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Abstract 
Recommendation systems suggest products to users. 
Collaborative filtering (CF) systems, which base those 
recommendations on a database of previous ratings by 
various users and products, have been proven to be very 
effective. Since this database is typically very sparse, we 
consider first imputing the missing values, then making 
predictions based on that completed dataset. In this paper, 
we apply several standard imputation techniques within the 
framework of imputation-boosted collaborative filtering 
(IBCF). Each technique passes that imputed rating data to a 
traditional Pearson correlation-based CF algorithm, which 
uses that information to produce CF predictions.  We also 
propose a novel mixture IBCF algorithm, IBCF-NBM, that 
uses either naïve Bayes or mean imputation, depending on 
the sparsity of the original CF rating dataset. Our empirical 
results show that IBCFs are fairly accurate on CF tasks, and 
that IBCF-NBM significantly outperforms a representative 
hybrid CF system, content-boosted CF algorithm, as well as 
other IBCFs that use standard imputation techniques. 

1. Introduction   
A collaborative filtering (CF) system predicts which items 
a new user might like based on a dataset that specifies how 
each user uj has rated each item ik ; cf., Figure 1(a). Here, 
each of these ratings ru,i is an explicit indication on a 1-5 
scale (as opposed to an implicit indication, such as a 
purchase or a click-through). Note this matrix is sparse, as 
users typically do not rate every item. 

The (user-based) Pearson correlation-based CF 
(PearsonCF) algorithm is a “memory-based CF algorithm” 
[2] that bases its predictions on the similarities between the 
users who rate common items; see Section 2. The 
underlying assumption here is that users who rate some 
items similarly, will probably rate other items similarly as 
well.  As this computation involves only a small 
percentage of the total number of items (recall the matrix is 
sparse), these systems can deal even with large rating 
matrices (Figure 1(a)). Unfortunately, the predictive 
performance of PearsonCF systems tends to degrade 
quickly as the rating data become more sparse.  

                                                 
Copyright © 2008, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 

This motivates model-based CF techniques, such as 
Bayesian belief nets CF algorithms [11][16], since these 
techniques can often provide relatively accurate predictions 
even on sparse data. However, empirical evidence shows 
that their performance improvement over the PearsonCF is 
not significant [11][16][18]. 

One way to improve predictive accuracy for CF tasks is 
to use additional content information – e.g., information 
about the users and/or the items, beyond the pure ratings in 
the database.  This motivated Melville et al. [10] to 
produce a type of hybrid CF method, content-boosted CF, 
that uses a learned naïve Bayes (NB) classifier on content 
data to fill in the missing values to create a pseudo rating 
matrix (see Figure 1(b) below), then applies a weighted 
PearsonCF algorithm to this matrix to produce CF 
predictions. Note, however, that this content-boosted CF 
depends on additional content information that is often not 
available.  

 
Figure 1: (a) original rating data, (b) “pseudo rating 

data” (including imputed data) 
 I1 I2 I3 I4 I5   I1 I2 I3 I4 I5 

U1 2 2 4 3   U1 2 2 4 3 3 
U2  ? 4 3   U2 2 2 4 3 3 
U3  1   3  U3 3 1 3 3 3 
U4  3 3 3 3  U4 3 3 3 3 3 
U5 1   3   U5 1 2 4 3 2 
U6  4 4 2   U6 2 4 4 2 3 
 
In general, the process of filling in the missing values is 

called imputation [13]. A subsequent CF subroutine can 
then produce prediction using the resulting pseudo rating 
data, rather than the original rating data.  

While that imputation process used auxiliary 
information, others [17] have explored imputation 
techniques that use only the original rating data (Figure 
1(a)) to produce the pseudo-rating data (Figure 1(b)).  
Each of these imputation-boosted collaborative filtering 
(IBCF) algorithms uses an imputation technique (which 
can be a machine learning classifier) to impute the missing 
rating data to create a pseudo rating matrix, which is then 
passed to the traditional PearsonCF predictor to produce 
final recommendations. Su et al. [17] previously 
demonstrated that these IBCF systems effectively boost 
predictive performance of CF, and that the IBCF using 
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naïve Bayes (NB) imputation is one of the most effective 
such systems.  

In this paper, we empirically evaluate the effectiveness 
of several IBCF systems -- some using standard imputation 
techniques such as mean imputation (IBCF-mean), linear 
regression imputation (IBCF-LinR), and predictive mean 
matching (IBCF-PMM), and others using various machine 
learning classifiers, such as NB (IBCF-NB). As we found 
that IBCF-NB has the best predictive performance for 
relatively dense data, while IBCF-mean is one of the best 
performers for extremely sparse data, we thus propose a 
new mixture IBCF algorithm, IBCF-NBM, that uses IBCF-
NB for dense data and IBCF-mean for sparse data.  

To evaluate our systems, we work on the real-world 
data from MovieLens [12], and evaluate performance using 
RMSE (root mean square error) 
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where n is the total number of ratings over all users, pu,i is 
the predicted rating for user u on item i, and ru,i is the 
actual rating. A CF method is considered better if it has a 
lower RMSE value. (Of course, we can only evaluate this 
on the subset of entries that had observed user ratings – ie, 
only when ru,i is filled in. Note MovieLens includes 
100,000 such entries.) 

The rest of this paper is organized as follows: Section 2 
presents the related work. Section 3 provides the 
framework of our work, and Section 4 presents 
experimental design and results.  

2. Related Work  
The PearsonCF algorithm, a representative memory-based 
CF algorithm, involves the following steps:  

(1: Preprocessing) Calculate the Pearson correlation 
value wu,v  between each pair of users u and v : 
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where the i∈I summations are over the items I = I(u,v) that 
both users u and v have rated and ur is the average rating 
of the co-rated items of user u. 

(2: Run-time) Predict the rating that user a will assign 
to item i as the weighted average of all user ratings on i as  
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where the u∈U(i) summations are over all the users who 
have rated the item i [2]. 

As such PearsonCF systems can typically produce 
accurate CF predictions even when there are large numbers 
of users and items, they are commonly used in deployed 
commercial systems. Unfortunately, PearsonCF can 
perform poorly when the rating data is very sparse. 

(See [1] for a survey of other relevant recommendation 
systems.) 

3. Framework 

3.1 Imputation-Boosted CF (IBCF) 
The selection of an imputation technique should be based 
on an analysis of why the data are missing. Many 
conventional CF algorithms implicitly assume “MAR” 
missingness (missing at random), which means the 
missingness depends on observed data but not on the 
unobserved data [9]. As an example, the rule: if users like 
the film “Snow White”, they typically do not submit ratings 
for the movie “Friends”, in which the missingness of the 
movie “Friends” depends on the observed ratings for the 
movie “Snow White”. Some imputation algorithms assume 
the data are MCAR (Missing Completely at Random, eg., 
the independent and identically distributed missing ratio is 
0.6) or NMAR (not missing at random, the missingness 
depends on the missed value itself, eg., if a user does not 
like the movie “Friends”, he will not rate it); running these 
algorithms on the data that are actually MAR can produce 
biased estimates [15]. When the local pattern of the 
missing data for a subset of samples violates the global 
pattern assumption (for all samples), the results will again 
be biased. There are several strategies for reducing the 
biases: when only the dependent variable is missing, then 
conventional machine learning classifiers can be used.  
This motivates us to use some standard imputation 
techniques, such as predictive mean matching (PMM), that 
are effective in reducing the estimation biases [6][7]; see 
Section 3.4. 
 
 
 
 

 

 

 

 

 

 

Figure 2. Framework of imputation-boosted 
collaborative filtering (IBCF) 

 
The main steps of each imputation-boosted CF (IBCF) 

algorithm are: (1) divide the original, large rating dataset 
into reasonably-sized subsets; (2) apply some imputation 
technique (which could be a machine learning classifier) to 
generate the “filled-in” pseudo rating data; (3) apply a 
user-based PearsonCF to the imputed data to produce 
predictions. (Note that the PearsonCF prediction on (u,i), 
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pu,i, depends on the values of the matrix other than (u,i), 
and that this pu,i, value may be different from the imputed 
value.)  Figure 2 provides a high-level outline of the 
framework. The rest of the section introduces the various 
IBCF algorithms. 

 
3.2 IBCF Using Mean Imputation 
IBCF-mean (IBCF using mean imputation) uses mean 
imputation to produce the pseudo rating data. As our 
datasets have more users than items, we use mean 
imputation on items, which replaces each missing value 
(u,i) in the rating matrix with the mean of the observed 
ratings on this item i, that is (1/k)∑u∈U(i) ru,i, where k is the 
total number of users u∈U(i) who have rated item i. Mean 
imputation is one of the simplest imputation technique. 
Unfortunately, it can distort the shape of distributions (by 
creating a spiked distribution at the mean in frequency 
distributions, which attenuates the correlation of the 
associated item with others), and it also reduces the 
variance of the predictions. 

 
3.3 IBCF Using Linear Regression Imputation 
IBCF-LinR (IBCF using linear regression) imputes values 
using linear regression.   

To explain the process, consider estimating the value of 
r(U2,I2) from the data shown in Figure 1(a).  Notice U2 has 
ratings for I3 and I4. The LinR imputer would first find all 
other users who have ratings for these items, and also I2 
(the value we want to predict); this identifies users 
U(I2,I3,I4)={U1,U4,U6}. LinR then seeks coefficient β0, β3, 
and β4 such that r(Ui,I2)= β0+β3r(Ui,I3)+β4r(Ui,I4). Using 
this data subset {r(Uj, Ik)|j∈{1,4,6}, k∈{2,3,4}}, the best-fit 
line has β0=12, β3=-1 and β4=-2. LinR now computes its 
prediction for r(U2,I2) as p2,2=β0+β3r2,3+β4r2,4=2 . Here, 
there were 3 equations (for U1, U4, U6) and 3 unknowns 
{β0 , β3,  β4}, which produces this unique solution. In other 
situations, there might be more equations than unknowns, 
we use the mean of the estimates as the imputation. IBCF-
LinR returns values rounded to the nearest integers, and 
replaces predictions smaller than 1 with 1, and those larger 
than 5 with 5.  This procedure is repeated for each missing 
rating value. 

In general, regression imputation is better than mean 
imputation as it can produce consistent estimates (i.e., the 
estimates will be unbiased with large sample sizes if the 
missingness is MAR). However, it assumes no error of 
estimation around the regression line, and therefore 
underestimates the variance of the estimates [5].  

3.4 IBCF Using Predictive Mean Matching 
Imputation 
IBCF-PMM gives CF predictions on the imputed data from 
predictive mean matching (PMM), which is a state-of-the-
art imputation technique [6][7][19].  

PMM imputes missing values by matching completely 
observed units (donors) with incomplete units (recipients), 
using a distance function, then transferring values from the 
donor to recipient.  For CF data with numerical variables 
and arbitrary patterns of missing values (mostly MAR [9]), 
PMM does the following: 

1) Use the EM algorithm (“expectation maximization”) 
[4] to estimate the parameters of a multivariate Gaussian 
distribution, using all the available data (including 
observed and unobserved values).  

2) Based on the estimates from EM, for each incomplete 
record ymiss,i, (called “recipient”, this corresponding to an 
unspecified rating of user ui) compute the predictions of 
the missing items conditioned on the observed ones yobs,i 
(these are the rating that ui has specified). The same 
predictive means (i.e., corresponding to the same missing 
pattern) are computed for all the complete observations 
Yobs,i (donors). 

)|(ˆ ,, iobsimissi YYE=μ                                                         (5) 

3) Each recipient is matched to the donor having the 
closest predictive mean with respect to the Mahalanobis 
distance [8] defined through the residual covariance matrix 
S from the regression of the missing items on the observed 
ones. 
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4) Impute the missing values in each recipient by 
transferring the corresponding values from its closest 
donor.  

In the example of Figure 1(a), based on the estimates 
from EM, for the incomplete record (recipient) user U2, 
PMM computes the predictions of the missing items, 
ymiss,2={r2,1, r2,2, r2,5},

 
conditioned on the observed ones 

yobs,2={r2,3, r2,4}. The same predictive means are computed 
for all the complete observations Yobs,i (donors), e.g., 
Yobs,i={ri,2, ri,3, ri,4} if we want to make prediction for r2,2 
based on yobs,2. The recipient r2,2 is then matched to the 
donor that has the closest predictive mean in terms of the 
Mahalanobis distance and is imputed by transferring the 
corresponding values from its closest donor (e.g., 
Yobs,1={r1,2, r1,3, r1,4}). 

 

3.5 IBCF Using Naïve Bayes Classifier 
In general, given evidence E=e, a probabilistic classifier 
will compute P(C=c, E=e) for each class value c, then 
return c*(E=e) = argmaxc P(C=c,E=e).1 A naïve Bayes 
(NB) classifier embodies the assumption that the attributes 

                                                 
1 While these computations are typically worded as P(c|e) 
rather than P(c,e), notice all we care about is the argmax, 
which returns the same value, either way. 
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are independent with each other, given the class, which 
means P(C=c,E=e) = P(C=c) ∏k P(Ek=ek | C=c).  

The imputation component of IBCF-NB (IBCF using 
naïve Bayes) is: for each item i=1..n, train the NB classifier 
on the pure rating data of columns {1, … i-1, i+1, … n} 
(dealing only with the rows u that specify a value for (u,i)) 
to produce a classifier for item i, which computes the 
probability that this rating is c ∈ {1,2,…, 5}.  This means 
computing empirical estimates of missing ratings of each 
class column i using the learned NB classifier on the 
observed ratings on that column together with ratings on 
other columns [17].  So for Figure 1(a), the NB classifier 
associated with column I1, NB1( I2, I3, I4, I5 ), would be 
trained based on the rows indexed by U1 and U5 (as these 
are the users who gave a score for item I1), and would then 
predict the rating for the remaining row – say (U6, I1)  
based on the evidence { i2=4, i3=4, i4=2}.  We would also 
train the NB2( I1, I3, I4, I5 ) classifier for the 2nd column, 
then NB3( I1, I2, I4, I5 ) and so forth. 

 

3.6 IBCF-NBM: a Mixture IBCF 
We propose a mixture IBCF algorithm, which is based on 
the observations that IBCF-NB (IBCF using the machine 
learning classifier NB) typically performs well on dense 
rating data, but its performance degrades for highly sparse 
data; and that IBCF using more standard imputation 
techniques, such as mean imputation, can produce more 
accurate CF predictions for extremely sparse data than the 
IBCFs using machine learning classifiers. 

Under the divide and conquer scenario (described in 
Section 3.7 below), we divide the large original rating data 
into small datasets, based on their sparsity. IBCF-NBM can 
therefore use this “sparcity score” to decide which 
imputation method to use: it applies IBCF-NB for denser 
datasets (with sparsity<95%), and IBCF-mean for sparser 
datasets (with sparsity≥95%). Note this sparsity threshold 
is data dependent: it is determined by the point where 
IBCF-NB and IBCF-mean change their lead in terms of 
RMSE performance. 

Now consider a missing rating (u,i). If this item I has 
rated by a large number of users (more than 5% of the 
users, which corresponds to at least 48 out of 943 users), 
then IBCF-NBM will use NB to impute values; otherwise, 
it uses simple mean imputation. (The next section 
discusses how we evaluate this approach.)   

3.7 Divide and Conquer 
Here, we evaluate our IBCF approach. Working on the 
MovieLens data [12], to simulate the IBCF-NBM situation, 
we partition the original data into subsets, based on the 
number of users who rated each movie. That is, we first re-
number the movies based on their respective number of 
user ratings  

user#(m1)> user#(m2)>……> user#(m1682) 

where user#(mi) is the number of users that have rated the 
movie mi.  We use this to divide the original MovieLens 
data into 20 subsets, each of which have all 943 users and 
some set of 65 movies, with the condition that each of the 
movies has at least five users rating them.  

Data_1 has all 943 users, and movies {m1, ..., m65 } 

Data_2 has all 943 users, and movies {m66, ..., m130 } 

…… 

Data_20 has all 943 users, and movies {m1236, …, u1300} 

Each of the remaining 382 movies (out of 1682) has 
been rated by five or fewer users, corresponding to a total 
of 958 ratings (0.958% of the original 100,000 ratings). We 
use a default voting value of 3 (rounded integer of the 
average value of the ratings) as their predictions and 
integrate them into the overall performance evaluation. 

 
Table 2. Divide and conquer the MovieLens data 

data 
rating 

# 
per-
cent 

sparsity 
% data 

rating 
# 

per-
cent 

sparsity 
% 

d_1 21781 21.8 64.5 d_11 2718 2.72 95.6 
d_2 14229 14.2 76.8 d_12 2293 2.29 96.3 
d_3 11055 11.1 82.0 d_13 1883 1.88 96.9 
d_4 8953  8.95 85.4 d_14 1560 1.56 97.5 
d_5 7490 7.49 87.8 d_15 1266 1.27 97.9 
d_6 6093 1.09 90.1 d_16 1024 1.02 98.3 
d_7 5119 5.12 91.6 d_17 811 0.81 98.7 
d_8 4343 4.34 92.9 d_18 646 0.65 98.9 
d_9 3740 3.74 93.9 d_19 515 0.52 99.2 
d_10 3111 3.11 94.9 d_20 412 0.41 99.3 

    other 958 0.96 99.9 

 
Each of these subsets is reasonably sized for most regular 
imputation techniques and machine learning algorithms —
viewing the 943 users as the instances and the 65 movies as the 
attributes. (We tried 10 groups of 130 movies but found this did 
not work well, perhaps because many classifiers and imputation 
techniques cannot handle 130 attributes.) Table 2 characterizes 
each of the MovieLens data subsets, listing the number of ratings 
included, percentage of ratings of the original data, and the 
sparsity of each dataset. 

4. Experimental Design and Results 
Besides implementing IBCF-NB, IBCF-mean, IBCF-NBM, 
IBCF-LinR and IBCF-PMM, we also implemented the 
PearsonCF (the traditional memory-based CF; Section 2) 
and content-boosted CF (the representative hybrid CF; 
Section 1). 

When applying the content-boosted CF, we use the four 
content attributes provided by MovieLens [12]: age (seven 
values reflecting seven age groups); sex (two values); 
occupations (21 values); zip code (20 groups). The class 
has five values, {1, 2, 3, 4, 5}. We use the software 

315



package MICE (Multiple Imputation by Chain Equations) 
[3] to compute the imputed data from PMM imputations. 

We use an all-but-one strategy to train and test our CF 
predictors, in which we pretend each observed rating is 
missing and make a prediction for it using all other 
observed ratings and then compare the prediction with the 
ground truth to evaluate the predictive performance. We 
summarize the overall performances of the IBCFs in Table 
3 and Figure 3 over all 100,000 MovieLens ratings. (This is 
aggregated from the RMSE values from the 20 data subsets 
and the remaining less-than-one-percent ratings using 
default voting (see Table 2), weighting each by its 
percentage of ratings in the original rating dataset.) 

In Table 3, rmse1 is the average RMSE value of the 
datasets d_1 through d_10, which have sparsities less than 
95% and covers about 86% of the ratings of the original 
data (on average, at least 48 out of the 943 users have rated 
any of the items in each of these datasets); and rmse2 is 
based on datasets d_11 through d_20, about 13% of the 
original rating data, with sparsities larger than 95% (less 
than 48 users have rated any item in each dataset).   
 

Table 3. Predictive Performance of the IBCFs and 
CF algorithms 

  IBCF IBCF IBCF IBCF IBCF   Pearson 

  NB mean NBM LinR PMM CBCF CF 

d_1 0.9387 0.9862 0.9387 0.9330 0.9341 0.9786 0.9743 

d_2 0.9336 1.0000 0.9336 0.9320 0.9337 0.9801 0.9927 

d_3 0.9457 1.0156 0.9457 0.9456 0.9428 0.9918 1.0280 

d_4 0.9530 1.0399 0.9530 0.9683 0.9610 1.0142 1.0660 

d_5 0.9683 1.0319 0.9683 0.9718 0.9663 1.0156 1.0667 

d_6 0.9773 1.0478 0.9773 0.9857 0.9956 1.0198 1.0751 

d_7 0.9785 1.0379 0.9785 0.9938 0.9860 1.0169 1.0954 

d_8 1.0013 1.0415 1.0013 1.0157 1.0037 1.0321 1.1333 

d_9 1.0146 1.0566 1.0146 1.0386 1.0272 1.0469 1.1772 

d_10 0.9969 1.0194 0.9969 1.0166 1.0161 1.0112 1.1647 

 rmse1 0.9565 1.0164 0.9565 0.9607 0.9588 0.9995 1.0400 

d_11 1.0757 1.0699 1.0699 1.0680 1.0755 1.0717 1.2348 

d_12 1.1147 1.0963 1.0963 1.0987 1.0931 1.0773 1.2735 

d_13 1.1207 1.0500 1.0500 1.0477 1.0663 1.0378 1.3575 

d_14 1.2190 1.1195 1.1195 1.1094 1.1007 1.1252 1.4628 

d_15 1.2719 1.1157 1.1157 1.1036 1.1036 1.1246 1.5511 

d_16 1.2870 1.0848 1.0848 1.1018 1.0821 1.1009 1.4717 

d_17 1.2568 1.0760 1.0760 1.1198 1.1259 1.1021 1.5318 

d_18 1.2639 1.0775 1.0775 1.0995 1.0825 1.0775 1.4977 

d_19 1.2518 1.0883 1.0883 1.0892 1.0981 1.0297 1.6675 

d_20 1.4648 1.1491 1.1491 1.2027 1.1395 1.0647 1.7585 

rmse2 1.1810 1.0871 1.0871 1.0912 1.0898 1.0818 1.3999 

RMSE 0.9901 1.0292 0.9777 0.9819 0.9800 1.014 1.0905 

MAE 0.6855 0.7582 0.6850 0.7187 0.7181 0.7264 0.7921 
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Figure 3. Prediction performance in terms of RMSE 

of the IBCFs and their peer CF algorithms on the 20 
subsets of MovieLens data, ordered by sparsities 

 
This result shows that IBCF-NB performs the best on 

the datasets with sparsity less than 95%; its score is better 
than the 2nd best IBCF-PMM with 1-sided t-test p<0.031. It 
loses its lead to other IBCFs after dataset d_11 (with 
sparsity 95.6%, see Figure 3). CBCF performs the best on 
the datasets with sparsity larger than 95%, slightly better 
than the 2nd-place IBCF-mean with p<0.16. Through using 
IBCF-NB for relatively dense datasets (sparsity<95%) and 
IBCF-mean for highly sparse datasets (sparstiy≥95%), the 
overall RMSE performance of IBCF-NBM becomes the 
best. 

We show below the overall ranking of the CF 
algorithms using 1-sided t-test where “>” implies 
“insignificantly better”, with p-value larger than 0.05, and 
“>>” implies “significantly better”, with p-value smaller 
than 0.05. 

 
IBCF-NBM (p<0.07)> IBCF-PMM (p<0.08)> IBCF-

LinR (p<0.004)>> IBCF-NB (p<0.03)>> CBCF 
(p<0.009)>> IBCF-mean (p<6E-5)>> PearsonCF 

 
IBCF-NBM, IBCF-PMM, IBCF-LinR and IBCF-NB 

have 3.58%, 3.35%, 3.17% and 2.36% lower RMSE scores 
than CBCF respectively; and they have 10.34%, 10.13%, 
9.96% and 9.21% lower RMSE than the traditional 
PearsonCF. 

As hybrid CF algorithms rely on external content 
information that are usually not available, the fact that our 
IBCFs (IBCF-NBM, IBCF-PMM, IBCF-LinR, and IBCF-
NB) working on pure rating data can significantly 
outperform the content-boosted CF, has important 
significance. Note that our IBCF-NBM achieves an MAE 
value (mean absolute error, ∑ −=

},{ ,,
1

iu iuiu rp
n

MAE ) of 0.685 

(see Table 3), while the previous reported best MAE score 
on the MovieLens data in the literature is 0.72 by [14].  
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5. Conclusions 
Collaborative filtering (CF) is one of the most effective 
ways to produce recommendations. These systems use a 
rating matrix, whose sparsity is a serious challenge for CF 
algorithms. We therefore use imputation-boosted 
collaborative filtering (IBCF) algorithms, which attempt to 
boost CF performance by first using some imputation 
process to fill in omissions in the rating matrix, then 
making recommendations from this completed data rather 
than the original rating data. We compare the performance 
of several such systems, including IBCF-PMM (predictive 
mean matching), IBCF-mean (mean imputation), IBCF-
LinR (linear regression), and IBCF-NB (naïve Bayes 
classifier). The results of their performances on datasets 
with different sparsities suggest an easy-to-implement 
mixture IBCF, IBCF-NBM, which uses IBCF-NB for 
relatively dense datasets, IBCF-mean for the extremely 
sparse datasets, and a sparsity threshold that is determined 
by the score where these two algorithms change the lead of 
their predictive performances. Empirical results show that 
IBCF-NBM outperforms IBCF using standard imputation 
techniques (IBCF-PMM, IBCF-LinR, and IBCF-mean), 
and have significantly better predictive performance than 
the representative hybrid CF algorithm content-boosted CF 
(even though IBCF-NBM does not use external content 
information).  
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