SPEEDING UP PLANNING IN MARKOV DECISION
PROCESSES VIA AUTOMATICALLY CONSTRUCTED
ABSTRACTIONS

Alejandro Isaza, Csaba Szepesvari, Vadim Bulitko and Russell Greiner A

|

CENTRE FOR

MACHINE LEARNING

Department of Computing Science, University ot Alberta

/ Motivation \

TASK: Stochastic shortest path
= reaching some goal state when the effects of actions are stochastic

e special case of planning
e subclass of Markov Decision Problems
e medium size: fully enumerated state space

Here: Multiple SSPs with the same domain

Goal: Speed up using Abstractions

e construct a multi-level hierarchy of progressively simpler abstractions

e find a policy for the most abstract level, then recursively refine into a solution to the original
problem.

Results: Features

e fully automated

e near-optimal solutions

e speed-up of ~100 over a state-of-the-art MD
solver e Deterministic abstractions

e Options based abstraction

p ® Multiple levels

Control of multi-link robotic manipulators
Path planning for agents in commercial video games (uncertainty &~ unmodeled dynamics, sensor and ac-

\(uncertainty of transitions &~ map congestion) tuator noise) /

/ Algorithm \

Building abstractions

Highway domain

—>
| I | I
- 8

Cluster splitting

e R

Pruning

Clustering

Planning

e Build a region around the goal, solve at the ground level
e Plan in the abstract graph

e Follow the ground options to execute the plan

Ko Follow the ground solution when entering the goal region
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/Theory \
Results
Processes:

Lifting a policy 7@ of M to M: & — H(T)
Projecting a policy m of M with p to X: m —— L,(7) = (L, x(c), Ly x(p)).

Theorem 1:
Interpretation: The expected error of the lifted value function of the abstract policy 7, rel-
ative to the base level policy 7, is small if (i) aggregation does not loose detail of v; and (i)
the projected costs and transitions underlying 7 are matched by the costs (resp., transitions)

assoclated with 7.

m: proper policy of M 7 proper policy of M
w: W= Wg w: ﬁ}:wLp(W)

~v: discount factor corresponding to w ~: discount factor corresponding to w

Al A = maxy wl(u‘%(%))

or — By o < JAVT = trlhwce | IEpal®) = Exllwco + cmaxl Lpr(p) = el /oo
(1)

Theorem 2 (Simulation):

Interpretation: We can accurately simulate m with some policy 7 of the abstract MDP
provided all of the terms are small.

Call the right-hand side of (??) B(w, 7). Let w’ = w H(7) and let 7" be the corresponding discount
factor. Let w : X — R™ be arbitrary. Then

oo < <max"‘f’<x>) B(r, 7) + (max “f/(m)) B(H(r), 7).

lor — v (s

Notation

X: state space

qg: g € X; goal state

M,.: M, .= (X, p,c); Markov cost process; transitions: p(y|x), costs: c(z,y), ¢ >0
Up.c: vyt X — R cost-to-go function; v, (z) = E[> 72 ez, 411))]

Wy: Wy = v, 1; expected number of steps until the goal is reached

V' (1 —~,) ! = max, wy(x); discount factor underlying p

M: M = (X, A, p,c,g); SSP with action set A; transitions: p(y|z, a), costs: ¢(z,a,y)
T m: X — A; policy

D, Cr transitions and costs under

Vo I Uy . ; cost-to-go underlying m

Wy Wy = w,_; expected number of steps until the goal is reached

1P = allwjoor 1P = allwijoo = max, 3, [p(ylz) — qlylz)|w(y) /w(z)

A
[0]fw,00: [0]lw,00 = max; [v(2)]/w(z)
Abstractions

M: M= (X,A,p,c,g); original MDP

Cmax. Maximum cost in M

M: M= (X,A,p,¢ {g}); abstract MDP

T(x): abstract state of x

S(z): S(z)={2" € X :2(x) = z(z")}; peers of x

state-randomization measure; p : X — [0, 1], > gy p(2) =1Vr € X
A, RY - RY (Apw)(z) = D .es(x) PL2)v(2); value aggregator

E:  E:RY =R (Ev)(z) = v(z(x)); value extension
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Subobtimality versus the solution
time ratio as compared to IPS for dif-
ferent values of P.

Subobtimality versus the solution
time ratio as compared to IPS for dif-
ferent parameter configurations. The
dominant configurations are shown for
different levels of abstraction.

Cost versus solution time for IPS and
abstraction at different values of P.

Solution suboptimalities for several
game maps.

Solution times for several game maps.




