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Abstract

We propose a new algorithm for independent
component and independent subspace anal-
ysis problems. This algorithm uses a con-
trast based on the Schweizer-Wolff measure
of pairwise dependence (Schweizer & Wolff,
1981), a non-parametric measure based on
pairwise ranks of the variables. Our algo-
rithm frequently outperforms state of the art
ICA methods in the normal setting, is signif-
icantly more robust to outliers in the mixed
signals, and performs well even in the pres-
ence of noise. Since pairwise dependence is
evaluated explicitly, using Cardoso’s conjec-
ture (Cardoso, 1998), our method can be ap-
plied to solve independence subspace analysis
(ISA) problems by grouping signals recovered
by ICA methods. We provide an extensive
empirical evaluation using simulated, sound,
and image data.

1. Introduction

Independent component analysis (ICA) (Comon,
1994) deals with a problem of a blind source sepa-
ration under the assumptions that the sources are in-
dependent and that they are linearly mixed. ICA has
been used in the context of blind source separation and
deconvolution, feature extraction, denoising, and suc-
cessfully applied to many domains including finances,
neurobiology, and processing of fMRI, EEG, and MEG
data. For recent reviews on ICA see Hyvärinen et al.
(2001).

Independent subspace analysis (ISA) (also called
multi-dimensional ICA and group ICA) is a generaliza-
tion of ICA that assumes that certain sources depend
on each other, but the dependent groups of sources

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

are still independent of each other, i.e., the indepen-
dent groups are multidimensional. The ISA task has
been the subject of extensive research (e.g., Cardoso,
1998; Theis, 2005; Bach & Jordan, 2003; Hyvärinen &
Köster, 2006; Póczos & Lőrincz, 2005). and applied,
for instance, to EEG-fMRI data (Akaho et al., 1999).

Our contribution, SWICA, is a new ICA algorithm
based on Schweizer-Wolff (SW) non-parametric depen-
dence measure. SWICA has the following properties:

• SWICA performs comparably to other state of the
art ICA methods, outperforming them in a large
number of test cases.

• SWICA is extremely robust to outliers as it uses
rank values of the signals rather than their actual
values.

• SWICA suffers less from the presence of noise
than other algorithms.

• SW measure can be used as the cost function to
solve ISA problems by grouping sources recovered
by ICA methods.

• SWICA is simple to implement, and the Mat-
lab/C++ code is available for public use.1

• On a negative side, SWICA is slower than other
methods, limiting its use to sources of moderate
dimensions, and it requires more samples to demix
sources with near-Gaussian distributions.

The paper is organized as follows. An overview
of the ICA and ISA problems and methods is pre-
sented in Section 2. Section 3 motivates and describes
Schweizer-Wolf dependence measure. Section 4 de-
scribes a 2-source version of SWICA, extends it to a
d-source problem, describes an application to ISA, and
mentions possible approaches for accelerating SWICA.
Section 5 provides a thorough empirical evaluation of

1Our implementation will become publicly available
once the algorithm is accepted for publication.
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SWICA to other ICA algorithms under different set-
tings and data types. The paper is concluded with a
summary in Section 6.

2. ICA and ISA

We consider the following problem. Assume we have
d independent 1-dimensional sources (random vari-
ables) denoted by S1, . . . , Sd. We assume each source
emits N i.i.d. samples denoted by

(
si
1, . . . , s

i
N

)
. Let

S =
{

sj
i

}
∈ Rd×N be a matrix of these samples. We

assume that these sources are hidden, and that only a
matrix X of mixed samples can be observed:

X = AS

where A ∈ Rd×d. (We further assume that A has full
rank d.) The task is to recover the sample matrix S of
the hidden sources by finding a demixing matrix W

Y = WX = (WA)S,

and the estimated sources Y 1, . . . , Y d are mutually in-
dependent. The solution can be recovered only up to
a scale and a permutation of the components, so the
mixed signals are usually preprocessed (pre-whitened)
so it is sufficient to search for an orthogonal ma-
trix W (e.g., Hyvärinen et al., 2001). Additionally,
jointly Gaussian sources are not identifiable under lin-
ear transformations, so we assume that no more than
one source is normally distributed.

There are many approaches to solving the ICA prob-
lem, differing both in the objective function designed
to measure the independence between the unmixed
sources (sometimes referred to as a contrast function)
and the optimization methods for that function. Most
commonly used objective function is the mutual infor-
mation (MI)

J (W) = I
(
Y 1, . . . , Y d

)
=

d∑
i=1

H
(
Y i
)
−H

(
Y 1, . . . , Y d

)
(1)

where H is the Shannon entropy. Alternatively, one
can minimize the sum

∑d
i=1 H

(
yi
)

of the univari-
ate entropies as the joint entropy is constant (e.g.,
Hyvärinen et al., 2001). Neither of these quantities
can be evaluated directly, so approximations are used
instead. Among effective methods falling in the former
category is Kernel-ICA (Bach & Jordan, 2002); RAD-
ICAL (Learned-Miller & Fisher, 2003) and Fast-ICA
(Hyvärinen, 1999) approximate the sum of the univari-
ate entropies. There are other possible cost functions
including maximum likelihood, moment-based meth-
ods, and correlation-based methods.

While ICA problems has been well-studied in the
above formulation, there are a number of variations
of it that are subject of active research. One such
formulation is a noisy version of ICA

X = AS + ε (2)

where multivariate noise ε is often assumed normally
distributed. Another related problem occurs when the
mixed samples X are corrupted by a presence of out-
liers. There many other possibilities that go beyond
the scope of this paper.

Of a special note is a generalization of ICA where
some of the sources are dependent, independent sub-
space analysis (ISA). For this case, the mutual in-
formation and Shannon entropies from Equation 1
would involve multivariate random vectors instead of
scalars. Resulting multidimensional entropies are ex-
ponentially more difficult to estimate than their scalar
counterparts, making ISA problem more difficult than
ICA. However, Cardoso (1998) conjectured that the
ISA problem can be solved by first preprocessing the
mixtures X by an ICA algorithm and then grouping
the estimated components with highest dependence.
The extent of this conjecture is still an open issue al-
though it has been rigorously proven for some distri-
bution types (Szabó et al., 2007). Although there is
no proof for general sources as of yet, a number of al-
gorithms apply this heuristics with success (Cardoso,
1998; Theis, 2007; Bach & Jordan, 2003).

3. Non-parametric Rank-Based
Approach

Most of the ICA algorithms use an approximation
to mutual information (MI) as their objective func-
tions, and the quality of the solution thus depends on
how accurate is the corresponding approximation. The
problem with using MI is that without a parametric
assumption on the functional form of the joint distri-
bution, MI cannot be evaluated exactly, and numerical
estimation can be both inaccurate and computation-
ally expensive. In this section, we explore other mea-
sures of pairwise association as possible ICA contrasts.
To note, most commonly used measure of correlation,
Pearson’s linear correlation coefficient cannot be used
as it is invariant to rotations (once the data has been
centered and whitened)

Instead, we are focusing on measures of dependence
of the ranks. Ranks have a number of desirable prop-
erties – they are invariant under any monotonic trans-
formations of the individual variables, insensitive to
outliers, and not very sensitive to small amounts of
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Figure 1. Values for sample version of Pearson’s ρp (dot-
ted, green), Kendall’s τ (dashed, red), Spearman’s ρ (dash-
dotted, blue), and Schweizer-Wolff σ (solid, black) as a
function of rotation angle

[
0, π

2

]
. Data was generated from

a uniform distribution on I2 and rotated by π
4

(left), with
added outliers (center), and with added noise (right).

noise. We found that a dependence measure defined
on copulas (e.g., Nelsen, 2006), probability distribu-
tions on continuous ranks, has the right properties to
be used as a contrast for ICA demixing.

3.1. Ranks and Copulas

Let a pair of random variables (X, Y ) ∈ R2 be dis-
tributed according to a bivariate probability distribu-
tion P . Assume we are given N samples of (X, Y ),
D = {(x1, y1) , . . . , (xN , yN )}. Let the rank rx (x) be
the number of xi, i = 1, . . . , N such that x > xi, and
let ry (y) be defined similarly.

Many non-linear dependence measures are based on
ranks. Among most commonly used are Kendall’s
τ and Spearman’s ρ rank correlation coefficients.
Kendall’s τ measures the difference between propor-
tions of concordant pairs ((xi, yi) and (xj , yj) such that
(xi − xj) (yi − yj) > 0) and discordant pairs. Spear-
man’s ρ measures a linear correlation between ranks of
rx (x) and ry (y). Both τ and ρ have a range of [−1, 1]
and are equal to 0 (in the limit) if the X and Y are
independent. However, the converse is not true, and
both τ and ρ can be 0 even if X and Y are not inde-
pendent. While they are robust to outliers, neither ρ
nor τ make for a good ICA contrast as they provide a
noisy estimate for dependence from moderately-sized
data sets when the dependence is weak (See Figure 1
for an illustration).

Rank correlations can be extended from samples to
distributions with the help of copulas, distributions
over continuous multivariate ranks. Using a related
to Spearman’s ρ measure of dependence for copulas,
we will devise an effective robust contrast for ICA.

Let I denote a unit interval [0, 1]. A bivariate cop-
ula C is probability function (cdf) defined on a unit
square, C : I2 → I such that its univariate marginals
are uniform, i.e., C (u, 1) = u, C (1, v) = v, ∀u, v,∈ I.2

Let U = Px (X) and V = Py (Y ) denote the corre-
sponding cdfs for previously defined random variables
X and Y . Variables X = P−1

x (U) and Y = P−1
y (V )

can be defined in terms of the inverse of marginal cdfs.
Then, for (u, v) ∈ I2, define C as

C (u, v) = P
(
P−1

x (u) , P−1
y (v)

)
.

It is easy to verify that C is a copula. Sklar’s theorem
(Sklar, 1959) states that such copula exists for any
distribution P , and that it is unique on the range of
values of the marginal distributions. A copula can be
thought of as binding univariate marginals Px and Py

to make a distribution P .

Copulas can be viewed as a canonical form of multi-
variate distributions as they preserve multivariate de-
pendence properties of the corresponding families of
distributions. For example, the differential mutual in-
formation of the joint distribution is equal to the ne-
gentropy of its copula restricted to the region on which
the copula density function (denoted in this paper by
c (u, v)) is defined:

c (u, v) =
∂2C (u, v)

∂u∂v
=

p (x, y)
px (x) py (y)

;

I (X, Y ) =
∫
I2

c (u, v) ln c (u, v) dudv.

Such negentropy is minimized when C (u, v) =
Π (u, v) = uv. Copula Π is referred to as the product
copula and is equivalent to variables U and V (and the
original variables X and Y ) being mutually indepen-
dent. This copula will play a central part in definition
of contrasts in the next subsection.

Copulas can also be viewed as a joint distribution
over univariate ranks, and therefore, preserve all of
the rank statistics of the corresponding multivariate
distributions; rank based statistics can be expressed
in terms of the copula alone. For example, Kendall’s
τ and Spearman’s ρ have a convenient functional form
in terms of the corresponding copulas (e.g., Nelsen,
2006):

τ = 4
∫
I2

C (u, v) dC (u, v)− 1,

ρ = 12
∫
I2

(C (u, v)−Π (u, v)) dudv. (3)

2While we restrict our attention to bivariate copulas,
many of the definitions and properties described in this
section can be extended to a d-variate case.
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As the true distribution P and its copula C are not
known, the rank statistics can be estimated from the
available sample using an empirical copula (Deheuvels,
1979). For a data set {(x1, y1) , . . . , (xN , yN )}, and
empirical copula CN is given by

CN

(
i

N
,

j

N

)
=

# of (xk, yk) s.t. xk ≤ xi and yk ≤ yj

N
.

(4)
Well-known sample versions of several non-linear de-
pendence measures can be obtained using an empirical
copula (e.g., Nelsen, 2006). For example, sample ver-
sion r of Spearman’s ρ appears to be a grid integration
evaluation of its expression in terms of a copula (Equa-
tion 3):

r =
12

N2 − 1

N∑
i=1

N∑
j=1

(
CN

(
i

N
,

j

N

)
− i

N
× j

N

)
. (5)

3.2. Schweizer-Wolff σ and λ

Part of the problem with Kendall’s τ and Spear-
man’s ρ as a contrast for ICA is a property that their
value may be 0 even though the corresponding vari-
ables X and Y are not independent. Instead, we
suggest using Schweizer-Wolff σ (Schweizer & Wolff,
1981), a measure of association from the class of mea-
sures of dependence (e.g., Nelsen, 2006, p. 208). This
dependence measure can be viewed as an L1 norm be-
tween a copula for the distribution and a product cop-
ula:

σ = 12
∫
I2
|C (u, v)− uv|dudv. (6)

σ has a range of [0, 1], with an important property
that σ = 0 if and only if the corresponding variables
are mutually independent, i.e., C = Π. (This is one of
seven requirements for measures of dependence.) The
latter property suggests both an independence test and
an ICA contrast for a pair of variables: pick a rota-
tion angle such that the corresponding demixed data
set has its Schweizer-Wolff (SW) dependence measure
σ minimized. A sample version of σ is similar to a
corresponding version of ρ (Equation 5):

s =
12

N2 − 1

N∑
i=1

N∑
j=1

∣∣∣∣CN

(
i

N
,

j

N

)
− i

N
× j

N

∣∣∣∣ . (7)

We note that other measures of dependence can
be potentially used as an ICA contrast. We
also experimented with an L∞ version of σ, λ =
supI2 |C (u, v)− uv| , a dependence measure similar to
Kolmorogov-Smirnov univariate statistic, with results
similar to SW σ.

4. SWICA: A New Algorithm for ICA
and ISA

In this section, we present a new algorithm for ICA
and ISA demixing. The algorithm uses Schweizer-
Wolff (SW) σ estimates as a contrast in demixing pairs
of variables; we named this algorithm Schweizer-Wolff
contrast for ICA, or SWICA for short.

4.1. 2-dimensional Case

First, we tackle the case of a two-dimensional signal
S mixed with a 2 × 2 matrix A. We, further assume
A is orthogonal (otherwise achievable by whitening).
The problem is then reduced to finding a demixing

rotation matrix W =
[

cos (θ) sin (θ)
− sin (θ) cos (θ)

]
.

For the objective function, we use s (Equation 7)
computed on 2×N matrix Y = WX of rotated sam-
ples. Given an angle θ, s (Y (θ)) can be computed by
first sorting each of the rows of Y (θ) and computing
row ranks for each entry of Y (θ), then computing an
empirical copula CN (Equation 4) for ranks of Y, and
finally computing s (Y (θ)) (Equation 7). The solution
is then found by finding angle θ minimizing s (Y (θ)).
Similar to RADICAL (Learned-Miller & Fisher, 2003),
we find such solution by searching over K values of θ
in the interval

[
0, π

2

)
(SW σ is invariant to rotations of

the data by the angle measured in an integer multiples
of π

2 ). This algorithm is outlined in Figure 2.

4.2. d-dimensional Case

A d-dimensional linear transformation described by
a d×d orthogonal matrix W is equivalent to a composi-
tion of 2-dimensional rotations (called Jacobi or Givens
rotations) (e.g., Comon, 1994). The transformation
matrix itself can be written as a product of correspond-
ing rotation matrices, W = WL × . . . × W1 where
each matrix Wl, l = 1, . . . , L is a rotation matrix (by
angle θl) for some pair of dimensions (i, j). Thus a
d-dimensional ICA problem can be solved by solving
2-dimensional ICA problems in succession. Given a
current demixing matrix Wc = Wl × . . .×W1 and a
current version of the signal Xc = WcX, we find an
angle θ corresponding to SWICA

(
X(i,j)

c ,K
)
. Taking

an approach similar to RADICAL, we perform a fixed
number of successive sweeps through all possible pairs
of dimensions (i, j).

We should note that while d-dimensional SWICA is
not guaranteed to converge, it converges in practice
vast majority of the time. A likely explanation is that
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Algorithm SWICA(X,K)
Inputs: X, a 2×N matrix where rows are mixed
signals (centered and whitened), K equispaced
evaluation angles in the [0, π/2) interval

For each of K angles θ in the interval [0, π/2)
(θ = πk

2 , k = 0, . . . ,K − 1.)

• Compute rotation matrix

W (θ) =
[

cos (θ) sin (θ)
− sin (θ) cos (θ)

]
• Compute rotated signals Y (θ) = W (θ)X.

• Compute s (Y (θ)), a sample estimate of SW
σ (Equation 7)

Find best angle θm = arg minθ s (Y (θ))

Output: Rotation matrix W = W (θm), demixed
signal Y = Y (θm), and SW σ estimate s =
s (Y (θm))

Figure 2. Outline of SWICA algorithm (2-d case).

each 2-dimensional optimization finds a transforma-
tion that reduces the sum of entropies for the corre-
sponding dimensions, reducing the overall sum of en-
tropies. In addition to this, Learned-Miller and Fisher
(2003) suggest that the minimization of the overall
sum of entropies in this fashion (by changing only two
terms in the sum) may make it easier to escape local
minima.

4.3. Complexity Analysis and Acceleration
Tricks

2-dimensional SWICA requires a search over K an-
gles. For each angle, we first sort the data to com-
pute the ranks of each data point (O (N log N)), and
then use these ranks to compute δ̂ by computing the
empirical copula and summing over the N × N grid
(Equation 7), requiring O

(
N2
)

additions. Therefore,
running time complexity of 2-d SWICA is O

(
KN2

)
.

Each sweep of a d-dimensional ICA problem solves a
2-dimensional ICA problem for each pair of variables,
O
(
d2
)

of them; S sweeps would have O
(
Sd2KN2

)
complexity. In our experiments, we employed K = 180
and S = d− 1.

The most expensive computation in SWICA is
O
(
N2
)

needed to compute SW estimate s (Y (θ)). Re-
ducing this complexity, either by approximation, or

perhaps, by an efficient rearrangement of the sum, is
left to future research. We used several other tricks
to speed up the computation. One, for large N (N >
2500) we estimated s by averaging s computed from
bootstrapped samples of smaller size Nb < N . This
approach reduces complexity toO

(
KBN2

b

)
where B is

the number of bootstrap samples. Two, when search-
ing for θ minimizing s (Y (θ)), it is unnecessary to sum
over all N2 terms when evaluating a candidate θ if a
partial sum already results in a value of s (Y (θ)) larger
than the current best. This optimization translates to
a 2-fold speed increase in practice. Three, it is un-
necessary to complete all S sweeps if the algorithm
already converged. One possible measure of conver-
gence is an Amari error (Equation 8) measured for the
cumulative rotation matrix for the most recent sweep.

4.4. Using Schweizer-Wolff σ for ISA

Schweizer-Wolff σ measure of dependence can be
effectively used to convert ICA solutions into those
for ISA by grouping together variables with high esti-
mated values of SW σ. This grouping approach was
proposed by Cardoso (1998), and while it is not prov-
ably correct, it is nonetheless effective. Our contribu-
tion is the use of the sample estimate of SW σ instead
of the estimate of the mutual information.

5. Experiments

For the experimental evaluation of SWICA, we con-
sidered several settings. For the evaluation of the
quality of demixing solution matrix W, we computed
the Amari error (Amari et al., 1996) for the resulting
transformation matrix B = WA. Amari error r (B)
measures how different matrix B is from a permuta-
tion matrix, and is defined as

α
d∑

i=1

(∑d
j=1 |bij|

maxj |bij |
− 1

)
+ α

d∑
j=1

(∑d
i=1 |bij |

maxi |bij |
− 1

)
.

(8)
where α = 1/(2d(d− 1)). r (B) ∈ [0, 1], and r (B) = 0
if and only if B is a permutation matrix. We compared
SWICA to FastICA (Hyvärinen, 1999), Kernel-ICA
(Bach & Jordan, 2002), RADICAL (Learned-Miller &
Fisher, 2003), and JADE (Cardoso, 1999).

For the simulated data experiments, we used 18 dif-
ferent one-dimensional densities to simulate sources.
These test-bed densities (and some of the experiments
below) were proposed by Bach and Jordan (2002) to
test Kernel-ICA and by Learned-Miller and Fisher
(2003) to evaluate RADICAL; we omit the descrip-
tion of these densities due to lack of space as they can
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be looked up in the above papers.

Table 1 summarizes the medians of the Amari er-
rors for 2-dimensional problems where both sources
had the same distribution. Samples from these sources
were then transformed by a random rotation, and then
demixed using competing ICA algorithms. SWICA
outperforms its competitors in 8 out of 20 cases, and
performs comparably in several other cases. However,
it performs poorly when the joint distribution for the
sources is close to a Gaussian. One possible expla-
nation for why SWICA performs worse than its com-
petitors for these cases is that by using ranks instead
of the actual values, SWICA is discarding some of
the information that may be essential to separating
such sources. However, given larger number of sam-
ples, SWICA is able to separate near-Gaussian sources
(data not shown due to space constraints).

Figure 3 summarizes the performance of ICA algo-
rithms in the presence of outliers for the 2-source case.
Distributions for the sources were chosen at random
from the 18 distributions from the experiment in Ta-
ble 1. The sources were mixed using a random rota-
tion matrix. The mixed sources were then corrupted
by adding +5 or −5 to a single component for a small
number of samples. SWICA significantly outperforms
the rest of the algorithms as sample ranks used by
SWICA are virtually unchanged by a small number of
outliers. We tested SWICA further by significantly in-
creasing the number of outliers; the performance was
virtually unaffected when the proportion of the out-
liers was below 20%. SWICA is also less sensitive to
noise than other ICA methods (Figure 4).

We further tested SWICA on sound and image data.
We mixed N = 1000 samples from 8 sound pieces of
an ICA benchmark 3 by a random orthogonal 8 × 8
matrix. Then we added 20 outliers to this mixture
in the same way as in the previously described outlier
experiment and demixed them using ICA algorithms.
Figure 5 shows that SWICA outperforms other meth-
ods on this task. For the image experiment, we used
4 natural images4 of size 128× 256. The pixel intensi-
ties we normalized in the [0, 255] interval. Each image
was considered as a realization of a stochastic variable
with 32768 sample points. We mixed these 4 images
by a 4×4 random orthogonal mixing matrix, resulting
in a mixture matrix of size 4× 32768. Then we added
large +2000 or −2000 outliers to 3% randomly selected
points of these mixture, and then selected at random

3http://www.cis.hut.fi/projects/ica/cocktail/cocktail en.cgi
4http://www.cis.hut.fi/projects/ica/data/images/
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Figure 3. Amari errors for 2-dimensional ICA problem in
the presence of outliers (multiplied by 100). The plot shows
the median values over K = 100 repetitions of N = 1000
samples. SWICA is shown by red dots (thick), RADICAL
by blue x, Kernel-ICA by green pluses, FastICA by cyan
circles, and JADE by magenta triangles. The x-axis is the
number of outliers (0 to 25).

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

σ

A
m

ar
i−

er
ro

r

0 0.6 1.2
0

0.1

0.2

0.3

0.4

σ
Figure 4. Amari errors (multiplied by 100) for 2-
dimensional (left) and 6-dimensional ICA problems in the
presence of independent Gaussian noise applied to mixed
sources. The plot shows the median values of K = 100
repetitions of N = 1000 (left) and N = 2000 (right). The
abscissa shows the variance σ2 of the Gaussian noise, σ2 =
(0, 0.1, . . . , 0.9, 1) (left) and σ2 = (0, 0.3, 0.6, 0.9, 1.2, 1.5)
(right). The legend is the same as in Figure 3.

SWICA FastICA RADICAL Kernel−ICA JADE

0.05

0.1

0.15

0.2

0.25

A
m

ar
i−

er
ro

r

Figure 5. Box plot of Amari error for the mixed sounds
with outliers. Plot computed over K = 100 runs.
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Table 1. The Amari errors for two-component ICA with
1000 samples (multiplied by 100). Each entry is the me-
dian of 100 replicates for each pdf, (a) to (r). “rand” row
represents the median of 1000 replicates when both den-
sities were chosen uniformly at random from (a)-(r). The
lowest (best) entry in each row is boldfaced.

pdf SW FastICA Radical KernelICA Jade

a 3.74 3.01 2.18 2.09 2.67
b 2.39 4.87 2.31 2.50 3.47
c 0.79 1.91 1.60 1.54 1.63
d 10.10 5.63 4.10 5.05 3.94
e 0.47 4.75 1.43 1.21 3.27
f 0.78 2.85 1.39 1.34 2.77
g 0.74 1.49 1.19 1.11 1.19
h 3.66 5.32 4.01 3.54 3.36
i 10.21 7.38 6.95 7.70 6.41
j 0.86 4.64 1.29 1.21 3.38
k 2.10 5.58 2.65 2.38 3.53
l 4.09 7.68 3.61 3.65 5.21
m 1.11 3.41 1.43 1.23 2.58
n 2.08 4.05 2.10 1.56 4.07
o 5.07 3.81 2.86 2.92 2.78
p 1.24 2.92 1.81 1.53 2.70
q 3.01 12.84 2.30 1.67 10.78
r 3.32 4.30 3.06 2.65 3.32
rand 1.47 3.94 2.12 1.89 3.22

2000 samples from the 32768 vectors. We estimated
the demixing matrix W using only these 2000 points,
and then recovered the hidden sources for all 32768
samples using this matrix. SWICA significantly out-
performed other methods. Figure 6 shows an example
of the demixing achieved by different ICA algorithms.

Finally, we applied SW σ in an ISA setting. For
this experiment, we used 6 3-dimensional sources
where each of 3-dimensional variables were sampled
from a geometric form (Figure 7a), resulting in a
18-dimensional hidden source. We then mixed this
source (N = 1000 samples) with a random 18 × 18
orthogonal matrix (Figure 7b). We then applied Car-
doso’s conjecture. After processing the mixed sources
using FastICA, the recovered sources were clustered
with SW σ (Figure 7c). (We used a commonly used
trick applying a non-linear transformation to recov-
ered sources before grouping them. The dependence
between independent sources is not affected by such
transformations, but can be amplified for dependent
sources.) We were able to recover the hidden sub-
spaces with high precision as indicated by the Hinton
diagram of WA (Figure 7d).

(a) Original (b) Mixed

(c) Estimated (d) Hinton diagram

Figure 7. ISA experiment for 6 3-dimensional sources.

6. Conclusion

We proposed a new ICA and ISA method, SWICA,
based on a non-parametric rank-based estimate of the
dependence between pairs of variables. The method
frequently outperforms other state of the art ICA al-
gorithms, is very robust to outliers, and only moder-
ately sensitive to noise. On the other hand, it is some-
what slower than other ICA methods, and requires
more samples to separate near-Gaussian sources. In
the future, we plan to investigate possible accelera-
tions to the algorithm, and statistical characteristics
of the source distributions that affect the contrast.
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