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Abstract 
We propose an approach to recommendation systems that 
optimizes over possible sets of recommended alternatives in 
a decision-theoretic manner.  Our approach selects the 
alternative set that maximizes the expected valuation of the 
user’s choice from the recommended set.  The set-based 
optimization explicitly recognizes the opportunity for 
passing residual uncertainty about preferences back to the 
user to resolve.  Implicitly, the approach chooses a set with 
a diversity of alternatives that optimally covers the 
uncertainty over possible user preferences.  The approach 
can be used with several preference representations, 
including utility theory, qualitative preferences models, and 
informal scoring.  We develop a specific formulation for 
multi-attribute utility theory, which we call maximization of 
expected max (MEM).  We go on to show that this 
optimization is NP-complete (when user preferences are 
described by discrete distributions) and suggest two 
efficient methods for approximating it.  These 
approximations have complexity of the same order as the 
traditional k-max operator and, for both synthetic and real-
world data, perform better than the approach of 
recommending the k-individually best alternatives (which is 
not a surprise) and very close to the optimum set (which is 
less expected).   

Introduction 

Recommender systems can help people select from large 
numbers of alternatives.  Approaches to recommender 
systems include content-based systems (Basu et al. 1998), 
collaborative filtering (Konstan et al. 1997), hybrids 
(Popescul et al. 2001), case-based retrieval (Bradley and 
Smyth, 2001), and qualitative preference inference 
(Faltings et al. 2004).  Some of these systems rely on 
explicit preference elicitation, which has been studied in 
computing science (Boutilier 2002) and in marketing 
science as conjoint analysis (Green et al. 1990) and stated-
choice models (Louviere et al. 2000). 
 Each of these systems relies on some kind of 
representation of users’ preferences.  Since information 
about users is incomplete and uncertain and since 
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preference representations are often based on simplified 
models of users and alternatives, the single best alternative 
for the user is uncertain.  The common solution to this 
problem is to present the user with a set of the top-k 
alternatives (typically k ≤10) in the hope that one of these 
alternatives will be the true best.   
 Unfortunately, providing the top- k  alternatives may not 
provide for diversity in the recommendation set.  Imagine 
that a user is seeking a book from an online retailer, and 
that the retailer has used elicitation or data-mining to 
determine that the user is interested in one of its large 
number of “machine learning” texts.  Using a utility 
framework, the retailer might recommend the top- k  books 
ranked highest according to a measurement scale 
consisting of the user’s utility function.  Using a qualitative 
preference model, the retailer might recommend a set of 
books most consistent with the user’s stated preference 
constraints according to a measure of the extent of 
constraint violations.  Neither approach explicitly takes 
into account diversity in the set of possible user 
preferences.  And for both approaches, one could easily 
end up with a recommendation set containing ten editions 
of the same book.  The problem is that including an 
alternative in a set that already contains similar alternatives 
does not add potential value for the user.  Instead, an ideal 
text recommendation set would incorporate diversity in 
price, technical depth, availability, number of pages, 
authorship, etc.  This diversity should be tailored to the 
system’s uncertain prior beliefs about the user.  For 
example, if most users are non-experts, then most of the 
selection should be tailored to non-experts.   
 Related problems arise in collaborative filtering.  Here, 
the user is matched with the previously encountered users 
with the most similar profiles of past choices.  Typical 
nearest neighbor approaches do not explicitly take into 
account possible diversity of the selected neighbors or 
their past choices.  The optimal recommendations should 
again be chosen to cover this diversity. 
 The simplest way to provide diversity in the 
recommendation set is to suppress duplicated alternatives.  
In the book-selling context, class reasoning could be used 
to recognize that different editions are equivalent.  Class 
reasoning, however, does not handle partial similarity.   
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 Alternatively, we could apply a dissimilarity heuristic to 
ensure that the recommendation set does not become 
degenerate (e.g., Bradley and Smyth 2001).  Dissimilarity 
measures guarantee that the set contains alternatives that 
differ in attributes, but these measures do not take into 
account partial knowledge about the user’s preferences.  
As a result, diversity in the recommendation set will not be 
tailored to individual users.  In any case, the use of a 
diversity heuristic may push some of the highest-ranked 
alternatives out of the set resulting in the need to make a 
difficult tradeoff between including alternatives that are 
preferred a priori to those that provide diversity. 
 Our main contribution is to show that recommendation 
sets can be constructed optimally using a simple 
formulation of the expected value of a user’s choice from a 
set and that the resultant set optimally matches the 
diversity of alternatives in the recommendation set to the 
uncertainty present in the system’s prior beliefs about the 
user’s preferences.   
 In the remainder of the paper, we review paradigms for 
representing uncertain preferences; we propose specific 
optimization criteria to implement the notion of covering 
preference uncertainty; we provide an extended illustration 
of such an optimization; we show that one formulation of 
this optimization problem is NP-complete; we introduce 
two algorithms that approximate this optimization, and we 
apply these algorithms using synthetic and real-world data 
to explore the extent of the gain from our approach.   

Uncertain Preference Representations  
We consider a user facing a choice from a large set of 
alternatives .  To help find the best 
alternative, the user consults a recommender system that 
makes use of information about the user’s preferences.  
This information can be represented in a variety of forms.   

},,1{ nS K=

 In multi-attribute utility theory (MAUT), the utility of an 
alternative  is represented by a function u  of the 
attributes of the alternative, described by the vector 

 (for the textbook example, 
attributes might include price, technical depth, and number 
of pages).  The framework is very flexible: several 
representative classes of utility functions appear in Table 
1.  Utility functions with complex dependencies can also 
be described by explicit conditional functions represented 
by a graph structure (Boutilier et al. 2001). 

i
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 Uncertainty in the MAUT framework can be described 
by a distribution  over parameters θ  of a family of 

utility functions .  Often the distribution can be 
factored into per coefficient components (e.g., 

 )   
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Table 1.  Representative utility functions 
 

miii aau ,11,1),( θθ ++= Lθa  Linear model 

∑ −=
j jjiji au 2

, )(),( µθθa . Ideal-point model 

)1(),( 1,3,2,1,1 iiiii aaaau −= θθa  Dependencies and 
correlations 

)log(),( , jii au =θa  Diminishing utility 
 
 Elicitation in the MAUT framework makes use of 
Bayesian techniques to integrate prior beliefs about  
with information obtained subsequently from explicit 
preference elicitation or data-mining of past choices.  
Coefficients can be estimated directly from numerical user 
preference ratings

θ

1 analyzed with (conjoint) regression 
techniques or indirectly from users’ choices from 
alternatives described by attribute “profiles”2 analyzed 
with logit or probit (choice) models.  The latter (choice 
modeling) eliminates the need for a user to assign explicit 
numerical ratings to alternatives.   
 Recommendation in the MAUT framework has 
traditionally used expected utility.  One calculates the 
expected value of each alternative under all possible utility 
parameter realizations (for the discrete distribution case, 

∑≡
t ttuEU )Pr();()( θθaa ) and chooses the -highest 

expected utility alternatives.   

k

 Recently there has been a resurgence of interest in 
qualitative preference representation.  Ceteris paribus 
reasoning (Boutilier et al. 2004) allows the user to express 
preferences through comparisons of specific alternatives or 
properties of these outcomes conditional on other aspects 
of the world.  Graphical representations with clear 
semantics (e.g., CP-nets) make it easy to decompose 
complex dependencies.  The avoidance of specific 
numerical probabilities can simplify elicitation.   
 Algorithms have been developed to determine non-
dominated sets of alternatives in CP-nets without explicit 
use of utility functions.  If no recommendation satisfies the 
user’s preferences, recommendations can be made by 
choosing alternatives that minimize some function of 
preference violations (Faltings et al. 2004).  Uncertainty in 
qualitative preferences, represented by missing preference 
information, can lead to large increases in the size of the 
set of non-dominated alternatives.  When the set is too 
large to directly display, recommendations can be made by 
randomly sampling from this set (ibid.).  

                                                 
1 An example of a numerical preference rating might be 
“rate the importance of battery life from 1 to 10.”   

2 An example of a choice set consisting of two attribute 
profiles might be  

  (1) Long battery life, built in networking, small display;  
  (2) Short battery life, an expansion slot, large display.  
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Formalizing Preference-Covering Sets 
We now formalize our intuition about covering preference 
uncertainty.  We focus on covering algorithms using the 
multi-attribute utility theory framework, because MAUT is 
currently the most widely-used framework for uncertain 
preference representation in economics, marketing, 
finance, medicine, and other fields.  We comment briefly 
on covering set approaches for other preference 
representations at the end of the section.   
 Traditional methods rank alternatives individually based 
on a (one-dimensional) scoring criterion and recommend 
the set consisting of the k-highest alternatives.  We refer to 
such an approach as a k-individually best (KIB) method.  
For example, in the MAUT framework, the KIB method 
scores alternatives individually by expected utility.   
 Note that the KIB method's selection of alternatives 
individually prevents it from optimizing the diversity of 
the resulting set.  As we argued in the introduction, any 
system that fails to explicitly optimize diversity in the 
recommendation set to cover the uncertainty in user 
preferences will be suboptimal.  In stochastic 
programming, it has long been recognized that 
optimization in an uncertain environment requires explicit 
consideration of the uncertainty present in the system 
(Sengupta 1972).  We now formally show how this insight 
applies to recommendation set generation.   
 We begin by observing that the expected utility to users 
of a recommendation set is dependent on the set elements 
jointly, not on each element individually.  We accordingly 
want to maximize the expected value of a user’s selection 
from a set M of k alternatives offered jointly.   
 Suppose that the system knows that each user has a 
utility function in a known parameterized family.  In 
particular, a user with parameter vector θ  will obtain 
utility  from an alternative .  Such a user will 
choose the alternative with the highest expected utility, and 
the value of the user’s maximal alternative is 

.   

);( θaiu ia

),(max* θaθ iSi
uu

∈
=

 For any given user, however, the system does not know 
with certainty the parameter vector θ ; but we assume that 
the system knows the probability (or probability density) 

 that any particular θ  is realized.  This distribution 
integrates prior beliefs, past experiences with the present 
user or other users in the population, and any explicit 
elicitation we have been able to perform.   

)(θp

 We compute the expected value of the user’s maximal 
alternative  with respect to our uncertainty about the 
user’s utility function.  We call this criterion “emax.”  
Equations (1) and (2) give the discrete and continuous 
forms of the emax criterion, where M is the proposed set of 
alternatives and p is the distribution over the utility 
parameter vector θ .   

*
θu

 ∑
∈

=
t ttiMi

pupM )()};({max),emax( θθa  (1)  

  (2)  ∫ ∈
=

θ
θθθa dpupM iMi

)()};({max),emax(

 In this paper, we assume that, given a set of alternatives, 
the user can determine the utility of each alternative and 
normatively chooses the best one.  The expected value of 
the user’s choice from a set M is, thus, the expected utility 
of the maximal alternative in M as described by the emax 
criterion.  In this context, the emax criteria is the best 
available summary measure (and the correct normative 
measure) of the utility that a recommendation set is 
expected to provide users.   
 We can directly maximize the “emax” criterion 
(continuous or discrete) to find the optimal 
recommendation set M* .  We call M*  the maximal 
expected max set, or the MEM set, for short.3   

  (3)  [ ),emax(argmax
||,

* pMM
kMSM =⊂

= ]

                                                

 Unlike KIB methods, MEM-set methods directly 
optimize the normative emax measure.  Since the MEM set 
is maximal over all possible k-element recommendation 
sets, including the KIB set, it always has emax score at 
least as high as the KIB set.  Therefore, MEM-set methods 
are normatively superior to KIB methods.   
 Qualitative preference models are not the focus of this 
paper, but an analogous formulation can be developed for 
this case.4    

 
3  The argmax operator returns the set of items that 
maximizes the expression given in its argument: 

)}(max)(|{)]([argmax jfifiif
SjSi ∈∈

==  

4  Here we must address two cases.  When preferences 
over-constrain the recommendation set, we use standard 
qualitative preference concepts to choose alternatives that 
break the fewest and “least important” preference 
constraints.  Since we are choosing a set, however, we 
need not include alternatives that break the same 
preference constraints.  Formally, let  be the set 
of preference violations of alternative  in the CP-net 
with parameter vector .  Let  be the count of 
preference violations for alternative i .  Let 

);vio( θi
i

θ );(# θi

∑ ∈
=

Mi
iM );(#);(# θθ  be the total violations in set 

M .  We then optimize: 
);(#argmin

)vio()vio(,,,..

* θMM
jiMjikMtsSM ≠∈∀=⊂

=  

  When preferences are under-constrained, we can select 
alternatives that increase diversity.   
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Extended Example 
In this section we demonstrate the emax and optimal MEM 
set concepts with a simple example that assumes extreme 
diversity in consumer preferences.   
 For the purposes of the example we consider a simple 
laptop computer market.  The  alternative in the market, 

, corresponds to a specific laptop configuration.  Each 
laptop alternative is described by a two-element vector of 
real-valued attributes, , representing clock-rate 
and battery life, respectively.  We might imagine that our 
market contains a high performance laptop, 

, two medium performance laptops, 

 and , and a low 

performance laptop, .  In this representation, 
each laptop can be viewed as a point in attribute space (see 
Figure 1).   

ith

a i

],[ 21 aa

]1,05[.=ha
]6.0,5.0[1 =ma ]5.0,6.0[2 =ma

]05.,1[=la

 We assume that the space of user preferences is 
characterized by two discrete groups of users: “video 
editors” and “traveling executives.”  In this example, we 
assume that video editors want raw processing speed and 
traveling executives want maximum battery life; we 
represent these preferences by vectors  and 

 respectively. We represent each preference 
type as a vector with its tail at the origin of attribute space 
and its tip at the point given by the -vector.  By 
construction, these two preference vectors coincide with 
the vertical and horizontal axes in Figure 1.   

]1,0[=vθ
]0,1[=eθ

θ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Attribute space showing alternatives as 
points and user preferences as vectors 

 We express user ’s utility function as a -weighted 
linear combination of the alternative’s  attributes  

t tθ

 didtititti aau ,,1,1,),( θθ ++=⋅= Kaθθa .   (4) 

Equation 4 can be geometrically interpreted as the 
unnormalized projection of alternative a  onto user ’s 
preference vector .  In Figure 1, we see that the high 
performance laptop  projects very high on the video 
editor’s preference vector , but very low on the 

traveling executives vector .  The situation is reversed 
for the low performance laptop 

i t
tθ
ah

vθ

eθ
a l .   

 Suppose we would like to construct a two-element 
recommendation set.  A KIB approach would compute the 
expected value of each alternative and choose the top two.  
 Let us assume a priori that either user type is equally 
likely, so that 5.0)()( == ev pp θθ . The expected utility 
of an individual alternative is, thus, 

 

.
))((

)()());((

i

it tt

t titi

p
puE

aθ
aθθ
θaθθaθ

⋅≡
⋅=

⋅=

∑
∑

 (5) 

Therefore, the expected utility function of a single 
alternative is essentially the utility of the alternative for the 
“average” user with preferences described by 

)5.0,5.0(=θ .  The expected utility of each of our 
laptops, individually, is as follows:   
Alternative ah  am1 am2  a l  
E.U. 0.525 0.55 0.55 0.525 

 In contrast to expected utility of individual alternatives, 
the emax criterion is calculated on sets.  It provides the 
expected utility of a user’s choice from an alternative set 
(recognizing possible user types).  The emax values for 
three particular two-element sets are as follows: 

a l

eθ

vθ

Battery life

C
l
o
c
k
r
a
t
e

a h

Alt. Set  {am1,am 2}  },{ 2 hm aa  {ah ,a l} 
Emax 0.6 0.8 1.0 
 KIB Set Greedy Set* MEM Set 
*Discussed later in the section on the GMEM algorithm.   

 A KIB method, based on individual expected utility, 
would choose the set of two alternatives that project 
highest on θ , namely .  Unfortunately, neither 
of these alternatives is most preferred for either video 
editors or traveling executives.  Indeed, the KIB method 
generates the worst possible two-element recommendation 
set in this example.   

},{ 21 mm aa

 The MEM set method chooses the set of two alternatives 
that directly maximizes the expected utility of the user’s 
choice from that set.  In this example, the MEM set will 

am1

am 2

θ

a la l

eθeθ

vθvθ

Battery life

C
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o
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a ha h
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am 2am 2

θ
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consist of {ah ,a l} and will provide each user type with 
his or her preferred alternative.   
 In general, a k-element recommendation set permits 
sufficient diversity of alternatives to allow the 
recommendation system to provide k types of users with 
their optimal alternatives.  When there are more user types 
than elements in the recommendation set, the MEM set 
method will choose sets that optimally substitute more 
generic alternatives capable of satisfying more than one 
user type.  In either case, the MEM set method will 
provide an optimal cover set.   

Computational Complexity of MEM-Sets 
It is not obvious that a tractable optimal MEM set 
algorithm exists.  A naïve version of a MEM set optimizer 
must enumerate all k-element subsets of the n alternatives 

requiring 
n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≥

n
k

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k

 emax evaluations.  In particular, we 

show below that the discrete version of the Maximum-
expected-max (MEM) set optimization is NP Complete.  
We give an outline of the reduction from the NP complete 
k-medians problem (see Young 2000 for the setup of the k-
medians decision problem).   

Theorem: MEM solves any instance of k-medians 
In k-medians, we are given a set of locations L, and a 
distance metric  between locations .  The solution 
is the k-element subset of L, called M (i.e., the medians of 
L), such that the sum of the distances from every member 
of L to the nearest member of M is minimized 
(equivalently, we have consumer’s living in n cities and 
choose to locate stores in the subset of k cities that 
minimizes the total commute time from any city to a city 
with a store).  The k-medians optimization is given by the 
first line of Equation (6).   

di, j i, j
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}{minminarg

','

','

','

 (6) 

 The k-medians optimization can be transformed to a 
MEM set optimization.  We can substitute max’s for min’s 
by negating the distance metric.  We can introduce the 
constant1 m , where  is the number of discrete user 
types, without altering the solution to the optimization.  
The result is equivalent in form to the MEM set 
optimization (Equations (3) and (1)) with 

m

S = L , =L, }{θ
mp 1)(. =∀ θθ  and  where  is a 

set of all user type parameters.  Intuitively, one could 
imagine that every location in L is both a possible 
alternative and a user type.  We connect users to 
alternatives via negated distance. Computing the MEM-set 
on the transformed problem results in the set of nodes with 
minimum sum of minimum distance to all other nodes as 
required.  Since the k-medians problem is NP complete, 
we conclude that MEM-set problem is NP complete.  One 
can also transform the MEM-set problem into a 
constrained k-medians problem (proof available from the 
authors).  This might allow one to approximate MEM-set 
problem solutions using sophisticated non-metric -
medians algorithms (see Young 2000 for details).   

jiji du ,);( −=θa }{θ

k

 Real applications may involve specific subclasses of 
alternative and user type distributions.  It may be possible 
to exploit properties of these distributions to provide 
tractable optimal algorithms for the MEM-set problem.   

MEM-set Algorithms  
One could use sophisticated approximation algorithms to 
get guaranteed performance, however, we are primarily 
interested in quickly computing recommendation sets on-
line.  As a starting point, we focus on relatively simple, 
fast heuristic algorithms.   

1.  GMEM is a greedy approach to constructing MEM sets 
that successively adds the alternative to M that most 
improves the emax score of the current recommendation 
set. We start with the empty set M0  and iteratively add to 
it until we have  alternatives in the set: k

 M j +1 = M j ∪ argmax
i∈(S−M j )

emax(M j ∪ i, p)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (7) 

This algorithm is linear in the number of alternatives n and 
the set size k (i.e., O(nk)).  The complexity of GMEM is 
only a constant factor more than that of KIB methods.   

2.  2MEM is a greedy local-search algorithm.  We start by 
calculating a complete k -element greedy set Mk  using 
GMEM as above. We then successively re-optimize each 
element of Mk  greedily, holding the other elements 
constant.  We continue as long as we are making progress 
(i.e., until we reach the fix point defined by Equation (8)).  
This technique is a variation of  the 2-opt heuristic (Croes, 
1958) in the combinatorial optimization literature.   

 ),)/emax((maxarg/
,,,1allFor

)(
pjiMiMM

ki

k
iMSj

kk
k

∪∪=
=

∪−∈

K
 (8) 

3.  CMEM is a complete enumeration method based on a 
direct implementation of Equation (3).  It simply computes 
emax on all possible -element subsets. It is optimal, but k
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intractable on large sets of alternatives.  We include it here 
for benchmarking purposes. 

Empirical Investigation of MEM sets  
In this section we assume that preference elicitation has 
been completed and that we are trying to find a desirable 
set of alternatives to recommend to a user first entering a 
website.  We examine the benefits of MEM-sets 
empirically in two settings.  In the first setting, we analyze 
the gains from MEM-sets as a function of the distributions 
of alternatives and user types.  In the second setting, we 
demonstrate the benefits of MEM-sets on the real-world 
application of recommending apartments to students. 

Sensitivity of MEM-set gains to Distributions 
MEM sets improve over KIB sets by selecting alternatives 
that cover the diversity in user types.  The user types can 
be covered only if there is also diversity in the alternative 
set.  The possible gain of the MEM set will therefore be 
moderated by the diversity of both the alternatives and the 
user types.  An equivalent line of reasoning starting from 
the no diversity case leads to the same conclusion: If there 
is little diversity in alternatives, then any alternative from 
the set will satisfy any consumer about as well (i.e., the 
notion of a recommender system is redundant).  Similarly, 
if there is a single user type, there is no uncertainty about 
preferences, and a single best alternative can always be 
recommended.   
 In our simple example, both alternatives and user types 
are expressed in a three-dimensional space (e.g., laptops 
with clock rate, battery life, and hard disk storage).  Within 
this space, alternatives and user types are assumed to lie on 
the surface of the positive octant of the unit sphere.  This 
simplifying assumption roughly models the fact that 
dominated alternatives (those falling inside the sphere) are 
generally eliminated by marketplace dynamics.  Where this 
is not the case, recommendation is not necessary since we 
can give everyone the same dominating alternative.   
 We model diversity in both user types (distribution of 
parameter vectors θ ) and alternatives as ranging from 
uniform over the whole space to highly clustered.  The 
range is represented formally by the “bathtub” density in 
Equation (9) formed from an α -normalized combination 
of two easy to sample polynomial densities.  The density is 
uniform when the clustering parameter c is zero, 
increasingly convex with increasing values of c, and 
largely concentrated at 0 and 1 as c goes to infinity.  

 Pr(Y = x;c) = α
(x − 0.5)c 0.5 > x ≥1.0
(0.5 − x)c 0 ≥ x ≥ 0.5

⎧ 
⎨ 
⎩ 

 (9) 

 Since the surface of the sphere is two-dimensional, we 
draw samples of alternatives and samples of user types 
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Figure 2.  MEM set gain as a function of segmentation 
 
from a two-dimensional version of this “bathtub” function. 
Both alternatives and user types use the same value of c .  
When c is 0, the alternatives and user types are spread out 
uniformly over the sphere’s surface.  When  is infinite, 
the alternatives and utility functions are concentrated at the 
corners of the positive octant of the sphere.   

c

 We then generated artificial markets to empirically 
compare KIB and MEM methods.  For each market, we 
randomly drew 20 alternatives and 5 utility functions.  We 
then evaluated the emax criteria on CMEM, GMEM, 
2MEM, and KIB sets.  Gain was calculated as shown in 
Equation (10): 

 gain =
emax(MEM) − emax(KIB)

emax(KIB)
. (10) 

Figure 2 shows the average gain in expected utility for 
using MEM sets over KIB sets.  Each point in the graph 
represents 20 simulated markets.  We can see that the gain 
is roughly the same for optimal CMEM (top line) and 
greedy GMEM (bottom line). 2MEM gains are only 
marginally worse than CMEM. For uniformly distributed 
alternatives and user types (c=0) the gain is about 5%.  The 
gain increases steadily as the clustering coefficient c  
increases and reaches an asymptotic upper bound as c 
becomes large.  We have seen gains in the 90% range at 
the extreme end of the clustering parameter, but these do 
not necessarily reflect realistic markets.  We also observed 
that the execution time of CMEM grows rapidly with set 
size while greedy GMEM grows linearly as predicted.   

Recommendations for Apartment Renters 
Since MEM set gains are sensitive to input distributions, it 
is important to test the algorithms on real-world data.  We 
chose apartment recommendations for our test.  Our basic 
model is that students approach the university housing 
office with an imprecise notion of the market.  We hoped 
to generate small samples representing the market to give 
them an idea of what is available.   
 We obtained an apartment utility model from a study 
done of students at a North American university (Elrod et 
al. 1992).  The study concluded that four factors explained  
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student preferences well: number of bedrooms in the 
apartment, the monthly rent, distance to campus and 
perceived safety of the neighborhood.  Regression analysis 
suggested that a simple random coefficients model of the 
form 
 u(x) = aroom xroom + arent xrent + adist xdist + asafe xsafe   

explained students’ preferences.  Elrod’s estimates of the 
parameters appear below: 

Table 2.  Coefficients for student utility function 

 Bedrooms Rent Distance Safety 
Mean 0.45 -0.51 -0.13 0.21 
Std. dev. 0.41 0.37 0.17 0.23 

 
 To simulate market diversity, we sampled utility 
functions randomly using the mean and variances given 
above.  We obtained our alternatives from the off-campus 
apartment listings.  We selected two months of 1 and 2 
bedroom apartments with a particular configuration of 
utilities (roughly 60 apartments) and removed 2 apartments 
that strictly dominated all others.  We note that the 
problem as formulated, has relatively little cluster structure 
in the user type distribution due to the linear utility family 
employed.  We would therefore expect moderate gains.  
Results were averaged over 20 runs and appear in Table 3.    

Table 3.  Results of apartment recommendations 

Method KIB CMEM GMEM 
Avg. value in utils -0.024 0.168 0.165 
Std. dev. in utils 0.0638 0.0646 0.0653 
Approx. gain in $s N/A $90 $89 
Recommended sets 
from one run {6 11 9} {22 4 16} {22 4 6} 

 
 The results represent net utility (utility – cost).  Both 
greedy and complete MEM sets return higher expected 
utilities than KIB (2MEM results were essentially identical 
to CMEM).  The differences between the greedy and 
complete methods are negligible.  Note that the greedy 
method used one of the sub-optimal apartments from KIB.   
 The gain in utility can be interpreted in dollars.  From 
the coefficients we see that one bedroom is worth 0.45 
“utils.”  In the relevant rental market, average rents are 
$526, $774, and $949 for 1, 2, and 3 bedroom apartments.  
An extra bedroom is worth roughly $212, so a util is worth 
around $470 (=212/.45).  Apartments have few parameters 
with a small number of discrete levels.  Uncertainty is 
resolved very quickly and segmentation is low.  Despite 
this conservative scenario we still see gains of roughly 
10% in expected utility.  Furthermore, these gains can be 
obtained by GMEM, which has time complexity only a 
constant factor more than the traditional KIB method.   

Future Work 
In this paper we have presented an approach for generating 
recommendation sets.  Several extensions and promising 
avenues for future research suggest themselves:   
 1.  Determine the optimal set size k*.  This can be done 
by calculating optimal MEM-sets, and associated emax 
scores, for successive values of k.  The optimal set size is 
chosen using a selection criterion consisting of the emax 
score less a penalty for larger set sizes (associated with 
cognitive or economic costs).   
 2.  Include the recommender’s interests in the objective.  
Rather than maximize expected user utility, one might, for 
example, optimize expected recommender profits or 
minimize expected inventory holding cost.   
 3.  Model the ordering of alternatives within the set.  
The recommender system can be made more useful as 
decision aid if alternatives with higher incremental 
expected utility contributions are ranked higher in the set.   
 4.  Derive preference covers for qualitative preference 
and collaborative filtering paradigms.   
 5.  Develop new preference cover algorithms.  In 
particular, one could apply currently available polynomial 
time ε-optimal approximation algorithms developed for 
related k-medians and facility location problems.  It may 
also be desirable to consider implicit enumeration and 
traditional AI methods, such as A-star.   
 6.  Consider the computational complexity of MEM-set 
optimization.  One could explore ways to exploit 
knowledge about common preference distributions to get 
better bounds on gains and time complexity.   
 7.  Extend adaptive preference elicitation (Boutilier 
2002) and adaptive conjoint analysis (Johnson 1974) to 
generate sets rather than individual recommendations.   
 8.  Replace the presentation and modification of single 
alternatives in critiquing approaches (Burke, Hammond, 
and Young 1997) with the presentation of a MEM-set and 
selection of representative elements in this set.  The MEM 
set represents a cover of the space of alternatives 
consistent with what is known of user preferences.  
Selection of an alternative from the set would 
communicate preference information that would then be 
used to generate a refined MEM set.   
 9.  Explore applications of MEM set optimization in 
various domains, including (a) standard e-commerce 
applications (to help online consumers focus on subsets of 
relevant products in a desired category), (b) retail 
assortment planning (to help retail buyers or store 
managers select products in a given category to carry in a 
dedicated amount of shelf space); (c) real estate and similar 
services (to help real estate agents recommend a selection 
of houses for clients to visit); and (d) team selection (to 
help managers of teams or companies choose the set of 
players or employees that maximize the probability of 
achieving a desired goal, such as a point score or profits).  
The first two applications could involve movie, apparel, or 
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other large-assortment categories.  The first three 
applications would be based on explicit preference 
elicitation or classification of users into consumer 
segments calibrated on conventional market research 
studies.  Personalization can be achieved using dialog 
scripts to invoke the relevant segment preferences.   

Conclusions 
In contrast with traditional recommenders that consider 
each alternative separately, the MEM-set approach 
developed in this paper explicitly optimizes over possible 
sets of alternatives.  The approach produces a diversity of 
alternatives in the recommendation set that optimally 
covers the uncertainty over possible user preferences.  The 
resulting sets generally have higher expected utility (and 
never less).  Though intractable to compute optimally, 
heuristic algorithms can provide large gains over 
traditional “k-individually best” methods.  While the gains 
from MEM sets are moderated by diffuse distributions of 
alternatives and user types, gains can be found even in 
cases like the study of apartment recommendations 
described above.  From a practical point of view, higher 
expected utility can be achieved with exactly the same 
information about the user at the price of a small increase 
in computation.  We conclude that MEM sets offer a 
simple, practical, and effective approach to building 
recommenders that fully maximize utility. 
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