
Bayesian Actor-Critic Algorithms

Mohammad Ghavamzadeh mgh@cs.ualberta.ca

Yaakov Engel yaki@cs.ualberta.ca

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8

Abstract

We1 present a new actor-critic learning model
in which a Bayesian class of non-parametric
critics, using Gaussian process temporal dif-
ference learning is used. Such critics model
the state-action value function as a Gaus-
sian process, allowing Bayes’ rule to be used
in computing the posterior distribution over
state-action value functions, conditioned on
the observed data. Appropriate choices of
the prior covariance (kernel) between state-
action values and of the parametrization of
the policy allow us to obtain closed-form
expressions for the posterior distribution of
the gradient of the average discounted return
with respect to the policy parameters. The
posterior mean, which serves as our estimate
of the policy gradient, is used to update the
policy, while the posterior covariance allows
us to gauge the reliability of the update.

1. Introduction

Actor-Critic (AC) algorithms, first proposed by Barto
et al. (1983), borrow elements from the two major
families of Reinforcement learning (RL) algorithms.
Borrowing from value-function based methods, a value
function estimate is maintained (the critic). As in pol-
icy based methods, an actor maintains a separately pa-
rameterized stochastic action-selection policy. While
the role of the actor is to select actions, the role of the
critic is to evaluate the performance of the actor. This
evaluation is used to provide the actor with a signal
that allows it to improve its performance, typically by
updating its parameters along an estimate of the gra-
dient of some measure of performance, with respect to

1Both authors contributed equally to this work.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

the actor’s parameters. When the representations used
for the actor and the critic are compatible, in a sense
explained below, the resulting AC algorithm is simple,
elegant and provably convergent to a local maximum
of the performance measure used by the critic (under
appropriate conditions) (Sutton et al., 2000; Konda &
Tsitsiklis, 2000).

Current AC algorithms are based on parametric crit-
ics that are updated to optimize frequentist fitness
criteria. For instance, TD(λ) - a commonly used
critic, uses a linear combination of fixed basis func-
tions to approximate the value function. In this case
the critic’s parameters are the linear combination co-
efficients2 (Sutton & Barto, 1998; Bertsekas & Tsitsik-
lis, 1996). By “frequentist” we mean algorithms that
return a point estimate of the value function, rather
than a complete posterior distribution computed using
Bayes’ rule. TD(1), for instance, may be shown to re-
turn a maximum likelihood (ML) estimate of the value
function, based on a linear-normal statistical model
(Engel, 2005).

In Sutton et al. (2000) and Konda and Tsit-
siklis (2000) it was shown that if the policy be-
longs to an exponential family, that is µ(a,x;θ) =
exp (

∑n

i=1 θiφi(x,a)) /Z(x;θ), it is only necessary
that the critic learns an estimate of the projection
of the (state-action) value function on the span of
{φi(·)}

n

i=1, rather than an estimate of the value func-
tion itself, without introducing bias in the gradient
estimate. Notwithstanding, it is noted in Konda and
Tsitsiklis (2000) that in practice it may prove advan-
tageous to allow the critic to search in a higher dimen-
sional space that contains span ({φi(·)}

n

i=1) as a proper
subset. This may help in reducing the variance of the
gradient estimate, as well as improving the stability of
the resulting algorithm.

A Bayesian class of critics, based on Gaussian pro-
cesses (GPs) has been recently proposed by Engel et al.

2TD(λ) may be used with other function approximation
schemes, however its convergence is not guaranteed then.

Bayesian Actor-Critic Algorithms

(2003); Engel et al. (2005); Engel (2005). By their
Bayesian nature, these algorithms return a full poste-
rior distribution over value functions. Moreover, while
these algorithms may be used to learn a parametric
representation for the posterior, they are generally ca-
pable of searching for value functions in an infinite-
dimensional Hilbert space of functions, resulting in a
non-parametric posterior.

In this paper we propose an AC algorithm that incor-
porates a GP temporal-difference (GPTD) algorithm
as its critic. However, rather than merely plugging-in
our critic into an existing AC algorithm, we show how
the posterior moments returned by the GPTD critic
allow us to obtain closed-form expressions for the pos-
terior moments of the policy gradient. This is made
possible by utilizing the Fisher kernel as our prior
covariance kernel for the GPTD state-action advan-

tage values (Shawe-Taylor & Cristianini, 2004). This
is a natural extension of the Bayesian policy gradient

(BPG) approach proposed in (Ghavamzadeh & Engel,
2007). However, in BPG the basic observable unit,
upon which learning and inference are based, is a com-
plete trajectory. The Bayesian AC (BAC) approach
proposed here takes advantage of the Markov property
of the system trajectories and uses individual state-
action-reward transitions as its basic observable unit.
This helps reduce variance in the gradient estimates,
resulting in steeper learning curves when compared to
BPG and the classic Monte-Carlo approach.

2. Preliminaries

Reinforcement Learning (RL) (Bertsekas & Tsitsik-
lis, 1996; Sutton & Barto, 1998) is a class of learning
problems in which an agent interacts with an unfamil-
iar, dynamic and stochastic environment, where the
agent’s goal is to optimize some measure of its long-
term performance. This interaction is conventionally
modeled as a Markov decision process (MDP). Let
P(S) be the set of probability distributions on (Borel)
subsets of a set S. A MDP is a tuple (X ,A, q, P, P0)
where X and A are the state and action spaces, re-
spectively; q(·|a,x) ∈ P(R) is the probability distribu-
tion over rewards; P (·|a,x) ∈ P(X) is the transition
probability distribution; (we assume that P and q are
stationary); and P0(·) ∈ P(X) is the initial state dis-
tribution. We denote the random variable distributed
according to q(·|a,x) by R(x,a). In addition, we need
to specify the rule according to which the agent selects
actions at each possible state. We assume that this
rule does not depend explicitly on time. A stationary

policy µ(·|x) ∈ P(A) is a probability distribution over
actions, conditioned on the current state. The MDP

controlled by the policy µ induces a Markov chain
over state-action pairs zt = (xt,at) ∈ Z = X × A,
with a transition probability density P µ(zt|zt−1) =
P (xt|xt−1,at−1)µ(at|xt), and an initial state density
P µ

0 (z0) = P0(x0)µ(a0|x0). We generically denote by
ξ = (z0, z1, . . . , zT) ∈ Ξ, T ∈ {0, 1, . . . ,∞}, a path
generated by this Markov chain. The probability (den-
sity) of such a path is given by

Pr(ξ|µ) = P µ
0 (z0)

T
∏

t=1

P µ(zt|zt−1). (1)

We denote by ρ(ξ) =
∑T

t=0 γtR(xt,at) the (possibly
discounted, γ ∈ [0, 1]) cumulative return of the path ξ.
ρ(ξ) is a random variable both because the path ξ is
a random variable, and because even for a given path,
each of the rewards sampled in it may be stochastic.
The expected value of ρ(ξ) for a given ξ is denoted by
ρ̄(ξ). Finally, let us define the expected return,

η(µ) = E(ρ(ξ)) =

∫

Ξ

ρ̄(ξ) Pr(ξ|µ)dξ. (2)

Let us define the t-step state-action occupancy density
and the state-action value function, respectively:

P µ
t (zt) =

∫

Zt

dz0 . . . dzt−1P
µ
0 (z0)

t
∏

i=1

P µ(zi|zi−1),

Q(z) = E

[

∞
∑

t=0

γtR(zt)|z0 = z

]

.

It can be shown that under certain regularity condi-
tions (Sutton et al., 2000),

η(µ) =

∫

Z

dzπµ(z)R̄(z), (3)

where R̄(z) is the mean reward for the state-action
pair z, and

πµ(z) =

∞
∑

i=0

γiP µ
i (z)

is a discounted weighting of state-action pairs. Inte-
grating a out of πµ(x,a) results in the corresponding
discounted weighting of states π(x) =

∫

A
daπµ(x,a).

In AC methods, one defines a class of smoothly param-
eterized stochastic policies {µ(·|x;θ),x ∈ X ,θ ∈ Θ}.
Algorithms typically estimate the gradient of the ex-
pected return (2) with respect to the policy param-
eters θ from observed system trajectories, and then
improve the policy by adjusting its parameters in the
direction of the gradient. The policy gradient theorem
(Marbach, 1998, Prop. 1, Sutton et al., 2000, Thm. 1,

Bayesian Actor-Critic Algorithms

Konda & Tsitsiklis, 2000, Thm. 1) states that the gra-
dient of the expected return η(θ) = η(µ(·|·;θ)) is given
by

∇θη(θ) =

∫

Z

dxdaπ(x)∇θµ(a|x;θ)Q(x,a) (4)

=

∫

Z

dzπµ(z)∇θ log (µ(a|x;θ)) Q(z).

Moreover, by making two additional assumptions we
may replace the exact (but unknown) state-action
value function Q(z) in 4 by an approximate state-
action value function Q̂(z) (Sutton et al., 2000,
Thm. 2, Konda & Tsitsiklis, 2000):

Assumption 1 (Compatibility) Suppose that Q̂(z)
is parametrized by a vector w of n parameters,

i.e., Q̂(z) = Q̂(z;w), then ∇wQ̂(x,a;w) =
∇θ log(µ(a|x;θ)).

Assumption 2 (Projection) Q̂(z;w) is the projec-

tion of Q(z) onto the space {Q̂(z;w)|w ∈ R
n}, with

respect to a weighted L2-norm weighted by πµ(z).
In other words, w minimizes

∫

Z dzπµ(z)(Q̂(z;w) −
Q(z))2.

Under these assumptions we have

∇θη(θ) =

∫

Z

dzπµ(z)∇ log (µ(a|x;θ)) Q̂(z;w). (5)

A convenient choice that ensures compatibility be-
tween the policy and the state-action value repre-
sentations is µ(a|x;θ) = exp

(
∑n

i=1 φ(z)>θ
)

/Z(x;θ),

and Q̂(z;w) = w>
(

φ(z) −Ea|xφ(z)
)

+ b(x), where
Ea|x[·] =

∫

A
daµ(a|x;θ)[·], and b : X → R an arbi-

trary function that does not depend on w. Note that
Ea|xQ̂(z;w) = b(x), since Ea|x

(

φ(z) −Ea|xφ(z)
)

=

0. This means that if Q̂(z;w) approximates Q(z)
then b(x) must approximate the value function
V (x). The term Â(z;w) = Q̂(z;w) − b(x) =
w>

(

φ(z) −Ea|xφ(z)
)

approximates the advantage

function A(z) = Q(z) − V (x) (Baird, 1993).

3. Bayesian Actor-Critic

In Ghavamzadeh and Engel (2007) a class of Bayesian
policy gradient algorithms is proposed. In that paper
the gradient of the expected return is expressed as

∇θη(θ) =

∫

ρ(ξ)
∇Pr(ξ;θ)

Pr(ξ;θ)
Pr(ξ;θ)dξ, (6)

where samples of ρ(ξ) are obtained by observing
complete trajectories from initial state to terminal

state in an episodic setting. The term ∇Pr(ξ;θ)
Pr(ξ;θ) =

∑T

t=0 ∇θ log µ(at|xt;θ) may be computed using only
the (known) policy µ. In one of the Bayesian policy
gradient models proposed there (Model 2), the ρ(ξ)
term is modeled as a Gaussian process. Its posterior
moments are then evaluated by conditioning on the
observed returns of complete trajectories, essentially
amounting to GP regression on these returns. Since
the transformation from ρ(ξ) to ∇θη(θ) is performed
by a linear integral operator, the posterior distribu-
tion of ∇θη(θ) is also Gaussian, and for an appro-
priate choice of a prior covariance kernel k(ξ, ξ′) =
Cov[ρ(ξ), ρ(ξ′)], closed-form expressions for the pos-
terior moments are obtained. It should be noted that,
since the models and algorithms of Ghavamzadeh and
Engel (2007) consider complete trajectories as the ba-
sic observable unit, they do not require the dynamics
within each trajectory to be of any specific form. In
particular, it is not necessary for the dynamics to have
the Markov property, allowing the resulting algorithms
to handle partially observable MDPs, Markov games
and other non-Markovian systems. On the down side,
these algorithms can not take advantage of the Markov
property in systems that have this property.

In this paper we start instead with the expression for
the policy gradient given in Eq. 4. We will place
a GP prior over state-action value functions using a
prior covariance kernel defined on state-action pairs
k(z, z′) = Cov[Q(z), Q(z′)]. We will then compute
the GP posterior, conditioned on the sequence of in-
dividual observed transitions. Again, by an appropri-
ate choice of kernel we will be able to get closed-form
expressions to the posterior moments of ∇θη(θ). For-
tunately, well developed machinery for computing the
posterior moments of Q(x,a) is provided in a series of
papers by Engel et al. (2003); Engel et al. (2005) (for
a thorough treatment see Engel, 2005).

Let us briefly review some of the main results per-
taining to the Gaussian process temporal difference
(GPTD) model proposed in Engel et al. (2005). The
GPTD model is based on a statistical generative model
relating the observed reward signal R to the unob-
served state-action value function Q.

R(zi) = Q(zi) − γQ(zi+1) + N(zi, zi+1). (7)

N(zi, zi+1) is a zero-mean noise signal that ac-
counts for the discrepancy between R(zi) and Q(zi)−
γQ(zi+1). Let us define the finite-dimensional pro-
cesses Rt, Qt, Nt and the t × (t + 1) matrix Ht:

Rt = (R(z0), . . . , R(zt))
>

, Qt = (Q(z0), . . . , Q(zt))
>

,

Nt = (N(z0, z1), . . . , N(zt−1, zt))
>

, (8)

Bayesian Actor-Critic Algorithms

Ht =

1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...
0 0 . . . 1 −γ

. (9)

The set of equations (7) for i = 0, . . . , t may be written
as

Rt−1 = HtQt + Nt. (10)

Under certain assumptions on the distribution of the
discounted return random process (Engel et al., 2005),
the covariance of the noise vector Nt is given by

Σt = σ2HtH
>
t (11)

= σ2

1 + γ2 −γ 0 . . . 0
−γ 1 + γ2 −γ . . . 0
...

...
...

0 0 . . . −γ 1 + γ2

.

In episodic tasks, if zt−1 is the last state-action pair
in the episode (that is, xt is zero-reward absorbing
terminal state), Ht becomes a square t × t invertible
matrix of the form (9) with its last column removed.
The effect on the noise covariance matrix Σt is that
the bottom-right element becomes 1 instead of 1 + γ2.

Placing a Gaussian process prior on Q and assuming
that Nt is also normally distributed, we may use Bayes’
rule to obtain the posterior moments of Q:

Q̂t(z) = E [Q(z)|Dt] = kt(z)
>αt, (12)

Ŝt(z, z
′) = Cov [Q(z), Q(z′)|Dt]

= k(z, z′) − kt(z)
>Ctkt(z

′),

where Dt denotes the observed data until and includ-
ing time t. We used here the following definitions:

kt(z) = (k(z0, z), . . . , k(zt, z))
>

,

Kt = [kt(z0),kt(z1), . . . ,kt(zt)] ,

αt = H>
t

(

HtKtH
>
t + Σt

)−1
Rt−1,

Ct = H>
t

(

HtKtH
>
t + Σt

)−1
Ht. (13)

We are now in a position to describe the main
idea behind our BAC approach. Making use of the
linearity of Eq. 4 in Q, and denoting g(z;θ) =
πµ(z)∇θ log (µ(a|x;θ)), we obtain the following ex-
pressions for the posterior moments of the policy gra-
dient (O’Hagan, 1991):

E[∇θη|Dt] =

∫

Z

dzg(z;θ)Q̂t(z), (14)

Cov [∇θη|Dt] =

∫

Z2

dzdz′g(z;θ)Ŝt(z, z
′)g(z′;θ)>.

Substituting the expressions for the posterior moments
(12) into Eq. 14, we get

E[∇θη|Dt] =

∫

Z

dzg(z;θ)kt(z)
>αt, (15)

Cov [∇θη|Dt] =
∫

Z2

dzdz′g(z;θ)
(

k(z, z′) − kt(z)
>Ctkt(z

′)
)

g(z′;θ)>.

The equations above provide us with the general form
of the posterior policy gradient moments. We are now
left with a computational issue; namely, how to com-
pute the integrals appearing in these expressions? We
need to be able to evaluate the following integrals:

Ut =

∫

Z

dzg(z;θ)kt(z)
>, (16)

V =

∫

Z2

dzdz′g(z;θ)k(z, z′)g(z′;θ)>.

Using these definitions we may write the gradient pos-
terior moments compactly as

E[∇θη|Dt] = Utαt, (17)

Cov [∇θη|Dt] = V −UtCtU
>
t .

In order to render these integrals analytically tractable
we choose our prior covariance kernel to be the sum of
an arbitrary state-kernel kx and the (invariant) Fisher
kernel kF between state-action pairs (Shawe-Taylor &
Cristianini, 2004, Chap. 12). More specifically, let us
denote the score vector and the Fisher information

matrix corresponding to the policy µ(·|·;θ), respec-
tively by

u(z) = ∇θ log(µ(a|x;θ)), (18)

G = Ez

[

u(z)u(z)>
]

=

∫

Z

dzπµ(z)u(z)u(z)> .

It is readily verified that Ea|xu(z) = 0.

The (policy dependent) Fisher information kernel and
our overall state-action kernel are then given by

kF (z, z′) = u(z)>G−1u(z′), (19)

k(z, z′) = kx(x,x′) + kF (z, z′),

respectively. A nice property of the Fisher kernel is
that while kF (z, z′) depends on the policy, it is invari-
ant to policy reparameterization. In other words, it
only depends on the actual probability mass assigned
to each action, and not on its explicit dependence on
the policy parameters.

As mentioned above, another attractive property of
this particular choice of kernel is that it renders the
integrals in (16) analytically tractable. It is a matter
of basic (but tedious) algebra to prove the following:

Bayesian Actor-Critic Algorithms

Proposition 1 Let k(z, z′) = kx(x,x′)+kF (z, z′) for

all (z, z′) ∈ Z2, where kx : X 2 → R is an arbitrary

positive definite kernel function. Then Ut and V from

Eq. 16 satisfy

Ut = [u(z0),u(z1), . . . ,u(zt)] , and V = G. (20)

An immediate consequence of Proposition 1 is that, in
order to compute the posterior moments of the pol-
icy gradient, we only need to be able to evaluate (or
estimate) the score vectors u(zi) and the Fisher infor-
mation matrix G of our policy.

A convenient, as well as rather flexible choice for a
space of policies to conduct our search in is a para-
metric exponential family. Namely,

µ(a|x;θ) =
1

Zθ(x)
exp

(

θ
>
φ(x,a)

)

, (21)

where Zθ(x) =
∫

A da exp
(

θ
>
φ(x,a)

)

is a normaliz-

ing factor, referred to as the partition function. It is
easy to show that

u(z) = φ(x,a) −Ea|x [φ(x,a)] . (22)

We are now left with the problem of evaluating u(z)
and G. For MDPs with a finite action space A,
the expectation Ea|x degenerates into a sum, which
may be performed in time linear in the number of
actions. If |A| is infinite, we may still be able
to compute the expectation in certain cases. For
instance, if A = R and the policy features are
φ(z) = (s1(x)a, s2(x)a2)>, then µ(a|x;θ) is a univari-
ate normal probability density with state-dependent
mean m(x) = −s1(x)/(2s2(x)) and variance σ2(x) =
−1/(2s2(x)). The score vector is therefore u =
(

a− m(x),a2 − m(x)2 − σ2(x)
)>

.

Evaluating the Fisher information matrix G is some-
what more challenging, since on top of taking the
expectation w.r.t. the policy µ(a|x;θ), comput-
ing G involves an additional expectation over the
state-occupancy density π(x), which is not gener-
ally known. In most practical situations we there-
fore have to resort to estimating G from data. One
straightforward method is to estimate G from a trajec-
tory z0, z1, . . . , zt using the (unbiased) estimator (see
Proposition 1 for the definition of Ut):

Ĝt =
1

t + 1

t
∑

i=0

u(zi)u(zi)
> =

1

t + 1
UtU

>
t . (23)

Alg. 1 is a pseudocode sketch of the Bayesian actor-
critic algorithm, using either the regular or the natural
gradient in the policy update, and with G estimated
using Ĝt.

Algorithm 1 Bayesian Actor-Critic

1: BAC(θ, M, ε)
• θ initial policy parameters
• M > 0 episodes for gradient evaluation
• ε > 0 termination threshold

2: done = false
3: while not done do
4: Run GPTD for M episodes. GPTD

returns αt,Ct,Ut, Ĝt (13, 20, 23)
5: ∆θ = Utαt (regular gradient) or

∆θ = Ĝ−1
t Utαt (natural gradient)

6: θ := θ + β∆θ
7: if |∆θ| < ε then done = true
8: end while
9: return θ

4. Theory

We can glean some useful insights into the BAC
algorithm by representing our statistical model in a
different, but equivalent form. The idea is to define a
hybrid prior for the state-action GP, Q = V + A. The
prior over value functions V will be non-parametric,
while the prior over advantage functions A will be
parametric. Denote by GP(S) the set of GPs indexed
by the set S. Let ψ(z) = u(z) = ∇θ log(µ(a|x;θ)),
set Q(z) = V (x) + A(z) = V (x) + W>ψ(z), where
W is a random vector with a prior distribution
W ∼ N (0,G−1). Let V ∈ GP(X) be a GP with
prior mean E[V (x)] = 0 and prior covariance
Cov[V (x), V (x′)] = kx(x,x′), and further let W and
V be a priori uncorrelated (and therefore indepen-
dent), i.e., Cov[W, V (x)] = 0 for all x ∈ X . Then,
Q ∈ GP(Z) is a GP with a prior mean E[Q(z)] = 0
and a prior covariance k(z, z′) = Cov [Q(z), Q(z′)] =
Cov[V (x), V (x′)] + ψ(z)>E

[

WW>
]

ψ(z′) =
kx(x,x′) + u(z)>G−1u(z′) = kx(x,x′) + kF (z, z′).
This alternative view of our original model leads to
the following result.

Proposition 2 Let the conditions in Proposition 1

hold, and let Q(z) = V (x) + W>u(z), then Assump-

tion 1 holds.

Proof For any instantiation w of W we have
∇wQ(z;w) = u(z) = ∇θ log(µ(a|x;θ)).

Let us review the GPTD statistical model in this hy-
brid representation. The model equations are given by
Eq. 7. Using the definitions in (8, 9), the normality of
the noise vector Nt and the noise covariance from (11)
we may write the joint (normal) distribution of W and

Bayesian Actor-Critic Algorithms

V (x), conditioned on Rt−1:

(

W
V (x) Rt−1

)

∼ N

{(

Ŵt

V̂t(x)

)

,

[

Sw, swv

s>wv, sv

]}

,

where, using the definitions in (13),

Ŵt = G−1Utαt, V̂t(x) = kx
t (x)αt,

Sw = G−1 −G−1UtCtUtG
−1,

swv(x) = −G−1UtCtk
x
t (x),

sv(x) = kx(x,x) − kx
t (x)>Ctk

x
t (x),

and Kt = Kx
t + U>

t G−1Ut (used in αt and Ct).

First, we observe that we are getting separate esti-
mates for the value function (V̂t(x)) and the advan-
tage function (Ât(z) = Ŵ>

t u(z)), the sum of which is
an estimate of the state-action value function Q̂t(x) =
V̂t(x) + Ŵ>

t u(z). We are also getting confidence mea-
sures on these estimates via the posterior variance
sv(x) of V (x) and the posterior variance u(z)>Swu(z)
of A(z). Also note that, although V and A are a priori
uncorrelated, they do not remain so in the posterior,
as swv(x) is not generally zero. Another interesting
observation is that Ŵt is the posterior mean of the nat-
ural gradient of η(θ) – an analogous result to Thm. 1
in Kakade (2002).

It is instructive to investigate how the form of the pos-
terior moments is influenced by making the approxi-
mation of replacing G with Ĝt. Let us start with the
posterior mean (see Eq. 13 and 17).

E [∇θη(θ)|Dt] = Utαt

=UtH
>
t

(

HtKtH
>
t + Σt

)−1
Rt−1

=Ut

(

H>
t Σ−1

t HtKt + I
)−1

H>
t Σ−1

t Rt−1

=Ut−1

(

Kt−1 + σ2I
)−1

H−1
t Rt−1

=Ut−1

(

Kx
t−1 + U>

t−1G
−1Ut−1 + σ2I

)−1
H−1

t Rt−1

≈Ut−1

(

Kx
t−1 + tPu + σ2I

)−1
H−1

t Rt−1

The 2nd line follows from Eq. 13, the 3rd is algebra,
the 4th assumes that t−1 is the last step in an episode

and therefore Σ−1
t = H>

t

−1
Ht

−1/σ2, the 5th substi-
tutes Kt−1 = Kx

t−1+U>
t−1G

−1Ut−1 where Kx
t−1 is the

kernel matrix corresponding to kx and U>
t−1G

−1Ut−1

is the kernel matrix corresponding to kF . The last line
is the result of replacing G with its estimator Ĝt−1.
Pu = U>

t−1(Ut−1U
>
t−1)

−1Ut−1 is the projection oper-

ator on the span of {u(zi)}
t−1
i=0 .

As was pointed out in Engel et al. (2005), the i-th

element of H−1
t Rt−1 = Yt is (Yt)i =

∑t−1
j=i γ(j−i)R(zj).

Therefore, E [∇θη(θ)|Dt] is obtained by applying GP
regression to samples of the discounted return, using
the kernel matrix Kx

t−1 + tPu, and with Ut−1 applied
to the result. Taking the limit Kx

t−1 → 0, leaves us
with

E [∇θη(θ)|Dt] ≈
(

σ2 + t
)−1

Ut−1H
−1
t Rt−1

= (σ2 + t)−1
t−1
∑

i=0

u(zi)(Yt)i,

which is just a regularized (by the σ2 term) version of
the standard Monte-Carlo estimates for the ∇θη(θ) as
in Algorithms 1 and 2 of Baxter and Bartlett (2001).

Analogous analysis of the posterior covariance yields

Cov [∇θη(θ)|Dt] = Gt −UtCtU
>
t

=Gt −UtH
>
t

(

HtKtH
>
t + Σt

)−1
HtU

>
t

=Gt −Ut

(

H>
t Σ−1

t HtKt + I
)−1

H>
t Σ−1

t HtU
>
t

= Gt−1 −Ut−1

(

Kt−1 + σ2I
)−1

U>
t−1

≈ Ĝt−1 −Ut−1

(

Kx
t−1 + tPu + σ2I

)−1
U>

t−1

Taking again the limit Kx
t−1 → 0, results in

Cov [∇θη(θ)|Dt] ≈ Ĝt−1 −
(

t + σ2
)−1

Ut−1U
>
t−1

=
σ2

σ2 + t
Ĝt−1,

which decays to 0 as 1/t.

5. Experiments

In this section, we compare the Bayesian Actor-Critic
(BAC), Bayesian Quadrature (BQ), and Monte-Carlo
(MC) gradient estimates in a 10-state random walk
problem. We also evaluate the performance of the
BAC algorithm (Alg. 1) on the random walk prob-
lem, and compare it with a MC-based policy gradient
(MCPG) algorithm (Baxter & Bartlett, 2001, Alg. 1),
as well as a Bayesian policy gradient (BPG) algorithm
(Ghavamzadeh & Engel, 2007, Alg. 2).

In the 10-state random walk problem, X =
{1, 2, . . . , 10}, with states arranged linearly from state
1 on the left to state 10 on the right. The agent has
two actions to choose from: A = {right, left}. The
left wall is a retaining barrier, meaning that if the left
action is taken at state 1, in the next time-step the
state will be 1 again. State 10 is a zero reward absorb-
ing state. The only stochasticity in the transitions is
induced by the policy, which is defined as µ(right|x) =
1/1 + exp(−θx) and µ(left|x) = 1− µ(right|x) for all
x ∈ X . Note that each state x has an independent pa-
rameter θx. Each episode begins at state 1 and ends

Bayesian Actor-Critic Algorithms

when the agent reaches state 10. The mean reward is
1 for states 1–9 and is 0 for state 10. The observed
rewards for states 1–9 are obtained by corrupting the
mean rewards with a 0.1 standard deviation IID Gaus-
sian noise. The discount factor is γ = 0.99.

We first compare the BAC, BQ1, BQ2, and MC es-
timates of ∇θη(θ) for the policy induced by the pa-
rameters θx = log(4) for all x ∈ X , which is equiv-
alent to µ(right|x) = 0.8. The BQ1 and BQ2 gra-
dient estimates were calculated using Model 1 and
Model 2 from Ghavamzadeh and Engel (2007), respec-
tively. We use several different sample sizes, measured
by the number of episodes used in estimating the gra-
dient: M = 5j, j = 1, . . . , 20. For each value of M ,
we compute the gradient estimates 103 times, using
the same data for all algorithms. The true gradient is
calculated analytically for reference.

Fig. 1 shows the mean absolute angular error of the
MC, BQ1, BQ2, and BAC estimates of the gradient
for several different sample sizes M . The absolute an-
gular error is the absolute value of the angle in de-
grees between the true gradient and the estimated
gradient. In this experiment, the BAC gradient es-
timate was calculated using a Gaussian state kernel
kx(x,x′) = exp(−||x − x′||2/(2σ2

k)), with σk = 3, and
state-action kernel 0.01kF (z, z′). The results depicted
in Fig. 1 indicate that the BAC gradient estimates are
more accurate and have lower variance than their MC
and BQ counterparts. We repeated this experiment by
averaging over 103 different policies (instead of aver-
aging over 103 runs of one policy) and the results were
similar to those shown in Fig. 1, albeit with wider er-
ror bars. For lack of space we do not include these
results here.

0 20 40 60 80 100
0

20

40

60

80

100

120

Number of Episodes (M)

M
ea

n
Ab

so
lu

te
 A

ng
ul

ar
 E

rro
r (

de
g)

MC
BQ1
BQ2
BAC

Figure 1. The mean absolute angular error of the MC,
BQ1, BQ2, and BAC gradient estimations as a function
of the number of sample episodes M . All results are aver-
aged over 103 runs.

Next, we use BAC to optimize the policy parameters
in the same random walk MDP. We compare the per-
formance of BAC with a MCPG algorithm and a BPG
algorithm, for M = 1, 5 and 20. The BPG algorithm
uses Model 1 from Ghavamzadeh and Engel (2007).
We use Alg. 1 with the number of policy updates set
to 500 and the same kernels as in the previous ex-
periment. The Fisher information matrix is estimated
using Ĝ from Eq. 23. The returns obtained by these
methods are averaged over 100 runs.

For a fixed sample size M , each method starts with an
initial learning rate and decreases it according to the
schedule βt = β0βc/(βc + t). We tried many values of
the learning rate parameters (β0, βc) for MCPG, BPG,
and BAC, and those in Table 1 yielded the best per-
formance. βc = ∞ means that we used a fixed learn-
ing rate β0 for that experiment. Note that the learn-
ing rates used by the BAC algorithm are much larger
than those used by the MCPG algorithm. This seems
to be due to the fact that the BAC gradient estimates
are more accurate than their MC counterparts. Since
BPG is a path-based algorithm, the magnitude of the
estimated gradients and therefore the learning rates
used by BPG are in a different range than those esti-
mated and used by the MCPG and BAC algorithms.

β0 , βc M = 1 M = 5 M = 20
MCPG 0.25 , ∞ 1.75 , 100 3 , ∞
BAC 5 , ∞ 20 , 100 50 , 50
BPG 0.01 , 250 0.01 , 500 0.05 , ∞

Table 1. Values of the learning rate parameters used by the
algorithms in the experiments of Fig. 2.

Fig. 2 depicts the results of these experiments. From
left to right the sub-figures correspond to the experi-
ment in which all algorithms used M=1, 5 and 20 tra-
jectories per policy update, respectively. Each curve
depicts the difference between the exact average dis-
counted return for the 500 policies that follow each
policy update and η∗ – the optimal average discounted
return. All curves are averaged over 100 repetitions of
the experiment. The BAC algorithm clearly learns sig-
nificantly faster than the other algorithms (note that
the vertical scale is logarithmic).

6. Discussion

In this paper we presented a new Bayesian take on
the familiar actor-critic architecture. By using Gaus-
sian processes and choosing their prior distributions
to make them compatible with a parametric family
of policies, we were able to derive closed-form expres-
sions for the posterior distribution of the policy gra-
dient updates. The resulting algorithm addresses the

Bayesian Actor-Critic Algorithms

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

Number of Policy Updates (M = 1)

η(
θ)

 −
 η

*

MC
BPG
BAC

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

Number of Policy Updates (M = 5)

η(
θ)

 −
 η

*

MC
BPG
BAC

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

Number of Policy Updates (M = 20)

η(
θ)

 −
 η

*

MC
BPG
BAC

Figure 2. Results for the policy learning experiment. The graphs depict the performance of the policies learned by each
algorithm during 500 policy update steps. From left to right the number of episodes used to estimate the gradient is
M = 1, 5 and 20. All results are averaged over 100 independent runs.

main limitation of the Bayesian policy gradient algo-
rithms of Ghavamzadeh and Engel (2007), which stems
from them ignoring the Markov property of the sys-
tem dynamics (when the system is indeed Markovian).
This seems to be borne out in our experiments, where
BAC provides more accurate estimates of the policy
gradient than either of the two models proposed in
Ghavamzadeh and Engel (2007), for the same amount
of data.

As was done in the algorithms proposed in Engel et al.
(2003); Engel et al. (2005); Ghavamzadeh and En-
gel (2007), the BAC algorithm can also be derived in
a sparse form, which would typically make it signifi-
cantly more time and memory efficient. For want of
space we are not able to present a sparse variant of
BAC here.

Additional experimental work is required to investi-
gate the behavior of BAC in larger and more realistic
domains, involving continuous and high-dimensional
state spaces. The second-order statistics obtained
from BAC are so far still unused. One interesting di-
rection for future research would be aimed at finding
a way to use the posterior covariance in determining
the size and direction of the policy update.

Acknowledgments M.G. is supported by iCORE
Canada. Y.E. is supported by an Alberta Ingenuity
fellowship.

References

Baird, L. (1993). Advantage updating (Technical Report
WL-TR-93-1146). Wright Laboratory.

Barto, A., Sutton, R., & Anderson, C. (1983). Neuron like
elements that can solve difficult learning control prob-
lems. IEEE Trans. on Systems, Man and Cybernetics,
13.

Baxter, J., & Bartlett, P. (2001). Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence
Research, 15.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic pro-
gramming. Athena Scientific.

Engel, Y. (2005). Algorithms and representations for rein-
forcement learning. Doctoral dissertation, The Hebrew
University of Jerusalem, Israel.

Engel, Y., Mannor, S., & Meir, R. (2003). Bayes meets
Bellman: The Gaussian process approach to temporal
difference learning. Proceedings of the 20th International
Conference on Machine Learning.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement
learning with Gaussian processes. Proceedings of the
22nd International Conference on Machine Learning.

Ghavamzadeh, M., & Engel, Y. (2007). Bayesian policy
gradient algorithms. Advances in Neural Information
Processing Systems 19. Cambridge, MA: MIT Press.

Kakade, S. (2002). A natural policy gradient. Proceedings
of Advances in Neural Information Processing Systems.

Konda, V., & Tsitsiklis, J. (2000). Actor-Critic algorithms.
Advances in Neural Information Processing Systems 12.

Marbach, P. (1998). Simulated-based methods for Markov
decision processes. Doctoral dissertation, Massachusetts
Institute of Technology.

O’Hagan, A. (1991). Bayes-Hermite quadrature. Journal
of Statistical Planning and Inference, 29, 245–260.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods
for pattern analysis. Cambridge University Press.

Sutton, R., & Barto, A. (1998). An introduction to rein-
forcement learning. MIT Press.

Sutton, R., McAllester, D., Singh, S., & Mansour, Y.
(2000). Policy gradient methods for reinforcement learn-
ing with function approximation. Advances in Neural
Information Processing Systems 12.

