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Abstract

Most standard learning algorithms, such as Logistic Re-
gression (LR) and the Support Vector Machine (SVM),
are designed to deal with i.i.d. (independent and identi-
cally distributed) data. They therefore do not work ef-
fectively for tasks that involve non-i.i.d. data, such as
“region segmentation”. (Eg, the “tumor vs non-tumor”
labels in a medical image are correlated, in that adja-
cent pixels typically have the same label.) This has mo-
tivated the work in random fields, which has produced
classifiers for such non-i.i.d. data that are significantly
better than standard i.i.d.-based classifiers. However,
these random field methods are often too slow to be
trained for the tasks they were designed to solve. This
paper presents a novel variant, Pseudo Conditional Ran-
dom Fields (PCRFs), that is also based on i.i.d. learners,
to allow efficient training but also incorporates correla-
tions, like random fields. We demonstrate that this sys-
tem is as accurate as other random fields variants, but
significantly faster to train.

Introduction

Radiation therapy planners need to know the location of the
tumor to determine what area to treat; this typically requires
labelling each pixel within an magnetic resonance (MR) im-
age as either tumor or non-tumor. We could view this seg-
mentor as a standard discriminative classifier, and try to ap-
ply standard techniques — eg, logistic regression (LR) or
support vector machine (SVM). Unfortunately, these sys-
tems work poorly for this task, as they assume that each
pixel’s label is independent of each other. This assumption is
not true, as spatially adjacent pixels typically have the same
label.

This has motivated many researchers to use systems that
can model and use complex dependencies among data in-
stances, such as Markov Random Fields (MRFs) and Con-
ditional Random Fields (CRFs) (Kumar and Hebert 2003;
Lee et al. 2007). This is not without costs, however. For in-
stance, an MRF assumes that the observations are condition-
ally independent given their class labels; this clearly com-
promises their expressibility and hence their performance.
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CRFs allow more complex dependencies, but their under-
lying computations are intractable. This is partly because
these systems simultaneously learn the parameters that opti-
mize the label for each individual pixel by itself, and also
the parameters for jointly labelling pairs of adjacent pix-
els. Although approximation techniques have been adopted
to improve their computation efficiency, CRF variants, such
as Discriminative Random Fields (DRFs) still require costly
learning procedures (Kumar and Hebert 2003). Decoupled
Conditional Random Fields (DCRFs) presents an efficient
system by combining two classifiers that are each trained
separately (Lee, Greiner, and Zaiane 2006). However, this
often reduces the accuracy of these systems.

This paper presents the PCRF system that can efficiently
use a simple discriminative classifier (LR) and still incorpo-
rate spatial compatibility, in a 2-D lattice. Our PCRF can be
viewed as a regularized i.i.d. discriminative classifier, where
the classification task is performed along with a regularized
term that explicitly considers dependencies of labels. In par-
ticular, PCREF first learns a classifier under the i.i.d. assump-
tion, and then relaxes this i.i.d. assumption during testing.

Pseudo Conditional Random Fields —- PCRF's

Let X be an observed input image, where the observation
at pixel 7 is represented by x;, ¢ € S, where S is the set
of observed image pixels. Let Y be joint set of labels over
all pixels of an image. For simplicity we assume y; at pixel
i € S is binary y; € {—1,1}. For instance, X might be
a magnetic resonance image of a brain and Y is a joint la-
belling over all pixels that indicates whether each pixel is
normal or a tumor. We want to find the most-likely labelling
Py(Y|X) =]l,cq Po(yi| X, Y —y; ). Given feature vec-
tors (observations) x; for each pixel ¢ as well as the class
label y; for each neighboring pixel j € N;, the PCRF for-
mulation then defines

Pe(yz |Xi7xNi7yNi )
= we(xivyi) X ngNi ¢O(Xivxj) X ¢C(yi7yj) (1)

where the potential functions ¢°(x;, x;) quantifies the simi-
larity of the feature vectors for pixels ¢ and j, and ¢°(y;, y;)
models the interactions between the two class labels y; and
y;. The system designer can adjust ¢°(.) to alter the de-
gree of continuity with respect to class labels expected by the



model; e.g., if ¢© gives high weight when neighboring pix-
els share the same class label, then PCRF will prefer having
the same class labels among neighboring pixels. Alterna-
tively, setting ¢° = 1 and ¢“ = 1 would remove all spatial
dependencies, leading to an i.i.d. classifier. Note we use a
fixed pair of potential functions: we set ¢°(x;,X;) = X, X;,
as the similarity measure between neighboring pixels; note
this measure is maximal value when the two vectors are co-
linear. We also set ¢°(y;,y;) = aif y; = y;, and 1 — «
otherwise where o weighs the importance that adjacent pix-
els share the same label.

Learning One key factor that constrains the form of typi-
cal CRF variant models is to compute exact expectations, as
required to learn parameters (Kumar and Hebert 2003).

Our PCRF defines 1y (x;,) as o(67x;), where o(t) =
m corresponds to a standard local discriminative

classifier, Logistic Regression. This explicitly quantifies the
posterior probability of being in class y given observation
x;. Our PCRF learner is simple, and more efficient than
CRF variants, since we only need to fit the parameter 6 for
a local potential function v(.). (Recall we hand-defined the
¢° and ¢° functions.)

Inference Our PCRF system incorporates the spatial cor-
relations in the inference step. In general, our objective in
the inference process seeks Y* as:

Y* = argm@x(glogwe(xi,yi)‘*‘
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The above equation requires searching an exponential search
space (i.e. 2/°! for binary case) to find an optimal Y*.
To efficiently solve (approximate) our objective, we for-
mulate Eq. 2 using graph cuts algorithm that solves image
pixel classification tasks by minimizing an energy function
when spatial correlations among pixels are “independent”
of the observations; this involves using linear programming
to find the max-flow/min-cut on a graph in which nodes
correspond to pixels and edges correspond to connections
between neighboring pixels (Boykov, Veksler, and Zabih
1999). We reformulate this graph cuts approach to apply
to our PCRF framework (Eq. 2), in which neighbor relation-
ships are dependent on both the labels and the observations
(feature vectors). Refer to (WEB )

Experiments

We examine the performance of our PCRF on a binary clas-
sification task for both synthetic image sets and real world
problem (MR image segmentation) and compare it with the
baseline classifier — Logistic Regression (LR) — to highlight
the importance in modeling the spatial constraint. To quan-
tify the performance of each model, we used the Jaccard
score J = m , where TP denotes true positives,
FP false positives, and FN false negatives. We generated
18 synthetic binary images, each with its own shape. The
intensities of pixels in each image were then independently
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Figure 1: Jaccard Scores (percentage) for PCRF vs. LR

corrupted by Gaussian noise N(0,1). For our real world
problem, datasets are MRI scans from 11 patients with brain
tumors; for each patient, we annotated each pixel with val-
ues based on three different MR imaging modalities: 71, 72,
and T1 with gadolinium contrast (“T1c”). Figure. 1 clearly
presents robustness of PCRF from synthetic images (a) and
brain tumor segmentation (b). Each point above the diag-
onal line indicates that PCRF produced a higher Jaccard
score (percentage) for a given test image. We also com-
pare the PCRF’s performance with DRF’s for brain tumor
segmentation. On average, PCRF produced as accurate Jac-
card scores (percentage) as DRFs: 73.69 versus 73.03, re-
spectively. However, the PCRF’s learning time over 11 pa-
tients (38 seconds) is significantly more efficient than DRFs’
(1697 seconds average). Our PCRF was over 40 times faster
than the DRF (p < 10737, paired-samples t-tests). Refer
to (WEB ) for more details about experiments.

Conclusion

As standard i.i.d. classifiers do not model interdependencies
of labels, they typically do very poorly for such tasks spa-
tially constrained classification. In this paper, we proposed
an efficient model — Pseudo Conditional Random Fields
(PCRF) — that takes advantage of a typical discriminative
classifier (LR) when training, then relaxes the classifier’s
i.i.d. assumption during the inference. We demonstrate the
effectiveness and the efficiency of PCRFs from both syn-
thetic and real world data sets — showing that its perfor-
mance is comparable to state-of-the-art random field sys-
tems, but its training time is significantly more efficient.
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