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Abstract 
Automated tumor segmentation from magnetic resonance imagery (MRI) plays a significant role in 
cancer research and clinical practice. However, tumor segmentation is an extremely challenging task: 
clinicians believe that a gamut of prior domain knowledge and clinical data should be used, along with the 
MR image. As a step toward tumor segmentation, we illustrate here a real-time algorithm to locate the 
brain abnormality in an MR image by putting a bounding box around it. Our approach is based on left-to-
right symmetry of the brain. In additional to being real-time, some advantages of the proposed algorithm 
are: (a) it requires no registration of MR images, (b) it needs no training image and (c) it is independent of 
intensity variations across MR images. Our detection algorithm can play a useful role in indexing and 
storage of MRI data and as an initial step toward accurate tumor boundary delineation. 
 
Introduction 
Automated tumor segmentation from brain MR (magnetic resonance) images can play a significant role in 
medical research and clinical practice. Many clinical centers currently maintain large amounts of archived 
Magnetic Resonance (MR) images of brain tumors.  Unless these images are segmented, however, it is 
difficult retrieve the relevant images, for analysis – e.g., allowing a clinician to use tumor location to 
retrieve historical cases relevant to the diagnosis and treatment of cancers in new patients. Moreover, 
radiologists currently segment patients’ tumors by hand on MR images before applying a treatment such 
as radiation therapy. This manual segmentation process is laborious and expensive. 

Automatically segmenting tumors in brain MRI is an extremely challenging task. For an account 
of this topic from image analysis and machine learning perspective, see [7]. There are many challenges 
here, many corresponding to the challenge of incorporating domain knowledge. On the computational 
front, pixel labeling algorithms, such as support vector classifiers,  which learn local features (computed 
within a window around a pixel), are not adequate to segment brain abnormality (tumor, edema, etc.). On 
the other hand, incorporation of global region-based features is non-trivial and computationally intensive 
[2]. Attempts have also been made to incorporate pixel classification and region similarity (see [2], [5]). 

In this paper we describe a fast method for locating a bounding box around the region of 
abnormality. The algorithm is suitable for indexing tumor images for archival and retrieval purposes. In 
database applications the typical query will be based on the location of the tumor as well as the size of the 
tumor; both of which can be approximately indicated by the bounding box created by the proposed 
algorithm. This approach can also help to find an accurate segmentation boundary, as we later illustrate. 
Our method exploits the facts that a normal brain structure is symmetric – the left part and the right part 
can be divided by an axis of symmetry, and abnormalities (tumors, edema) typically disturb this 
symmetry. However, note that the symmetry is only approximate, even if the axis of symmetry is found 
correctly. Moreover, finding the axis of symmetry accurately is difficult. Thus, we carefully exploit the 
approximate left-right symmetry in our algorithm, which is, to a good extent, resilient to the error in 
locating the axis of symmetry. We next define the proposed technique, first presented earlier in [6]. 
 
Proposed Technique 
Consider the change detection problem: find the region of abnormality D from image I using a reference 
(or template) image R that does not involve any abnormalities (Fig. 1(a)). An obvious way would be to 
compare the images I and R point-wise, looking at the absolute point-wise difference image |I-R|. If R 
matches with I everywhere except within the region D, then |I-R| is a good pattern image to detect the 
region D. In the real world, the difference image |I-R| is quite noisy; moreover the available reference 
image R almost never matches with I by point-wise comparisons. In other words, it is often the case that 



the available template image R matches I approximately, and only after applying displacements: 
),,()),(),,(( yxIyxgyyxfxR ≈++  where f(x, y) and g(x, y) are respectively the x and y 

displacements; n.b. these are not constants, but vary with the (x, y) position. If one can reliably estimate 
these unknown displacement functions f and g, then our original problem of finding the region D can be 
solved by forming the aforementioned difference image after applying f and g to the domain of the 
template image R: .|),()),(),,((| yxIyxgyyxfxR −++  However, finding the displacement functions 
is certainly a non-trivial problem and (we will see) is not necessary for the aforementioned detection 
problem. 

We detect the abnormal region D by using image intensity histograms from I and R. Our 
approach completely avoids computing the displacement functions f and g, which is a major advantage as 
we believe determining these functions is much more difficult than the original detection problem. To 
help illustrate our algorithm, consider Fig. 1(a), with a horizontal dotted line drawn at a distance s from 
the top of the images. Now consider the regions: ],,[],0[)(and],,0[],0[)( hswsBswsA ×=×=  
where w and h are respectively the width and the height of both the images I and R. Thus A(s) and B(s) 
are the portions of image domain respectively above and below the aforementioned horizontal line. Let 
E(s) denote the following score function: 
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where P’s denote normalized intensity histograms (probability mass functions of image intensities), the 
subscripts indicate whether this histogram is of image I or of template R, and the superscripts denote 
whether this histogram is computed within the region T(s) or within the region B(s). For example, 

)(sT
IP denotes the normalized intensity histogram of image I within A(s). 〉〈 YX ,  denotes the inner 

product (i.e., sum of element-wise product) between two vectors X and Y. The inner product between 
square roots of two normalized histograms is known as Bhattacharya coefficient (BC), [4] which is a real 
number between 0 and 1 that measures the correlation between two histograms. When two normalized 
histograms are identical, their BC value is 1; whereas when the histograms are completely different, their 
BC value is 0.  

   
(a)       (b) 

Fig 1: (a) Finding D from image I, using a reference image R, (b) A typical score function plot. 
 

Note that the score function E(s) measures the difference of correlations between the upper 
histograms and the lower histograms. We therefore expect a high score when the upper histograms match 
very well, while the lower histograms have high mismatch. On the other hand, a low value of E(s) denotes 
a low correlation between upper histograms, and a high correlation between lower histograms. Based on 
these observations, we note that a plot of E(s) vs. s should look like the plot shown in Fig. 1(b). The 
important observations in Fig. 1(b) are that the plot has three distinct regions – increasing, decreasing, 
then increasing – where the decreasing segment begins at l and ends at u, where l and u respectively 
denotes the lower and the upper bound for the rectangular region D, measuring from top of the image. In 
fact we can prove these statements rigorously with some mild assumptions about the data, i.e., about the 
image I and the template R. Essentially, we require that the correlation between the image histogram 
outside D and the template histogram is much larger than that between the image histogram inside D and 
the template histogram: 
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Without these assumptions the abnormal region D would look like rest of the image I, and it would be 
difficult (if not impossible) to detect D then. For brevity of space, here we omit the proof [6]. 

Our task is to find the maximum and the minimum points of the plot corresponding to the lower 
and the upper bounds of region D (Fig. 1(b)). Thus, algorithmically, a vertical sweep of the image I and R 
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Fig 2: Finding a bounding box on brain MRI.

finds the upper and lower bounds of D. Similarly, a horizontal sweep and a similar plot of the score 
function help find out the left and the right bound for D. The plots from this procedure appear in Fig 2. 
The upper left picture shows a brain MRI with an abnormality on the left of the image. In general, we 
assume the input image is an axial slice, which is close to being vertical. We first detect the skull 
boundary by active contour algorithm [8]. Next an ellipse is fitted to the skull boundary, from which we 
extract the line of symmetry (shown on the upper right picture of Fig. 2).  Then we treat I as the image 
formed by the portion to the left of the line of symmetry and R as the portion of the image to right of the 
line of symmetry after taking a reflection. Next, a vertical sweep and a horizontal sweep produce the 
score plots respectively shown on the lower left and lower right pictures in Fig. 2. The maxima and the 
minima are detected from these two plots, and the corresponding bounding box is overlaid on the upper 
left picture of Fig. 2. 
 
Results 
In this section we show some results of applying our algorithm to brain MRI data. Fig. 3 shows four MR 
images with bounding boxes found by our algorithm. These bounding boxes are seen to be crudely 
segmenting the abnormalities. 

To quantify the performance of our 
algorithm we use Dice coefficient [3]: 
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where G is the set of the pixels of a 
bounding box around the true abnormality 
(here, found by an expert radiologist) and S 
is set of pixels of the bounding box found by 
our algorithm. The modulus sign appearing 
in the Dice coefficient expression denotes 
cardinality (number of pixels in this case) of 
a set. In general, the Dice coefficient is a 
value between 0 and 1, with 1 being the 
ideal segmentation, S=G. The closer the 
Dice coefficient is to unity, the better the 
segmentation is. Fig. 4 shows encouraging 
Dice coefficient values for two sets of brain 
MRI data taken from studies on two 
patients.  

 

 

Fig 4: Dice coefficients for MR images for 
two studies. 

Fig 3: MR images and bounding boxes 
around abnormal regions. 



As mentioned before, the proposed bounding box algorithm only provides a rough estimate of the 
abnormal region. However, after finding the bounding box, we can fine tune the segmentation boundary 
as shown in Fig. 5. Fig. 5(a) shows the bounding box found by our algorithm. Fig. 5(b) shows the result 
of the Chan-Vese [1] segmentation algorithm applied only within the bounding box. On the other hand, 
Fig. 5(c) shows the result of Chan-Vese algorithm applied on the entire image.  While in Fig. 5(b) the 
segmentation boundary is confined to the correct region of abnormality, in Fig. 5(c) spurious 
segmentation boundaries are created. This example shows that our proposed bounding box algorithm can 
aid in delineating the boundary of the region of abnormality. 
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Fig 5: (a) Bounding box, (b) segmentation within bounding box, (c) segmentation on the entire image. 
 
Future Work and Conclusions 
This work provides an effective scoring function that helps locate abnormalies in brain MR images. This 
approach can open new avenues for brain tumor segmentation. The principal advantages of the proposed 
algorithm are that it (a) exploits approximate left-right symmetry of brain, (b) uses only a single MR 
image, so there is no effect of variability in image intensity across MR images, (c) needs no training data, 
(d) requires no image registration, and (e) can be implemented in real-time. 

Inspired by some encouraging initial results, in the future we plan to extensively test our 
algorithm on the Cross Cancer Institute image database. As indicated we also will incorporate this 
algorithm as a pre-processing step at in-house segmentation algorithms (visit: 
http://www.cs.ualberta.ca/~btgp/). We also plan to extend this to 3-dimensions.  

We are seeking other applications where our algorithm can be successfully deployed. One such 
area is video surveillance. Because of histogram-based score function, we hope our method can 
accommodate the effects of jitters and considerable camera motion in a surveillance video that poses a 
tremendous challenge to the state-of-the-art background subtraction/change detection methods. 
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