state s’ in which joint option o ter-
minates according to one of the termination conditions de-
fined for joint options in section 2.3. We can use the SMDP
Q-learning method [4, 14] to update the joint option value
function Q(s,0) after each decision epoch where the joint
option o is taken in some state s and terminates in s':

Q(s,0) «— Q(s,0) +alr +7* _max Q(s',0) = Q(s,0)]

where k denotes the number of time steps since initiation of
the joint option o at state s and its termination at state s',
and r denotes the cumulative discounted reward over this
period.

Therefore, we can apply an algorithm similar to MAPLE
to accelerate learning of cooperative multiagent tasks with
temporally extended actions by reusing (good or optimal)
solutions to the task when each agent is acting alone (using
temporally extended actions). The algorithm would be sim-
ilar to original MAPLE, except in step 9 we take joint option

o in state s and after £ number of time steps it terminates
at state s’ and we receive reward r, which is the cumulative
discounted reward over this period. We should also replace
steps 10 and 11 in MAPLE with

Lo(s,0) = (1 — a)Lg(s,0) + afr + Y¥maz, Lo(s',0')]

Ua(s,0) = (1 — a)Uq(s,0) + afr + v*maz, Ug(s', 0')]

The analysis of the algorithm including upper and lower
bound initialization, option selection, option pruning, and
convergence remains the same as the original MAPLE algo-
rithm, except now our algorithm converges to the hierarchi-
cal optimal policy instead of global optimal policy. Hierar-
chical optimal policy is a policy that achieves the highest
cumulative reward among all policies consistent with the
given hierarchy (policy of individual options). If the policy
defined for each individual option is optimal, then hierarchi-
cal optimal policy will be the same as global optimal policy.

6. CONCLUSIONS AND FUTURE WORK

This paper addresses the problem of efficiently performing
a decision-making task using a group of agents as a team,
when each agent has already trained for this task in isolation.
We formulate the multiagent problem, modeled by a mul-
tiagent MDP, as that of dynamically merging single agent
tasks, each modeled by a standard MDP. Then, we present a
modified Q-learning algorithm called MAPLE (MultiAgent
Policy LEarning) for the multiagent MDP resulting from dy-
namically merging single agent MDPs, analyze its different
aspects, prove its convergence, and illustrate its efficiency
by comparing its performance with standard Q-learning in
the multiagent taxi problem.

Since this algorithm dynamically prunes the set of possible
actions for each state, only remaining actions are backed up
and system transfers to states resulting from these remain-
ing actions. This property significantly reduces the compu-
tational cost and speeds up the learning algorithm, because
after each visit to a state, usually many actions are elimi-
nated from the set of possible actions for that state. This
algorithm has also a desirable anytime characteristic. If we
have to pick an action in state s before the algorithm con-
verges (while multiple joint actions remain in the action set
for state s), we pick the action with the highest lower bound.
If a new agent (single agent MDP) arrives before the multi-
agent algorithm converges, it can be accommodated dynam-
ically using whatever lower and upper bounds exist at the
time it arrives.

We also described a corresponding planning algorithm simi-
lar to value iteration, to solve the multiagent MDP resulting
from dynamically merging single agent MDPs, and show its
benefits by comparing its computational cost and speed with
standard value iteration in multiagent taxi problem.

The key benefit of using the proposed algorithms for plan-
ning and learning using dynamic merging in multiagent sys-
tems is to speed up computing/learning the optimal pol-
icy in a multiagent MDP by exploiting the prior knowledge
about single agent tasks. Moreover, the idea of dynamic
merging could be useful to reduce the amount of commu-
nication required for coordination in multiagent planning,



when the model of the environment is known. Assume the
case that in a multiagent task, each agent knows only its
own state and action and the fact that other agents are sim-
ilar to it and have already computed the optimal solution of
this task individually. In this system, all agents can use the
modified value iteration algorithm introduced in section 3.1
to efficiently compute the optimal joint action and find the
current state and current action taken by the other agents
(of course, agents need to use a protocol to handle cases
where more than one optimal joint action is available in a
state [3]). Therefore, each agent needs to communicate with
others only when it moves to a state, which was unlikely to
be the destination of its current action and it happens only
in stochastic environments.

In this paper, we also address the issue of using high-level
(temporally extended) actions in multiagent systems for more
efficient planning and learning. We illustrate that a multi-
agent system in which agents may choose temporally ex-
tended actions can be formulated as a multiagent semi-
Markov decision process (multiagent SMDP), if the under-
lying temporally extended actions executed by all agents
are restricted to Markov options. We also describe how the
multiagent dynamic merging framework and the multiagent
learning algorithm proposed in this paper (MAPLE) can be
extended to the case when agents use temporally extended
actions.

In the algorithms proposed in this paper, we assume that
agents are able to observe the current states and current ac-
tions of each other. We believe that the proposed algorithms
can be extended to the case when the system is not fully ob-
servable by each agent. As future work, we intend to apply
the proposed merging algorithms to a complex multiagent
task such as AGV (Automated Guided Vehicle) scheduling
[7] and investigate their effectiveness in both observable and
non-observable systems. Also, extending the concept of dy-
namic merging into the framework of partially observable
Markov decision processes (POMDPs) is particularly inter-
esting and has many applications in both single agent and
multiagent domains.
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