
ARBITRARILY-SHAPED WINDOW BASED STEREO MATCHING USING
THE GO-LIGHT OPTIMIZATION ALGORITHM

Xiaoyuan Su Taghi M. Khoshgoftaar
Computer Science and Engineering

Florida Atlantic University
xsu@fau.edu, taghi@cse.fau.edu

ABSTRACT

In this paper, we present a stereo matching algorithm using
arbitrarily-shaped windows and a local optimization method
called Go-light. The disparity map comes from a five-pixel
arbitrarily-shaped window matching and a regular window
based matching. It is then optimized by the Go-light
optimization method, in which an outlier disparity value is
replaced by the average of its surrounding ones when
certain constraints are met. Experiments show that the
accuracy of our algorithm is comparable to some of the
state-of-the-art stereo correspondence algorithms on the
Middlebury stereo data.
.
Keywords— stereo correspondence, arbitrarily-shaped
window, Go-light optimization, stereo constraints, local
stereo matching

1. INTRODUCTION

Stereo correspondence is one of the most active research
areas in computer vision. The main task of stereo
correspondence is to find the disparity map between a pair
of images taken from two different viewpoints on the same
scene. As stereo matching is an ill-posed problem with
inherent ambiguities, it remains a difficult vision problem
for the reasons of noise, textureless regions, depth
discontinuity and occlusions [1].

Local methods (window-based) of stereo
correspondence capture disparity only using intensity values
within a finite neighboring window. Global methods of
stereo correspondence such as graph cut [2][3] and belief
propagation [1] are used to optimize the disparity map
through various minimization techniques of energy that
considers matching cost, depth discontinuities and
occlusion.

For local stereo matching, small-window methods can
accurately capture disparity in highly textured regions, but
produce noisy disparities in textureless regions; while big-
window methods produce smooth disparities in textureless
regions, but are difficult to get accurate disparities for
densely textured regions. Veksler uses variable windows [4]
to avoid fixed windows size and take advantages of

different window sizes. Kim et al. proposed a rod-shaped
shiftable windows [5] to produce accurate disparity values
for certain texture intensive regions. Rod-shaped shiftable
windows typically use 36 orientations and their shapes are a
short straight line (so-called rod-shaped), however, these
windows are not flexible enough.

In this paper, we propose an arbitrarily-shaped window
stereo matching method, which uses a five-pixel window
that has arbitrary shapes and orientations. The arbitrarily-
shaped windows can accurately capture the disparity for
densely textured regions, and work together with a regular
window that is good at matching textureless regions.

Instead of using energy minimization based
optimization, we propose the Go-light optimization method
for the disparity map. The idea was inspired from the game
of Go, in which a white piece will be eliminated and
claimed as opponent’s territory when it’s surrounded by
black pieces. When a disparity is surrounded by different
disparities, it can be replaced by its neighbors’ average
when certain conditions are met. We vary the distance
values between the active point and its neighbors in the
iterations of optimization and use threshold values to avoid
over-pruning.

Go-light optimization is similar to a diffusion-based
technique [6] with respect to its ability to smooth outliers.
Its advantage is it is easy-to-implement and highly effective.

We work on the Middlebury stereo data and evaluate
the performance of our algorithm in terms of the accuracy
for all regions, non-occluded regions and depth
discontinuity regions against the ground-true disparity maps
according to the Middlebury test bed [7].

We describe the framework of our algorithm in Section
2. The experimental design and result are in Section 3. Our
conclusions and future work are in Section 4.

2. FRAMEWORK

2.1. Local Stereo Matching

Local stereo correspondence methods only use the intensity
values of pixels to make stereo matching.

Instead of using sum of squared differences (SSD) or
normalized cross correlation (NCC), we use root mean

VI - 5561-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

squared error (RMSE) as our matching metric and use a
universal threshold value for different window sizes to
determine a match or non-match.

2
1

|),(),(|1 N

i ii yrRylL
N

RMSE

where N is the total number of pixels in a window, L(l, y)
and R(r, y) are intensity values of pixels in the left window
and right window.

For each pixel in each scanline in the reference image,
we seek the most similar pixel in the same scanline of the
other image, in terms of the smallest RMSE. If this RMSE
value is smaller than a threshold value, we conclude that
there is a match between the pixels and then calculate their
difference along the horizontal axis as the disparity value.
Otherwise, we report there is an occlusion here, which
means there is no match for this pixel. If there is a match
between pixels (l, y) and (r, y), the disparity value at (l, y) is
| l – r |. A disparity map has the disparity values for every
pixel in the reference image.

2.2. Arbitrarily-shaped Windows

We propose an arbitrarily-shaped window, which is
adaptive for most kinds of shapes. As illustrated in Figure 1,
where a regular square window can not find matches for
certain regions in the pair of images (Figure 1(a)), an
arbitrarily-shaped window can do it (Figure 1(b)). Our
arbitrarily-shaped-window strategy is to try out all kinds of
shapes and orientations and pick the winning shape that has
the minimum similarity value in terms of RMSE.

Figure 1, an illustration of arbitrarily-shaped windows
(a) a regular square window can not find a match (b) an

arbitrarily-shaped window can

Figure 2, examples of arbitrarily-shaped windows
 (a) scenario A, and (b) scenario B

Within a 5*5 neighboring square (Figure 2), we have
the point (0, 0) always located in the middle of five pixels.
In scenario A, when the first three points are (0, -2), (0, -1)
and (0, 0), and our search route for other pixels to form a
unique 5-pixel combination ends at one of the other
peripheral points, we will have seven different
shapes/orientations. Starting from another peripheral point
of the square and ending at a different peripheral point, we
will have six more unique shapes/orientations (a duplicated
one has been removed). Continue starting from any other
peripheral point and ending at a different peripheral one, we
will totally have i=1

7(i)=28 shapes/orientations for scenario
A. In scenario B (Figure 2(b)), we use the remaining
peripheral points of the square from scenario A. When our
first three points are (1, -2), (0, -1) and (0, 0), we will have
15 different shapes/orientations (including the one with the
same point as starting and ending points, but with different
starting and returning routes). Taking other routes and
making sure that the central point is (0, 0) and start point
and end point are peripheral points of the square, we will
get totally i=1

15(i)=120 unique shapes/orientation. Summed
from these two scenarios, we will have a total of 148
different shapes/orientations to pick a five-pixel arbitrarily-
shaped window.

When doing stereo matching, we seek the shape with
the smallest RMSE value for the pair of pixels in both
images, and if this value is smaller than the threshold value,
we regard there is a match between these two pixels.

The five-pixel arbitrarily-shaped window is one of the
smallest windows for stereo matching. Considering we need
to try all shapes/orientations for each pair of pixels, the
computation time is the five-pixel matching time multiplied
by 148, which is equivalent to matching with a square
window of size 27.

2.3. The Go-Light Optimization Method

As optimization through energy minimization of disparity
and occlusion is difficult because exact inference is
basically intractable, we propose a novel Go-light
optimization method instead of using traditional belief
propagation or graph cut methods.

Figure 3, the Go-light optimization
(a) the game of Go (b)(c) scenario A and B of the Go-

light optimization method

Our Go-light optimization method was inspired from
the game of Go, in which a black (or white) piece will be

no match

match

no match

match

-2

-2

-1 0 1 2

-1

0

1

2

-2

-2

-1 0 1 2

-1

0

1

2

-2

-2

-1 0 1 2

-1

0

1

2

-2

-2

-1 0 1 2

-1

0

1

2

-2

-2

-1 0 1 2

-1

0

1

2

-2

-2

-1 0 1 2

-1

0

1

2

VI - 557

eliminated and claimed as its opponent’s territory if it’s
surrounded by white (or black) pieces (Figure 3(a)). The
underlying principle here is the disparity continuity
assumption: in a small region, when a disparity value is
greatly different from its surroundings, it is deemed as an
outlier and should be replaced or optimized.

Instead of strictly enforcing the actual Go game rules,
we use a loose-principled scenario, a Go-light optimization
method. The Go-light optimization compares the disparity
value of the central point with two groups of four certain-
distanced neighbors (Figure 3(b)(c)). If the disparity of the
central pixel is not equal to any of its neighbors’ disparities,
and its difference from the average of the neighbors’
disparities is bigger than a threshold, it will be replaced by
the average of the neighbors’ disparities. Starting from one,
we vary the distances incrementally in each iteration of the
optimization, in which the central point has the same
vertical and horizontal distances from any of its neighbors.
To prevent over-pruning, we use threshold values, which
are multiples of the product of the distance and the standard
deviation of the neighboring disparities. The algorithm is
illustrated in Figure 4.

Algorithm: Go-light (M, N, R, K, dis(disparity map),)
For Round r=1 : M (M<=5)
For iteration n=1 : N (N<=20)
For repeat_times=1: R (R<=5, constant for each iteration)
 distance d=n,
 threshold Ti=K*d*stdi (std: standard deviation of neighbors,
K=½ , 1, or 2, i=A, B scenarios (Figure 3))
 For each point dis(x, y) in the disparity map,
 If: dis(x,y) {dis(x-d, y), dis(x+d, y), dis(x, y-d), dis(x,
y+d)} && abs(dis(x,y)-averageA)>TA (here ‘ ’ means ‘any of ’)
 Then: dis(x,y)=averageA(dis(x-d, y), dis(x+d, y), dis(x, y-d),
dis(x, y+d))
 If: dis(x,y) {dis(x-d, y-d), dis(x+d, y+d), dis(x+d, y-d),
dis(x-d, y+d)} && abs(dis(x,y)-averageB)>TB
 Then: dis(x,y)=averageB(dis(x-d, y-d), dis(x+d, y+d),
dis(x+d, y-d), dis(x-d, y+d))
 If disn < , disr < , Then: Exit (when difference of the
disparity map between iterations/rounds is decreasing and is
smaller than a limited small value, break the iteration/round)

Figure 4, The Go-Light Optimization Algorithm

3. EXPERIMENTAL DESIGN AND RESULTS

We work on Middlebury’s four new evaluation data,
Tsukuba, Venus, Cones and Teddy for quantitative
evaluation [8]. We evaluate our algorithm in terms of the
percentage of bad pixels, i.e., pixels whose absolute
disparity error is greater than 1. Specifically, we calculate
percentages for (1) pixels in non-occluded regions, (2) all
pixels and (3) pixels near depth discontinuities. We ignore a
border of 10 pixels for Venus, and 18 for Tsukuba when
computing statistics [7].

For the local stereo correspondence, we use the
disparity map from the five-pixel arbitrarily-shaped
windows and a square window. When optimizing the
disparity map using the Go-light algorithm, we use different
parameter settings for different data. For example, for the
data Cones, we use iteration numbers of 15, 15 and 2 and
the parameter K of 1, 0.5 and 1 for the three rounds. For
each round of optimization, a bigger iteration number means
a bigger neighboring range, and a bigger K value means
stricter thresholds.

In our experiments, we work on different extents of
using the arbitrarily-shaped windows: a pure 3*3 window
based matching (no arbitrarily-shaped windows, we call this
case 1), a 90%-square-window-matching plus a 10%-
arbitrarily-shaped-window-matching (case 2), and a 10%-
square-window-matching plus a 90%-arbitrarily-shaped-
window-matching (case 3). For case 2, we use the
arbitrarily-shaped windows for locations where a regular
3*3 window can not find matches. For case 3, we use the
regular square window with size of 9, 11 or 13 for the
regions that the arbitrarily-shaped windows can not find
matches, considering that arbitrarily-shaped windows are
good at matching highly textured areas and big windows are
good at matching textureless ones. Experimental result
shows that except for the data Teddy, using of arbitrarily-
shaped windows produce more accurate disparities (Table
1), and overall, case 2 performs the best of the three
different usages of arbitrarily-shaped windows. Our
arbitrarily-shaped windows matching does not perform well
for the data Teddy as it is suitable for highly textured
images, while Teddy has a big textureless region. It takes
case 2 about 8 minutes to match the data Tsukuba, working
on an Intel Pentium 4, 1G memory computer (a longer
running time than global methods, but reasonable for a local
one).

all % Tsukuba Venus Teddy Cones

case 1 5.21 4.07 22.39 18.36
case 2 4.92 3.57 22.62 17.51
case 3 4.99 3.48 22.66 19.07

nonocc % Tsukuba Venus Teddy Cones

case 1 3.54 2.98 14.48 10.11
case 2 2.98 2.52 16.49 9.78
case 3 3.22 2.47 16.44 11.68

Table 1, performance of using different extents of
arbitrarily-shaped windows (in terms of percentage bad

pixels for non-occluded regions and all regions)

The overall evaluation of our algorithm is in Table 2
and Figure 5. By the time of submission, our average rank
on the Middlebury stereo evaluation webpage [8] is No. 21
for error threshold =1, and No. 16 for error threshold = 0.5.
Compared with other disparity optimization methods, our
algorithm is better than scanline optimization [7], and

VI - 558

comparable with graph cuts using alpha-beta swaps [9] on
the new version of Middlebury evaluation. Compared with
other window-based stereo correspondence algorithms, our
algorithm is better than the pixel-to-pixel algorithm [10] and
comparable with the discontinuity preserving algorithm [11]
and the variable window algorithm [4] on the previous
version of Middlebury evaluation data. Due to limited
space, we do not list all the evaluation results here.

The parameter settings for Go-light optimization can be
unified for different data by analyzing the distributions of
highly textured and textureless regions. We plan to
investigate this in the future.

Tsukuba Venus
nonocc all disc nonocc all disc

2.98 4.92 15.1 2.47 3.48 27.5
Cones Teddy

nonocc all disc nonocc all disc
9.78 17.5 21.3 14.5 22.4 33.0

Table 2, evaluation of our algorithm on the Middlebury
data (in terms of percentage of bad pixels for non-
occluded, all and disparity discontinuity regions)

4. CONCLUSIONS

In this paper, we present an optimization method called Go-
light for stereo correspondence, which replaces an outlier
disparity value with the average of its surrounding ones
when certain constraints are met, and effectively removes
noises and enforces disparity continuity. To further improve
the stereo matching performance, we combine the disparity
values from an arbitrarily-shaped window based matching
into a regular window based matching. Experiments show
that using of arbitrarily-shaped windows generally produces
more accurate disparities for stereo matching. Working on
the standard Middlebury stereo data, the performance of our
algorithm is comparable with some state-of-the-art
algorithms.

It will be interesting to use our Go-light algorithm to
optimize other stereo matching methods, and get our
arbitrarily-shaped window based stereo matching optimized
by a global optimization method.

REFERENCES

[1] J. Sun, N-N. Zheng, and H-Y. Shum, “Stereo Matching Using
Belief Propagation”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 25, No. 7, 2003.

[2] V. Kolmogorov and R. Zabih, “Computing Visual
Correspondence with Occlusions using Graph Cuts”, Proceedings
of International Conference of Computer Vision, 2001.
[3] V. Kolmogorov and R. Zabih, “What Energy Functions can be
Minimized via Graph Cuts?”, Proceedings of European
Conference of Computer Vision, 2002.
[4] O. Veksler, “Fast Variable Window for stereo correspondence
Using Integral Images”, IEEE Computer Vision and Pattern
Recognition (CVPR’03), 2003.
[5] J.C. Kim, K.M. Lee, B.T. Choi, and S.U. Lee, “A Dense Stereo
Matching Using Two-Pass Dynamic Programming with
Generalized Ground Control Points”, IEEE Computer Vision and
Pattern Recognition (CVPR’05), 2005.
[6] D. Scharstein and R. Szeliski, “Stero Matching with Non-linear
Diffusion”, IJCV, 28(2), pp. 155-174, 1998.
[7] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms”,
International Journal of Computer Vision, Vol. 47, No.1, 2002.
[8] Middlebury stereo, http://www.middlebury.edu/stereo
[9] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate
Energy Minimization via Graph Cuts”, PAMI, 23(11), 2001.
[10] S. Birchfield, and C. Tomasi, “Depth Discontinuities by
Pixel-to-Pixel Stereo”, ICCV 1998.
[11] M. Agrawal, and L. Davis, “Window-Based Discontinuity
Preserving Stereo”, CVPR 2004.

arbi-shaped +
square windows

Go-Light
Optimization

Ground Truth
Disparity

Figure 5, the result of our stereo matching algorithm
(from top to down: Tsukuba, Venus, Cones, Teddy.
Same color on different maps does not necessarily

represent a same disparity)

VI - 559

