Speeding Up Planning in Markov Decision Processes via Automatically Constructed Abstractions

Alejandro Isaza, Csaba Szepesvári, Vadim Bulitko and Russell Greiner

Department of Computing Science, University of Alberta

Motivation

TASK: Stochastic shortest path
= reaching some goal state when the effects of actions are stochastic
• special case of planning
• subclass of Markov Decision Problems
• medium size: fully enumerated state space
Here: Multiple SSPs with the same domain
Goal: Speed up using Abstractions
• construct a multi-level hierarchy of progressively simpler abstractions
• find a policy for the most abstract level, then recursively refine into a solution to the original problem.

UNIVERSITY OF

ALBERTA

Related work

	This work	D97	KD03	Ha98	AsHu04/7	Moo99	LaKae01/2
State aggregation	+	+	+	+	+	+	+
Automatically built abstractions	+	_	_	-	+	+	+
Options	+	_	_	+	+	+	+
Option discovery	+	_	_	-	+	+	-
Lifted policy perf. bound	+	_	_	-	-	-	-
Deterministic abstractions	+	_	_	-	-	+	+
Experiments with $ X \ge 10^3$	+	_	_	-	+	+	+

Results:Features• fully automated• Options based abstraction• near-optimal solutions• Options based abstraction• speed-up of ~100 over a state-of-the-art MDP• Multiple levelssolver• Deterministic abstractions

Path planning for agents in commercial video games (uncertainty of transitions \approx map congestion)

Control of multi-link robotic manipulators (uncertainty \approx unmodeled dynamics, sensor and actuator noise)

Algorithm

Building abstractions

Theory

Results

Processes: Lifting a policy $\tilde{\pi}$ of \tilde{M} to $M: \tilde{\pi} \mapsto H(\tilde{\pi})$ Projecting a policy π of M with ρ to $\tilde{X}: \pi \mapsto L_{\rho}(\pi) \equiv (L_{\rho,\pi}(c), L_{\rho,\pi}(p)).$

Theorem 1:

Interpretation: The expected error of the lifted value function of the abstract policy $\tilde{\pi}$, relative to the base level policy π , is small if (i) aggregation does not loose detail of v_{π} and (ii) the projected costs and transitions underlying π are matched by the costs (resp., transitions) associated with $\tilde{\pi}$.

- π : proper policy of M
- w: $w = w_{\pi}$
- $\tilde{\pi}$: proper policy of \tilde{M} \tilde{w} : $\tilde{w} = w_{L_{\rho}(\pi)}$
- γ : discount factor corresponding to w $\tilde{\gamma}$: discount factor corresponding to \tilde{w} λ : $\lambda = \max_x \frac{\tilde{w}(\tilde{x}(x))}{w(x)}$
 - $\leq \frac{\|Av_{\pi} v_{\pi}\|_{w,\infty}}{\|L_{\rho,\pi}(c) \tilde{c}_{\tilde{\pi}}\|_{\tilde{w},\infty}} + c_{\max}\|L_{\rho,\pi}(p) \tilde{p}_{\tilde{\pi}}\|_{\tilde{w},1/2}$

$$\|v_{\pi} - Ev_{\tilde{\pi}}\|_{w,\infty} \le \frac{\|Av_{\pi} - v_{\pi}\|_{w,\infty}}{1 - \gamma} + \lambda \frac{\|L\rho_{\pi}(c) - c_{\tilde{\pi}}\|_{\tilde{w},\infty} + c_{\max}\|L\rho_{\pi}(p) - p_{\tilde{\pi}}\|_{\tilde{w},1/\infty}}{1 - \tilde{\gamma}}.$$
(1)

Theorem 2 (Simulation):

Interpretation: We can accurately simulate π with some policy $\tilde{\pi}$ of the abstract MDP provided all of the terms are small.

Call the right-hand side of (??) $B(\pi, \tilde{\pi})$. Let $w' = w_{H(\tilde{\pi})}$ and let γ' be the corresponding discount factor. Let $\hat{w} : X \to \mathbb{R}^+$ be arbitrary. Then

Planning

- Build a region around the goal, solve at the ground level
- Plan in the abstract graph
- Follow the ground options to execute the plan
- Follow the ground solution when entering the goal region

 $\|v_{\pi} - v_{H(\tilde{\pi})}\|_{\hat{w},\infty} \le \left(\max_{x} \frac{w(x)}{\hat{w}(x)}\right) B(\pi,\tilde{\pi}) + \left(\max_{x} \frac{w'(x)}{\hat{w}(x)}\right) B(H(\pi),\tilde{\pi}).$

Notation

- X: state space
- g: $g \in X$; goal state
- $M_{p,c}$: $M_{p,c} = (X, p, c)$; Markov cost process; transitions: p(y|x), costs: c(x, y), $c \ge 0$
- $v_{p,c}$: $v_{p,c}: X \to \mathbb{R}$; cost-to-go function; $v_{p,c}(x) \triangleq \mathbb{E}\left[\sum_{t=0}^{\infty} c(x_t, x_{t+1})\right]$
- w_p : $w_p \triangleq v_{p,1}$; expected number of steps until the goal is reached
- γ_p : $(1 \gamma_p)^{-1} = \max_x w_p(x)$; discount factor underlying p
- M: M = (X, A, p, c, g); SSP with action set A; transitions: p(y|x, a), costs: c(x, a, y)
- $\pi: \qquad \pi: X \to A; \text{ policy}$
- p_{π}, c_{π} : transitions and costs under π
- v_{π} : $v_{\pi} \triangleq v_{p_{\pi},c_{\pi}}$; cost-to-go underlying π
- w_{π} : $w_{\pi} \triangleq w_{p_{\pi}}$; expected number of steps until the goal is reached
- $||p q||_{w,1/\infty}$: $||p q||_{w,1/\infty} \triangleq \max_x \sum_y |p(y|x) q(y|x)|w(y)/w(x)$
- $\|v\|_{w,\infty}: \qquad \|v\|_{w,\infty} \triangleq \max_x |v(x)|/w(x)$

Abstractions

- M: M = (X, A, p, c, g); original MDP
- c_{\max} : maximum cost in M
- \tilde{M} : $\tilde{M} = (\tilde{X}, \tilde{A}, \tilde{p}, \tilde{c}, \{g\})$; abstract MDP
- $\tilde{x}(x)$: abstract state of x
- S(x): $S(x) = \{x' \in X : \tilde{x}(x) = \tilde{x}(x')\}$; peers of x
- ρ : state-randomization measure; $\rho: X \to [0, 1], \sum_{z \in S(x)} \rho(z) = 1 \ \forall x \in X$
- $A_{\rho}: \quad A_{\rho}: \mathbb{R}^{X} \to \mathbb{R}^{\tilde{X}}, \ (A_{\rho}v)(x) = \sum_{z \in S(x)} \rho(z)v(z); \text{ value aggregator}$
- $E: \quad E: \mathbb{R}^{\tilde{X}} \to \mathbb{R}^{X}, \ (Ev)(x) = v(\tilde{x}(x)); \text{ value extension}$

Results

