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Abstract 
 

It is difficult to learn good classifiers when training 
data is missing attribute values. Conventional techniques 
for dealing with such omissions, such as mean 
imputation, generally do not significantly improve the 
performance of the resulting classifier. We proposed 
imputation-helped classifiers, which use accurate 
imputation techniques, such as Bayesian multiple 
imputation (BMI), predictive mean matching (PMM), and 
Expectation Maximization (EM), as preprocessors for 
conventional machine learning algorithms. Our empirical 
results show that EM-helped and BMI-helped classifiers 
work effectively when the data is “missing completely at 
random”, generally improving predictive performance 
over most of the original machine learned classifiers we 
investigated.  
 
1. Introduction 
 

Missing data is unfortunately common in data analysis; 
this typically leads to difficulties in estimation and 
inference. To deal with missing data, many analytic tools 
either ignore the missing values or fill in the missing 
values with a value estimated by some process -- this 
process is called imputation.  

As the predictive performance of many learning 
algorithms deteriorates on incomplete training data, some 
try using imputation techniques to suggest values for 
missing data before training a classifier. However, many 
such machine learning systems use a simple imputer. 
Some use mean imputation (MEI), which replaces the 
missing value with the mean value of the attribute over all 
instances or over all instances of the same class, or with 
the most frequently observed value of the attribute (e.g., 
this is used by the WEKA [20] implementation of logistic 
regression [4] and random forest [3]).  Others fill in the 
missing value with a global constant, such as the value 
“unknown” (e.g., WEKA’s sequential minimal 
optimization [14] and one rule classifier [7]). Yet others 

simply ignore the missing values (e.g., WEKA’s naïve 
Bayes [9] and decision table [11]). However, empirical 
results show that these simple imputation methods 
typically do not significantly improve the machine 
learners’ performance. 

We are therefore motivated to propose imputation-
helped classifiers, which use better imputation techniques 
for filling in the missing values before training the 
classifiers. To our knowledge, no one has empirically 
compared various state-of-the-art imputation techniques, 
such as Expectation Maximization (EM) [5] (Section 2.4), 
predictive mean matching (PMM) [12] (Section 2.5), and 
Bayesian multiple imputation (BMI) [16] (Section 2.6), to 
see which one(s) best help standard machine learning 
algorithms to deal with incomplete data. This work 
explores this task.  

We considered datasets from the UCI machine 
learning repository [2] whose values were artificially 
deleted using the MCAR (missing completely at random) 
mechanism (defined below), using different pre-
determined missing ratios. After using imputation 
techniques to impute missing values, we learn classifiers 
on this complete data using the following 10 machine 
learning algorithms: decision tree (C4.5), decision table 
(dTable), k nearest neighbor (kNN), logistic regression 
(LR), naïve Bayes (NB), neural networks (NN), one rule 
(OneR), decision list (PART), support vector machine 
(SVM), and random forest (RF).  We then evaluate the 
predictive performance improvement of these various 
imputation-helped classifiers over the original classifiers.  

Section 2 presents the framework of our work and 
reviews relevant literature; then Section 3 provides 
experimental design and results.  

 
2. Framework 

The imputation-helped classifiers work in the 
following steps (see Figure 1): impute values for the 
incomplete training data to generate imputed (complete) 
training data; learn a classifier on the imputed dataset; 



then have the classifier produce classification for the test 
dataset. 
 
 
 
 
 
Figure 1. Framework of imputation-helped classifiers 
 
2.1 Patterns of Missing Data 

Little and Rubin [13] consider three types of missing 
data patterns.  If the missingness does not depend on the 
observed data, then it is regarded as Missing Completely 
at Random (MCAR). This includes the situation where a 
value is missing with an iid (independent and identical 
distribution) probability value (e.g., 0.2) that is 
independent of the actual value of this feature, or of any 
other feature (think of random corruption while the data is 
being transmitted). Simple imputation techniques, such as 
mean imputation and linear regression imputation, are 
often used to deal with such MCAR missing data.  

This work will focus on MCAR missingness.  To help 
explain this, we contrast it with two other types of 
missingness. Missing data that depends on the observed 
data, but not on the unobserved data is considered 
Missing at Random (MAR) [17]. For example, if a 
person’s gender is recorded as male, then the attribute 
“pregnancy” is typically left blank. Full maximum 
likelihood and Bayesian imputation techniques can be 
used to deal with missing data that are MAR as well as 
MCAR [10].  

Both MCAR and MAR missing data patterns are 
considered ignorable patterns, as valid inferences and 
estimations can be made even if the missing data pattern 
is not explicitly considered in the analysis.  

If the “missingness” is not MAR, then we say the data 
are Not Missing at Random (NMAR, or non-ignorable).  
Here, patterns of the unobserved variables can determine 
their own missingness. For example, the “years of 
education” field of a job application may be more likely 
to be omitted if it is “< 1”. Incorrectly assuming 
ignorability can result in biased estimates [17]. When the 
missing data are non-ignorable, a model of missing value 
mechanism must be incorporated into the estimation 
process to produce meaningful estimates [19].  This is 
generally specific to the problem itself and is difficult in 
practice, especially as the missing data mechanism is 
rarely known with certainty. The good news is that 
multiple imputation [16], which works well for both 
MAR and MCAR data, can often reduce the bias of the 
estimates when data are NMAR.  

 

2.2 How Machine Learners Handle Missing Data 
When we use a machine learning algorithm, we 

usually do not know the missing patterns of the data 
beforehand. We therefore want a learner that works well 
for any pattern of missingness. In this work, we consider 
10 well-known machine learning algorithms from WEKA 
[20], each of which has its own strategy to deal with 
missing data.  (Note that none of these approaches 
attempts to determine the type of missingness.)  
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2.2.1 Ignore Missing Values. Decision table (dTable) 
classifier includes two components: a schema that is a set 
of features, and a body consisting of labeled instances 
from the space defined by the features in the schema [11]. 
Given an unlabelled instance, the dTable classifier 
searches for exact matches in the table only using the 
features in the schema. If it finds no matching instances, it 
then returns the majority class; otherwise, it returns the 
majority class of all matching instances. DTable ignores 
missing values during the learning and classification 
processes.  

Naïve Bayes (NB) is an extremely simple Bayesian 
network that assumes attribute values are conditionally 
independent given the class, and typically assumes that 
numeric attributes obey a Gaussian distribution [9]. NB 
learns by estimating the conditional distributions of each 
attribute given the class; here it simply ignores attribute 
values that are missing.  

 Decision tree (C4.5) is a member of the ID3 family of 
algorithms that grows decision trees from the root 
downward, greedily selecting the next attribute for each 
new decision branch added to the tree. In the learning 
stage, C4.5 algorithm just ignores missing values in gain 
and entropy calculation, and in the classification stage, it 
assigns a probability to each of the possible values of the 
missing value based on the number of training instances 
going down that branch, divided by the total number of 
training instances with observed values at the node [15].  

Decision list (PART) is a decision list classifier based 
on partial decision trees. It combines C4.5 and RIPPER to 
avoid their respective problems to produce accurate rule 
sets. PART deals with missing values using the same 
strategy as C4.5 [6]. 

2.2.2 Use Mean or Median of Observed Values. The 
logistic regression (LR) implementation in WEKA uses a 
multinomial logistic regression model with a ridge 
estimator, and uses a ReplaceMissingValuesFilter to 
replace the missing values with the mean (for numeric 
attributes) or the most frequent value (for nominal 
attributes) [4].   

Random Forest (RF) grows many classification trees. 
To classify a new instance, it first asks each tree in the 
forest for its classification, and then returns the 



classification having the most votes.  An RF learner 
replaces the missing values with the median value for 
numeric attributes or the most frequent value for nominal 
attributes [3]. RF fills in the missing data in test set using 
filled-in values from the training set 

2.2.3 Missing Values Replaced by a Default Value. 
One rule (OneR) is a rule-based classifier that infers one 
rule that predicts the class, based on the most informative 
single attribute. The attributes are assumed to be discrete, 
otherwise they must be discretized. Missing values are 
treated as the new value, “missing” [7]. 

A kernel-based Support vector machine (SVM) 
produces nonlinear boundaries by constructing a linear 
boundary in a large, transformed version of the feature 
space. WEKA’s SVM uses the sequential minimal 
optimization (SMO) algorithm [14] for training a support 
vector classifier using polynomial (which we used) or 
RBF kernels. This implementation globally replaces all 
missing values by a default value, e.g., “unknown”.  

 
2.2.4 Missing Values Used in Distance Measure. A k-
nearest-neighbor (kNN) classifier finds the k neighbors 
that are closest to the unknown instance, and returns the 
average value of the real-valued labels of the neighbors. 
The closeness of the neighbors is defined in terms of 
Euclidean distance for continuous attributes and 
Hamming distance for discrete ones. KNN handles 
missing values by means of a minor change in the 
distance measure: when the two instances each miss the 
values of the same attribute, the distance on that attribute 
is zero, but when only one has a missing value, a maximal 
distance is assigned [20]. 
 
2.2.5 Other Methods to Deal with Missing Values. A 
Neural network (NN) is composed of interconnected 
input/output units, where each connection has an 
associated weight, learned using the backpropagation 
algorithm. Many neural network models have been 
modified to handle missing data. Following [8], we 
replace each missing value by an interval that includes all 
the possible values on that attribute (eg., a unit interval 
[0,1]), and also replace each observed value by a 
degenerate interval (e.g, 0.7 transformed to [0.7,0.7]), 
before applying the backpropagation algorithm. Learning 
and making classification from incomplete data are 
therefore turned to classification of the (complete) 
interval vectors. 
 
2.2.6 Summary. Each of the above machine learning 
algorithms uses a simple approach to deal with missing 
data in its learning process, regardless of the missing 
patterns. They may perform poorly on incomplete data, 
especially those missing many values. This paper 

explores the use of more advanced imputation techniques, 
such as BMI, EM, or PMM (introduced below). As some 
of our imputers only deal with numerical or ordinal 
datasets (but not nominal), we only investigate these 
kinds of data. 
 
2.3 Linear Regression Imputation 

Linear regression (LinR) imputation attempts to predict 
the missing value based on the observed values of other 
variables. In general, given a one-dimensional vector of 
inputs X=(X1, X2, …, Xp), linear regression predicts the 
dependent value Y  based on the  linear regression model 
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where ε is a residual and coefficients β0 and β=(β1, β2, 
…, βp)T are trained on the existing values to minimize the 
sum of squared residuals. Here Y is the missing feature 
value to be imputed, and each Xj is the value of an 
observed feature of the same instance.  

We round LinR imputed values to the nearest integers 
for integer attributes. We also find the observed value 
range [min, max] for each attribute, and replace imputed 
values <min with min, and those >max with max for 
missing values. This procedure is also applied for other 
imputers described below. 

2.4 Expectation Maximization Imputation 
Expectation-maximization (EM) is a well-known 

algorithm that seeks maximum likelihood estimates of 
parameters in probabilistic models in the presence of 
latent variables [5]. EM imputation requires specifying a 
joint probability distribution for the feature value to be 
imputed and the other feature values. EM iterates between 
performing an expectation E step, which computes an 
expected value of the complete data likelihood, given the 
observed data and the current parameters; and a 
maximization M step, which calculates values of the 
parameters that maximize the expected likelihood over 
the data, including those estimated in the E step. The 
parameters found on the M step are then used to begin 
another E step, and the process is repeated until it 
converges to a stationary point. 

Our implementation of EM algorithm assumes the data 
is drawn from a multivariate Gaussian data 
(parameterized by the mean and the covariance matrix) 
and uses ridge regression [18]. EM first produces an 
initial guess of these parameters. In each subsequent 
iteration, EM updates its estimates of the mean and the 
covariance matrix in three steps [18]: (1) for each 
instance with missing values, initialize the distribution 
parameters by estimating the mean and the covariance 
matrix; (2) the missing values in a sample are replaced 
with their conditional expectation values given the 
observed values using the estimated mean and covariance 



matrix; (3) the mean and the covariance matrix are re-
estimated, using the sample mean of the completed 
dataset and the covariance matrix as the sum of the 
sample covariance matrix of the completed dataset and 
the contributions from the conditional covariance matrix 
of the imputation errors. EM iterates these steps until the 
imputed values and the estimates of the mean and 
covariance stop changing [13].  

2.5 Predictive Mean Matching Imputation 
Predictive mean matching (PMM) is a state-of-the-art 

imputation technique [12] that imputes missing values 
Ymiss,i of incomplete instance (recipient) Yi, based on the 
observed part of that instance Yobs,i to find the nearest 
instance (donor) using a distance function (see Equation 3 
below) that is computed as the expected values of the 
missing variables conditioned on the observed covariates, 
instead of directly on the values of the covariates. Our 
version of PMM works as follows:   

1) Use the EM algorithm [5] to estimate the parameters 
θ of a multivariate Gaussian distribution over the attribute 
values using all the available data.  

2) Compute the conditional expected value for the 
missing part Ymiss,i of instance Yi conditioned on the 
observed part Yobs,i based on the estimated parameters θ.  

),|( ,, θµ iobsimissi YYE=
∧

                                         (2) 

3) Match each recipient Yi to another instance 
(possible donor) Yj=argminj d(i,j) that has the nearest 
predictive mean with respect to the Mahalanobis 
distance, defined through the residual covariance matrix 
from the regression of the missing items on the observed 
ones.  
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where the S is the empirical covariance matrix [21]. 
4) Impute each missing value in the recipient with the 

corresponding values from its closest donor. 

2.6 Bayesian Multiple Imputation 
Standard single imputation produces a single filled-in 

dataset, where each missing value is replaced with a 
single value, perhaps drawn from the posterior predictive 
distribution. While this approach is simple and can be 
applied to virtually every data set, single imputation does 
not account for the uncertainty about the predictions of 
the imputed values, which can lead to statistically invalid 
inferences [16]. By contrast, multiple imputation (MI) 
produces many different filled-in datasets. For example, 
consider filling in the (3,3) position in the upper-left 4x3 
table in Figure 2. Here, we could produce m=4 different 
completed datasets, shown as the next 4 tables in that 
figure; note the proposed values for this (3, 3) entry are 
{2,3,4,3}.  BMI uses the average of these four values 
(here, 3) as the final prediction – see the bottom right 4x3 

table in the figure. In many situations, MI approaches 
have proven to be highly effective even for small values 
of m – say 3 to 12 [16].  

BMI follows a Bayesian framework: it specifies a 
parametric model for the complete data, with a prior 
distribution over the unknown model parameters θ, then 
simulates m independent draws from the conditional 
distribution of the missing data given the observed data 
by Bayes’ Theorem. We apply Markov chain Monte 
Carlo (MCMC) to perform BMI [16].  

 
2 4 3  2 4 3  2 4 3 

? 4 3  1 4 3  1 4 3 
1 ? ?  1 4 2  1 3 3 
1 3 2  1 3 2  1 3 2 

 

2 4 3  2 4 3  2 4 3 

3 4 3  3 4 3 => 2 4 3 
1 5 4  1 4 3  1 4 3 
1 3 2  1 3 2  1 3 2 

Figure 2. An example of BMI with m=4. Each value in 
the shaded cells is an estimated value from an 
imputation. BMI produces different filled-in datasets 
(after the “ ” sign) and takes the average of the m 
predictions as the final imputed dataset (after the 
“=>” sign).  

While BMI assumes a multivariate normal distribution 
when generating the imputations for missing values, it is 
robust to non-normally distributed data [17]. BMI imputes 
data as follows [16]:  

Let P(Ycom|θ) model the complete data, based on the 
parameter θ  (which here is the mean and covariance 
matrix that parameterize a normal distribution here). If 
Y= (Yobs, Ymiss) follows a parametric model P(Y|θ) where θ 
has the prior distribution P(θ),  then the posterior 
predictive distribution for Ymiss is 

∫= θθθ dYPYYPYYP obsobsmissobsmiss )|(),|()|(           (4) 

Equation 4 suggests that BMI can be drawn by iterating 
the following process for j=1, …, m:  

(1) generate missing values Ymiss
(j+1) from 

P(Ymiss|Yobs,θ(j)); 
(2)  draw parameters fromθ(j+1) from P(θ|Yobs, Ymiss

(j+1)). 
Repeat these two steps to generate the Markov chain 

{Ymiss
(1), θ(1), Ymiss

(2), θ(2),…, Ymiss
(j), θ(j),…};  note that 

Ymiss
(j+1) depends on θ(j), and θ(j) depends on Ymiss

(j). 
This entire process is repeated until the distribution 
P(Ymiss, θ |Yobs) is stabilized [17]. 

After producing m sets of filled-in values, we take the 
average as the final imputed set of values,  
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where  is the i-th imputed value.  
iQ

∧



 
3. Experimental Design and Results 

 
We used eight datasets with numeric or ordinal 

attributes from the UCI machine learning repository [2] 
(see Table 1). We ran all 10 classifiers on each dataset; in 
general, we used the default parameters given by WEKA. 
For each, we used 50 trees for the random forest classifier 
(RF50), and used k=5 as the number of neighbors for the 
kNN classifier; we found these settings produced optimal 
performance in our preliminary experiments. When 
implementing our proposed imputation-helped classifiers, 
we use an iteration number of 5 for LinR and PMM, and 
BMI and EM iterate until they converge. When 
preprocessing the incomplete data with the imputers, we 
impute the training and test sets together. Notice none of 
the imputers use the class labels of the test sets.  

We used the standard training and test splits for each 
of these datasets: 2/3 of the instances for training and 1/3 
for testing, except the dataset “letter”, which was a 3/4 to 
1/4 split. We take the average classification accuracy of 5 
runs. In each run, with MCAR missing pattern, we 
generate three incomplete datasets from each dataset by 
randomly deleting 10%, 30%, and 50% of the observed 
values.  

 
Table 1. Description of the UCI datasets we worked on 

datasets # Train # Test # attri  # class 
australian 460 230 14 2 

breast 466 233 10 2 

diabetes 512 256 8 2 
heart 180 90 13 2 
pima 512 256 8 2 
shuttle-small 3866 1934 9 7 
vehicle 564 282 18 4 
letter 15000 5000 16 26 
 
We computed the average classification accuracy over 

the 8 datasets for the original classifiers, and MEI-helped, 
PMM-helped, LinR-helped, EM-helped, and BMI-helped 
classifiers: 10% missing appears in Table 2 and Figure 3; 
30% missing in Table 3 and Figure 4; and 50% missing in 
Table 4 and Figure 5. We did not count the results on the 
dataset “letter” for the classifier kNN as it produces 
exceptionally low accuracy (<10%) from the original 
classifier when the dataset has missing ratios of 30% and 
50%. Our results collectively show that EM-helped 
classifiers perform the best: they achieve the highest 
average classification accuracy -- significantly higher 
than the original classifiers (those without using imputers) 
with 1-sided t-test p-value p<0.00037. BMI-helped 
classifiers are significantly better than original classifiers 
with p<0.0029. MEI-helped classifiers (resp., LinR-

helped, and PMM-helped ones) however, do not 
significantly outperform original classifiers, with p-values 
of p<0.18 (resp. p<0.40, and p<0.12).  

Table 2. Average classification accuracy over eight 
datasets with MCAR missing ratio 10% 

  
original 
classifier 

MEI -
helped 

LinR- 
helped 

EM- 
helped 

PMM- 
helped 

BMI- 
helped 

OneR 68.31 67.98 69.18 69.59 68.78 69.85 
NB 75.01 74.60 74.02 74.62 74.11 74.74 

dTable 76.29 76.29 78.36 79.16 76.85 78.38 

C4.5 81.77 80.01 80.26 81.01 79.51 81.28 

PART 82.51 80.17 80.98 81.50 79.73 80.91 

SVM 80.68 80.75 81.66 82.50 80.81 82.20 

LR 80.23 80.14 82.24 83.03 80.82 82.62 

NN 79.00 80.35 79.72 82.19 80.21 82.21 
RF50 84.88 83.97 83.90 84.69 83.71 84.69 

kNN 73.75 81.07 82.13 83.16 81.49 83.38 

ave 78.24 78.53 79.24 80.15 78.60 80.03 
 

Table 3. Average classification accuracy over eight 
datasets with MCAR missing ratio 30% 

  
original 
classifier 

MEI -
helped 

LinR- 
helped 

EM- 
helped 

PMM- 
helped 

BMI- 
helped 

OneR 64.19 63.68 65.50 69.31 65.65 68.66 

NB 73.34 71.93 70.98 72.95 70.48 72.31 

dTable 71.42 72.19 70.50 75.40 71.33 74.30 

C4.5 76.59 75.22 71.97 77.37 72.04 76.05 

PART 77.65 74.66 72.20 77.10 72.44 76.87 

SVM 75.06 75.00 73.79 78.63 73.95 77.92 

LR 75.58 75.33 72.70 77.85 73.93 76.91 

NN 72.40 74.65 73.70 78.17 73.35 78.00 

RF50 80.48 79.68 77.29 80.78 76.89 80.19 

kNN 62.19 77.43 76.91 80.71 77.21 80.66 

ave 72.89 73.98 72.55 76.83 72.71 76.19 
 

Table 4. Average classification accuracy over eight 
datasets with MCAR missing ratio 50% 

  
original 
classifier 

MEI -
helped 

LinR- 
helped 

EM- 
helped 

PMM- 
helped 

BMI- 
helped 

OneR 61.48 60.86 64.19 67.60 63.48 66.54 

NB 71.29 68.80 66.88 70.48 67.38 69.94 

dTable 67.34 67.91 66.91 72.10 66.71 70.39 

C4.5 71.05 69.60 66.41 73.82 65.87 71.85 

PART 72.48 70.40 67.31 72.65 65.79 71.76 

SVM 70.84 71.19 69.71 73.72 67.92 72.90 

LR 71.63 71.73 68.88 73.65 67.70 71.48 

NN 68.13 70.40 67.76 73.86 66.55 72.96 

RF50 76.33 73.82 70.70 76.52 69.76 75.34 

kNN 58.14 72.23 72.80 77.42 71.74 77.38 

ave 68.87 69.69 68.15 73.18 67.29 72.05 
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Figure 3. Average classification accuracy over eight 

datasets with MCAR missing ratio 10% 
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Figure 4. Average classification accuracy over eight 

datasets with MCAR missing ratio 30% 
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Figure 5. Average classification accuracy over eight 

datasets with MCAR missing ratio 50%  
 
 

When we look into individual classifiers and examine 
their performance with different imputers, especially the 
best performed EM-helped and BMI-helped classifiers, 
for incomplete datasets with different missing ratios, we 
observe the following (see Table 5, Figure 6, and Table 
6). 
(1) Our imputation-helped classifiers best help kNN, as 

the average classification accuracy improvement of 
the five imputation-helped classifiers with kNN over 
the original kNN classifier is 11.5% on the datasets 
with 10% missing rario; 26.4% improvement on the 
30% missing data; and 27.8% improvement on the 
50% missing data.  

(2) EM-helped and BMI-helped classifiers perform 
significantly better than the original classifiers neural 
network, one rule, decision table, and SVM, for 
missing data with all ratios we investigated in this 
work. 

(3) The EM-helped classifier improves the linear 
regression classifier for missing data with all ratios 
we investigated. 

(4) EM-helped classifiers slightly improve the decision 
tree (C4.5), and random forest classifiers especially 
for incomplete data with high missing ratios, i.e., 
30% and 50%, and it also slightly improves the 
PART classifiers on incomplete data with 50% 
missing ratio. 

(5) Imputation-helped classifiers techniques generally do 
not help improve the naïve Bayes classifier. 

(6) LinR-helped and PMM-helped classifiers can slightly 
improve the neural network, one rule, decision table, 
and SVM classifiers (as well as kNN) when the 
missing ratio is 10%; however, when the missing 
ratio is increased to 30%, they can only slightly 
improve the neural network, and one rule classifiers; 
and when missing ratio is 50%, only the one rule 
classifier (see Table 6). 

Table 5. Average accuracy improvement of BMI-
helped and EM-helped classifiers over original 
classifiers on missing data with ratios 10%, 30%, and 
50% 

  10% 30% 50% 
  BMI EM BMI EM BMI EM 
kNN 13.06 12.76 29.70 29.78 33.09 33.16 
NN 4.065 4.032 7.726 7.966 7.078 8.404 
OneR 2.264 1.883 6.960 7.978 8.239 9.953 
dTable 2.736 3.762 4.038 5.576 4.522 7.057 
SVM 1.878 2.250 3.817 4.761 2.906 4.066 
LR 2.974 3.491 1.765 3.007 -0.21 2.813 
C4.5 -0.60 -0.92 -0.71 1.025 1.124 3.899 
RF50 -0.23 -0.22 -0.35 0.371 -1.30 0.246 
PART -1.93 -1.22 -1.00 -0.71 -1.00 0.231 
NB -0.36 -0.53 -1.41 -0.54 -1.89 -1.14 
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Figure 6. Average accuracy improvement of BMI-
helped and EM-helped classifiers over original 
classifiers on missing data with ratios 10%, 30%, and 
50% 
 
Table 6. Average accuracy improvement of LinR-
helped and PMM-helped classifiers over original 
classifiers on missing data with ratios 10%, 30%, and 
50% 

 10% 30% 50% 
  LinR PMM LinR PMM LinR PMM 
kNN 13.79 5.633 23.67 24.15 25.21 23.39 
NN 0.905 1.533 1.797 1.305 -0.55 -2.33 
OneR 1.279 0.692 2.035 2.086 4.408 3.249 
dTable 2.702 0.724 -1.30 -0.12 -0.64 -9.34 
SVM 1.218 0.164 -1.69 -1.48 -1.60 -4.11 
LR 2.501 0.728 -3.81 -2.18 -3.83 -5.48 
C4.5 -1.84 -2.76 -6.03 -5.94 -6.53 -7.30 
RF50 -1.16 -1.38 -3.97 -4.46 -7.37 -8.61 
PART -1.85 -3.36 -7.01 -6.71 -7.13 -9.24 
NB -1.32 -1.20 -3.22 -3.91 -6.19 -5.48 

 
(7) Besides kNN, the MEI-helped classifiers can also 

improve the neural network classifier for datasets 
with all the missing ratios we investigated. 

The above results are the average predictive 
performances of the imputation-helped classifiers on the 
eight datasets. However, they conceal the fact that, while 
an original classifier (without using imputers) can, on 
average, outperform BMI-helped or other imputation-
helped classifiers (this is true for NB for datasets with 
missing ratios of 10% through 50%), this is not true for 
every single dataset. Figure 7 is a learning curve of 
different imputation-helped classifiers with NB as the 
machine learner on the dataset “australian”, with missing 
ratios from 10% through 90%, in which the BMI-helped 
classifier with NB almost dominates over the others 
(except a better performed imputer EM), and it performs 
especially well for datasets with high missing ratios. 
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Figure 7. Learning curve of different imputation-

helped classifiers with NB on the dataset “australian” 
with MCAR missing ratios from 10% through 90% 

 
Although second to the EM imputer, the BMI imputer 

is robust to datasets with missing ratio higher than 50%, 
for which EM and PMM often fails to produce 
imputations due to an eigenvalue calculation exception 
(in Figure 7, we only have the results for datasets with 
missing ratios at most 50% for EM-helped and PMM-
helped classifiers).  

BMI is also very efficient, requiring only about five 
minutes to impute the dataset “letter” (with 20,000 
samples for training and test sets and 16 attributes, on our 
computer that has a 3.2 GHz Intel CPU and 4GB RAM) 
at the missing ratio of 50%. However, PMM required 
more than 20 minutes, and EM more than 30 minutes 
using the same machine. 

We did not work on datasets with nominal attributes 
because BMI, LinR, and PMM require numeric or ordinal 
values. As NMAR missing data are usually problem 
specific, we did not experiment on datasets with this 
missing mechanism. We plan to investigate the impact of 
using these imputation techniques for MAR incomplete 
data in our future work. 

We see imputation-helped classifiers with kNN were 
extremely helpful for kNN. We believe this is because 
kNN uses a crude way to handle missing data (see 
Section 2.2.4), while imputed values can be better used 
for distance calculation than the missing values.  

On average, the original NB classifier can outperform 
imputation-helped classifiers with NB because NB 
performs classification by computing the class that 
maximizes a posterior (MAP) based on observed values 
and the imputed data often does not provide better MAP 
inference.  

For the other classifiers, especially on incomplete data 
with high missing ratios, we found that classifiers learned 
on imputed data from a high-quality imputer (e.g., EM-
helped classifiers) had better classification performance. 

 



4. Conclusions 
The accuracy of classifiers produced by machine 

learning algorithms generally deteriorates if the training 
data is incomplete, and preprocessing this data using 
simple imputation methods, such as mean imputation 
(MEI), does not generally produce much better classifiers. 
We therefore proposed and investigate the performance of 
imputation-helped classifiers, which preprocess 
incomplete data using accurate imputation techniques 
(such as Bayesian multiple imputation (BMI) and 
Expectation Maximization (EM)) to first fill in missing 
values before giving the completed data to a conventional 
machine learning algorithm. Empirical results over 
MCAR missing data show that EM-helped and BMI-
helped classifiers generally outperform the original 
classifiers and other imputation-helped classifiers, 
including MEI-helped, PMM (predictive mean matching)-
helped, and LinR (linear regression)-helped ones. 
Specifically, EM-helped and BMI-helped classifiers 
significantly outperform the original classifiers kNN, 
neural network, one rule, decision table, and SVM on 
incomplete data over all missing ratios we investigated. 
EM-helped classifiers perform better than other classifiers 
logistic regression, decision tree (C4.5), random forest 
and PART on incomplete data with high missing ratios.  
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