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Motivation

TASK: Stochastic shortest path
= reaching some goal state when the effects of actions are stochastic

• special case of planning

• subclass of Markov Decision Problems

• medium size: fully enumerated state space

Here: Multiple SSPs with the same domain
Goal: Speed up using Abstractions
• construct a multi-level hierarchy of progressively simpler abstractions

• find a policy for the most abstract level, then recursively refine into a solution to the original
problem.

Results:
• fully automated
• near-optimal solutions
• speed-up of ∼100 over a state-of-the-art MDP

solver

Features

• Options based abstraction

• Multiple levels

• Deterministic abstractions

Path planning for agents in commercial video games

(uncertainty of transitions ≈ map congestion)

Control of multi-link robotic manipulators
(uncertainty ≈ unmodeled dynamics, sensor and ac-

tuator noise)

Algorithm

Building abstractions

Highway domain

c1 c2 c2c
1

1 c
2

1

Clustering Cluster splitting

Pruning

Planning

• Build a region around the goal, solve at the ground level

• Plan in the abstract graph

• Follow the ground options to execute the plan

• Follow the ground solution when entering the goal region

Related work

This work D97 KD03 Ha98 AsHu04/7 Moo99 LaKae01/2

State aggregation + + + + + + +
Automatically built abstractions + - - - + + +
Options + - - + + + +
Option discovery + - - - + + -
Lifted policy perf. bound + - - - - - -
Deterministic abstractions + - - - - + +

Experiments with |X| ≥ 103 + - - - + + +

Theory

Results

Processes:

Lifting a policy π̃ of M̃ to M : π̃ 7−→ H(π̃)
Projecting a policy π of M with ρ to X̃ : π 7−→ Lρ(π) ≡ (Lρ,π(c), Lρ,π(p)).

Theorem 1:
Interpretation: The expected error of the lifted value function of the abstract policy π̃, rel-
ative to the base level policy π, is small if (i) aggregation does not loose detail of vπ and (ii)
the projected costs and transitions underlying π are matched by the costs (resp., transitions)
associated with π̃.

π: proper policy of M π̃: proper policy of M̃
w: w = wπ w̃: w̃ = wLρ(π)

γ: discount factor corresponding to w γ̃: discount factor corresponding to w̃

λ: λ = maxx
w̃(x̃(x))
w(x)

‖vπ − Evπ̃‖w,∞ ≤
‖Avπ − vπ‖w,∞

1 − γ
+ λ

‖Lρ,π(c) − c̃π̃‖w̃,∞ + cmax‖Lρ,π(p) − p̃π̃‖w̃,1/∞

1 − γ̃
.

(1)

Theorem 2 (Simulation):

Interpretation: We can accurately simulate π with some policy π̃ of the abstract MDP
provided all of the terms are small.

Call the right-hand side of (??) B(π, π̃). Let w′ = wH(π̃) and let γ′ be the corresponding discount

factor. Let ŵ : X → R
+ be arbitrary. Then

‖vπ − vH(π̃)‖ŵ,∞ ≤

(

max
x

w(x)

ŵ(x)

)

B(π, π̃) +

(

max
x

w′(x)

ŵ(x)

)

B(H(π), π̃).

Notation

X : state space
g: g ∈ X ; goal state
Mp,c: Mp,c = (X, p, c); Markov cost process; transitions: p(y|x), costs: c(x, y), c ≥ 0

vp,c: vp,c : X → R; cost-to-go function; vp,c(x) , E[
∑∞

t=0 c(xt, xt+1)]

wp: wp , vp,1; expected number of steps until the goal is reached
γp: (1 − γp)

−1 = maxx wp(x); discount factor underlying p
M : M = (X,A, p, c, g); SSP with action set A; transitions: p(y|x, a), costs: c(x, a, y)
π: π : X → A; policy
pπ, cπ: transitions and costs under π

vπ: vπ , vpπ,cπ; cost-to-go underlying π

wπ: wπ , wpπ; expected number of steps until the goal is reached

‖p − q‖w,1/∞: ‖p − q‖w,1/∞ , maxx

∑

y |p(y|x) − q(y|x)|w(y)/w(x)

‖v‖w,∞: ‖v‖w,∞ , maxx |v(x)|/w(x)

Abstractions

M : M = (X, A, p, c, g); original MDP
cmax: maximum cost in M

M̃ : M̃ = (X̃, Ã, p̃, c̃, {g}); abstract MDP
x̃(x): abstract state of x
S(x): S(x) = {x′ ∈ X : x̃(x) = x̃(x′)}; peers of x
ρ: state-randomization measure; ρ : X → [0, 1],

∑

z∈S(x) ρ(z) = 1 ∀x ∈ X

Aρ: Aρ : R
X → R

X̃ , (Aρv)(x) =
∑

z∈S(x) ρ(z)v(z); value aggregator

E: E : R
X̃ → R

X , (Ev)(x) = v(x̃(x)); value extension
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Subobtimality versus the solution
time ratio as compared to IPS for dif-
ferent parameter configurations. The
dominant configurations are shown for
different levels of abstraction.

Subobtimality versus the solution
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ferent values of P .

Cost versus solution time for IPS and
abstraction at different values of P .

Solution times for several game maps. Solution suboptimalities for several
game maps.


