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ABSTRACT

In this paper, we present a stereo matching algorithm using 
arbitrarily-shaped windows and a local optimization method 
called Go-light. The disparity map comes from a five-pixel 
arbitrarily-shaped window matching and a regular window 
based matching. It is then optimized by the Go-light 
optimization method, in which an outlier disparity value is 
replaced by the average of its surrounding ones when 
certain constraints are met. Experiments show that the 
accuracy of our algorithm is comparable to some of the 
state-of-the-art stereo correspondence algorithms on the 
Middlebury stereo data.  
.
Keywords— stereo correspondence, arbitrarily-shaped 
window, Go-light optimization, stereo constraints, local 
stereo matching

1. INTRODUCTION 

Stereo correspondence is one of the most active research 
areas in computer vision. The main task of stereo 
correspondence is to find the disparity map between a pair 
of images taken from two different viewpoints on the same 
scene. As stereo matching is an ill-posed problem with 
inherent ambiguities, it remains a difficult vision problem 
for the reasons of noise, textureless regions, depth 
discontinuity and occlusions [1].  

Local methods (window-based) of stereo 
correspondence capture disparity only using intensity values 
within a finite neighboring window. Global methods of 
stereo correspondence such as graph cut [2][3] and belief 
propagation [1] are used to optimize the disparity map 
through various minimization techniques of energy that 
considers matching cost, depth discontinuities and 
occlusion. 

For local stereo matching, small-window methods can 
accurately capture disparity in highly textured regions, but 
produce noisy disparities in textureless regions; while big-
window methods produce smooth disparities in textureless 
regions, but are difficult to get accurate disparities for 
densely textured regions. Veksler uses variable windows [4] 
to avoid fixed windows size and take advantages of 

different window sizes. Kim et al. proposed a rod-shaped 
shiftable windows [5] to produce accurate disparity values 
for certain texture intensive regions. Rod-shaped shiftable 
windows typically use 36 orientations and their shapes are a 
short straight line (so-called rod-shaped), however, these 
windows are not flexible enough.  

In this paper, we propose an arbitrarily-shaped window 
stereo matching method, which uses a five-pixel window 
that has arbitrary shapes and orientations. The arbitrarily-
shaped windows can accurately capture the disparity for 
densely textured regions, and work together with a regular 
window that is good at matching textureless regions. 

Instead of using energy minimization based 
optimization, we propose the Go-light optimization method 
for the disparity map. The idea was inspired from the game 
of Go, in which a white piece will be eliminated and 
claimed as opponent’s territory when it’s surrounded by 
black pieces. When a disparity is surrounded by different 
disparities, it can be replaced by its neighbors’ average 
when certain conditions are met. We vary the distance 
values between the active point and its neighbors in the 
iterations of optimization and use threshold values to avoid 
over-pruning. 

Go-light optimization is similar to a diffusion-based 
technique [6] with respect to its ability to smooth outliers. 
Its advantage is it is easy-to-implement and highly effective. 

We work on the Middlebury stereo data and evaluate 
the performance of our algorithm in terms of the accuracy 
for all regions, non-occluded regions and depth 
discontinuity regions against the ground-true disparity maps 
according to the Middlebury test bed [7]. 

We describe the framework of our algorithm in Section 
2. The experimental design and result are in Section 3. Our 
conclusions and future work are in Section 4. 

2. FRAMEWORK 

2.1. Local Stereo Matching 

Local stereo correspondence methods only use the intensity 
values of pixels to make stereo matching.  

Instead of using sum of squared differences (SSD) or 
normalized cross correlation (NCC), we use root mean 
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squared error (RMSE) as our matching metric and use a 
universal threshold value for different window sizes to 
determine a match or non-match.  
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where N is the total number of pixels in a window, L(l, y)
and R(r, y) are intensity values of pixels in the left window 
and right window.  

For each pixel in each scanline in the reference image, 
we seek the most similar pixel in the same scanline of the 
other image, in terms of the smallest RMSE. If this RMSE
value is smaller than a threshold value, we conclude that 
there is a match between the pixels and then calculate their 
difference along the horizontal axis as the disparity value. 
Otherwise, we report there is an occlusion here, which 
means there is no match for this pixel. If there is a match 
between pixels (l, y) and (r, y), the disparity value at (l, y) is 
| l – r |. A disparity map has the disparity values for every 
pixel in the reference image. 

2.2. Arbitrarily-shaped Windows 

We propose an arbitrarily-shaped window, which is 
adaptive for most kinds of shapes. As illustrated in Figure 1, 
where a regular square window can not find matches for 
certain regions in the pair of images (Figure 1(a)), an 
arbitrarily-shaped window can do it (Figure 1(b)). Our 
arbitrarily-shaped-window strategy is to try out all kinds of 
shapes and orientations and pick the winning shape that has 
the minimum similarity value in terms of RMSE.

Figure 1, an illustration of arbitrarily-shaped windows 
(a) a regular square window can not find a match (b) an 

arbitrarily-shaped window can 

Figure 2, examples of arbitrarily-shaped windows 
 (a) scenario A, and (b) scenario B

Within a 5*5 neighboring square (Figure 2), we have 
the point (0, 0) always located in the middle of five pixels. 
In scenario A, when the first three points are (0, -2), (0, -1) 
and (0, 0), and our search route for other pixels to form a 
unique 5-pixel combination ends at one of the other 
peripheral points, we will have seven different 
shapes/orientations. Starting from another peripheral point 
of the square and ending at a different peripheral point, we 
will have six more unique shapes/orientations (a duplicated 
one has been removed). Continue starting from any other 
peripheral point and ending at a different peripheral one, we 
will totally have i=1

7(i)=28 shapes/orientations for scenario 
A. In scenario B (Figure 2(b)), we use the remaining 
peripheral points of the square from scenario A. When our 
first three points are (1, -2), (0, -1) and (0, 0), we will have 
15 different shapes/orientations (including the one with the 
same point as starting and ending points, but with different 
starting and returning routes). Taking other routes and 
making sure that the central point is (0, 0) and start point 
and end point are peripheral points of the square, we will 
get totally i=1

15(i)=120 unique shapes/orientation. Summed 
from these two scenarios, we will have a total of 148 
different shapes/orientations to pick a five-pixel arbitrarily-
shaped window.  

When doing stereo matching, we seek the shape with 
the smallest RMSE value for the pair of pixels in both 
images, and if this value is smaller than the threshold value, 
we regard there is a match between these two pixels.  

The five-pixel arbitrarily-shaped window is one of the 
smallest windows for stereo matching. Considering we need 
to try all shapes/orientations for each pair of pixels, the 
computation time is the five-pixel matching time multiplied 
by 148, which is equivalent to matching with a square 
window of size 27. 

2.3. The Go-Light Optimization Method 

As optimization through energy minimization of disparity 
and occlusion is difficult because exact inference is 
basically intractable, we propose a novel Go-light 
optimization method instead of using traditional belief 
propagation or graph cut methods. 

Figure 3, the Go-light optimization  
(a) the game of Go (b)(c) scenario A and B of  the Go-

light optimization method 

Our Go-light optimization method was inspired from 
the game of Go, in which a black (or white) piece will be 
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eliminated and claimed as its opponent’s territory if it’s 
surrounded by white (or black) pieces (Figure 3(a)). The 
underlying principle here is the disparity continuity 
assumption: in a small region, when a disparity value is 
greatly different from its surroundings, it is deemed as an 
outlier and should be replaced or optimized.  

Instead of strictly enforcing the actual Go game rules, 
we use a loose-principled scenario, a Go-light optimization 
method. The Go-light optimization compares the disparity 
value of the central point with two groups of four certain-
distanced neighbors (Figure 3(b)(c)). If the disparity of the 
central pixel is not equal to any of its neighbors’ disparities, 
and its difference from the average of the neighbors’ 
disparities is bigger than a threshold, it will be replaced by 
the average of the neighbors’ disparities.  Starting from one, 
we vary the distances incrementally in each iteration of the 
optimization, in which the central point has the same 
vertical and horizontal distances from any of its neighbors. 
To prevent over-pruning, we use threshold values, which 
are multiples of the product of the distance and the standard 
deviation of the neighboring disparities. The algorithm is 
illustrated in Figure 4. 

Algorithm: Go-light (M, N, R, K, dis(disparity map), )
For Round r=1 : M (M<=5) 
For iteration n=1 : N (N<=20) 
For repeat_times=1: R (R<=5, constant for each iteration) 
    distance d=n,
    threshold Ti=K*d*stdi (std: standard deviation of neighbors, 
K=½ , 1, or 2, i=A, B scenarios (Figure 3)) 
    For each point dis(x, y) in the disparity map,  
          If: dis(x,y) {dis(x-d, y), dis(x+d, y), dis(x, y-d), dis(x, 
y+d)} && abs(dis(x,y)-averageA)>TA (here ‘ ’ means ‘any of ’) 
          Then: dis(x,y)=averageA(dis(x-d, y), dis(x+d, y), dis(x, y-d), 
dis(x, y+d)) 
          If: dis(x,y) {dis(x-d, y-d), dis(x+d, y+d), dis(x+d, y-d), 
dis(x-d, y+d)} && abs(dis(x,y)-averageB)>TB
          Then: dis(x,y)=averageB(dis(x-d, y-d), dis(x+d, y+d), 
dis(x+d, y-d), dis(x-d, y+d)) 
          If disn < , disr < , Then: Exit (when difference of the 
disparity map between iterations/rounds is decreasing and is 
smaller than a limited small value, break the iteration/round)

Figure 4, The Go-Light Optimization Algorithm 

3. EXPERIMENTAL DESIGN AND RESULTS 

We work on Middlebury’s four new evaluation data, 
Tsukuba, Venus, Cones and Teddy for quantitative 
evaluation [8]. We evaluate our algorithm in terms of the 
percentage of bad pixels, i.e., pixels whose absolute 
disparity error is greater than 1. Specifically, we calculate 
percentages for (1) pixels in non-occluded regions, (2) all 
pixels and (3) pixels near depth discontinuities. We ignore a 
border of 10 pixels for Venus, and 18 for Tsukuba when 
computing statistics [7]. 

For the local stereo correspondence, we use the 
disparity map from the five-pixel arbitrarily-shaped 
windows and a square window. When optimizing the 
disparity map using the Go-light algorithm, we use different 
parameter settings for different data. For example, for the 
data Cones, we use iteration numbers of 15, 15 and 2 and 
the parameter K of 1, 0.5 and 1 for the three rounds. For 
each round of optimization, a bigger iteration number means 
a bigger neighboring range, and a bigger K value means 
stricter thresholds.  

In our experiments, we work on different extents of 
using the arbitrarily-shaped windows: a pure 3*3 window 
based matching (no arbitrarily-shaped windows, we call this 
case 1), a 90%-square-window-matching plus a 10%-
arbitrarily-shaped-window-matching (case 2), and a 10%-
square-window-matching plus a 90%-arbitrarily-shaped-
window-matching (case 3). For case 2, we use the 
arbitrarily-shaped windows for locations where a regular 
3*3 window can not find matches. For case 3, we use the 
regular square window with size of 9, 11 or 13 for the 
regions that the arbitrarily-shaped windows can not find 
matches, considering that arbitrarily-shaped windows are 
good at matching highly textured areas and big windows are 
good at matching textureless ones. Experimental result 
shows that except for the data Teddy, using of arbitrarily-
shaped windows produce more accurate disparities (Table 
1), and overall, case 2 performs the best of the three 
different usages of arbitrarily-shaped windows. Our 
arbitrarily-shaped windows matching does not perform well 
for the data Teddy as it is suitable for highly textured 
images, while Teddy has a big textureless region. It takes 
case 2 about 8 minutes to match the data Tsukuba, working 
on an Intel Pentium 4, 1G memory computer (a longer 
running time than global methods, but reasonable for a local 
one).

all % Tsukuba Venus Teddy Cones 

case 1 5.21 4.07 22.39 18.36 
case 2 4.92 3.57 22.62 17.51 
case 3 4.99 3.48 22.66 19.07 

nonocc % Tsukuba Venus Teddy Cones 

case 1 3.54 2.98 14.48 10.11 
case 2 2.98 2.52 16.49 9.78 
case 3 3.22 2.47 16.44 11.68 

Table 1, performance of using different extents of 
arbitrarily-shaped windows (in terms of percentage bad 

pixels for non-occluded regions and all regions) 

The overall evaluation of our algorithm is in Table 2 
and Figure 5. By the time of submission, our average rank 
on the Middlebury stereo evaluation webpage [8] is No. 21 
for error threshold =1, and No. 16 for error threshold = 0.5. 
Compared with other disparity optimization methods, our 
algorithm is better than scanline optimization [7], and 
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comparable with graph cuts using alpha-beta swaps [9] on 
the new version of Middlebury evaluation. Compared with 
other window-based stereo correspondence algorithms, our 
algorithm is better than the pixel-to-pixel algorithm [10] and 
comparable with the discontinuity preserving algorithm [11] 
and the variable window algorithm [4] on the previous 
version of Middlebury evaluation data. Due to limited 
space, we do not list all the evaluation results here. 

The parameter settings for Go-light optimization can be 
unified for different data by analyzing the distributions of 
highly textured and textureless regions. We plan to 
investigate this in the future. 

Tsukuba Venus
nonocc all disc nonocc all disc 

2.98 4.92 15.1 2.47 3.48 27.5 
Cones Teddy

nonocc all disc nonocc all disc 
9.78 17.5 21.3 14.5 22.4 33.0 

Table 2, evaluation of our algorithm on the Middlebury 
data (in terms of percentage of bad pixels for non-
occluded, all and disparity discontinuity regions) 

4. CONCLUSIONS

In this paper, we present an optimization method called Go-
light for stereo correspondence, which replaces an outlier 
disparity value with the average of its surrounding ones 
when certain constraints are met, and effectively removes 
noises and enforces disparity continuity. To further improve 
the stereo matching performance, we combine the disparity 
values from an arbitrarily-shaped window based matching 
into a regular window based matching. Experiments show 
that using of arbitrarily-shaped windows generally produces 
more accurate disparities for stereo matching. Working on 
the standard Middlebury stereo data, the performance of our 
algorithm is comparable with some state-of-the-art 
algorithms.  

It will be interesting to use our Go-light algorithm to 
optimize other stereo matching methods, and get our 
arbitrarily-shaped window based stereo matching optimized 
by a global optimization method. 
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Figure 5, the result of our stereo matching algorithm 
(from top to down: Tsukuba, Venus, Cones, Teddy. 
Same color on different maps does not necessarily 

represent a same disparity) 
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