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ABSTRACT
This paper proposes a data driven image segmentation algorithm,
based on decomposing the target output (ground truth). Classical
pixel labeling methods utilize machine learning algorithms that in-
duce a mapping from pixel features to individual pixel labels. In
contrast we propose to first extract features from both images and
labels. Subsequently we induce a mapping from pixel features to la-
bel features and synthesize the final output by combining the newly
derived label components. We demonstrate the effectiveness of the
proposed approach by applying log-Gabor filters to both input and
ground truth images of mineral ore. Subsequently we train percep-
trons and regression trees to produce individual output components
that are combined in frequency space to create the final segmenta-
tion. Experimental results show significant improvements over con-
textual pixel labeling and over ensemble methods.

1. INTRODUCTION

Segmenting an image into foreground regions versus background is
an important task in image processing and computer vision. How-
ever, this pixel labeling task has yet to be solved, in a fully auto-
mated fashion, for non-trivial domains. This research aims to take
us one step closer to realizing this goal by presenting an extension to
the classical supervised segmentation approach to the pixel labeling
problem.

While classical pixel labeling methods aim to map pixels or
their extracted features into labels, we propose to first decompose
the ground truth and map input features into output features. Once
output features have been produced, by employing an ensemble of
function approximators, they are synthesized into the final image la-
beling. The output decomposition scheme allows each function ap-
proximator to focus on a different aspect of the pixel labeling prob-
lem. The goal of the approach is to operate in between low level
pixel labels and high level objects. As an example consider the rock
objects depicted in Figure 1. The contour of each rock is composed
of differently oriented edges. For each oriented edge we can train a
specific detector and then synthesize the object contour by combing
the outputs of each detector. Hence by decomposing the ground truth
into a set of object parts describing a patch of ground truth labels we
can brake down a difficult pixel labeling problem into a set of easier
structure labeling problems.

Section 2 reviews the basic methodology of pixel labeling and
supervised segmentation as well as presenting a high level descrip-
tion of our Output Decomposition Mixtures of Experts (OD-MoE)
algorithm. Section 3 outlines the specific details of OD-MoE. Sec-
tion 4 presents experimental results on segmentation of mineral ore
images. Section 5 concludes the paper with final thoughts and future
research directions.

2. CONTEXTUAL PIXEL LABELING

Formally let (i, j) index a discrete set of sites on a spatially regular
N ×M lattice:

S = {(i, j)|1 ≤ i ≤ N, 1 ≤ j ≤M} (1)

For a training image I and the corresponding ground truth L, let
I(i, j) and L(i, j) ∈ {0, 1} respectively denote the intensity values
of image pixels and the corresponding (binary) labels at site (i, j).
Classical pixel labeling attempts to find the mapping:

hpl : I(i, j) 7→ L(i, j) (2)

The process in Equation 2 treats individual pixels as i.i.d. (indepen-
dent identically distributed). Unfortunately, this assumption is rarely
satisfied in practice, since most non-trivial domains exhibit complex
pixel interactions. Therefore, simply using raw pixel values for clas-
sification results in very poor segmentation. To overcome this prob-
lem, contextual pixel labeling defines a feature extraction function
fI (i, j) that computes local (and possibly global) contextual fea-
tures for each image pixel I(i, j). Subsequently the newly formed
feature vectors are used to learn the mapping:

hcpl : fI (i, j) 7→ L(i, j) (3)

To further improve pixel classification accuracy, recursive contex-
tual pixel classification [1] and, more recently, random field methods
(e.g., Markov / Conditional / Discriminative Random Fields [2, 3])
have been designed to account for label interactions as well as in-
put pixel interactions. These systems first use the regular contextual
pixel labeling, as in Equation 3, to produce an initial labeling L0.
Subsequently a recursive procedure iteratively computes Ld as fol-
lows:

hrcpl : [fI (i, j),fLd−1(i, j)] 7→ Ld(i, j) (4)
where fLd−1(i, j) is a function extracting features from Ld−1

at lattice site (i, j). Typically the features extracted from L are
very simple, usually just a neighborhood centered about (i, j) (i.e.,
cliques). In contrast to the aforementioned approaches, our approach
tackles the problem from a different point of view. We propose to
explicitly extract contextual features from both input images and
ground truth images, and subsequently learn a mapping from the
former to the latter:

hOD-MoE : fI (i, j) 7→ fL(i, j) (5)

as depicted in Figure 1. The essence of the algorithm lies in extract-
ing output features, fL, that allow the synthesis of output L. Once
the input/output decomposition scheme has extracted the input and
output features, we utilize machine learning algorithms to train a set
of models that instantiate the mapping in Equation 5. At runtime,
the output of individual models is fused together in order to produce
the final segmentation L̃.



3. OUTPUT DECOMPOSITION BASED
MIXTURE-OF-EXPERTS

For simplicity, let us consider a single feature extraction function,
extracting k features for each site (i, j), and applicable to both the
input image I and the output labels L. Using this function we pro-
duce a set of input feature maps {ΦIt }kt=1 and a set of output
feature maps {ΦLt }kt=1. For lattice site (i, j), the feature vectors are
therefore given by:

fI (i, j) = [ΦI1(i, j), ..., ΦIk(i, j)]

fL(i, j) = [ΦL1 (i, j), ..., ΦLk (i, j)]

Using these input/output feature maps we train a set of function
approximators H = {h1, ..., hk} as:

ht : fI (i, j) 7→ Φ̃Lt (i, j) (6)

that map input feature vectors, to individual output components. Pic-
torially, each induced mapping ht corresponds to an expert depicted
by solid arrows in Figure 1.

Fourier based Feature Extraction and Output Synthesis

The discrete 2-D Fourier transform [4] of a function g(i, j) and its
inverse, each defined on lattice S from Equation 1, are given by:
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To simplify notation we define:

F [g] = G ; F−1[G] = g

to denote the Fourier Transform and its inverse. Next, we define a
set of frequency filters {Gt(u, v)}kt=1 with:

k∑
t=1

Gt(u, v) = 1, ∀(u, v) ∈ S

The frequency feature coefficients of an arbitrary function q(i, j),
defined over lattice S, are then simply the point-wise product of filter
Gt with the frequency representation of the function, Q � Gt =
Q(u, v)Gt(u, v), ∀(u, v) ∈ S, with Q = F [q]. The spatial feature
maps of q(i, j) are therefore defined as:

Φqt = F−1[Q�Gt], t = {1, ..., k}

Finally, for this specific decomposition scheme, the reconstruction
(i.e., the output synthesis) function is defined in the Fourier domain
as:

Q̃ =

k∑
t=1

F [Φqt ]�Gαt (7)

where α = 0 is the default approach1. By setting α ≥ 1, the
algorithm is able to perform online filtering. Experimental results
in Section 4, will demonstrate the ability of this filtering procedure
to attenuate noise resulting from function approximation.

1In the case of α = 0 we can perform the summation in the spatial
domain as q̃ =

∑
t Φqt
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Fig. 1. Output Decomposition based Mixture of Experts approach.
Left: Input Image, I , and the extracted feature maps, ΦI1, ΦI2, ΦI3.
Right: Corresponding Ground Truth image, L, and the extracted
feature maps, ΦL1 , ΦL2 , ΦL3 . For demonstrational purposes we ap-
plied the Difference of Gaussians (DoG) decomposition scheme to
both I and L. The following mappings are represented: (dashed ar-
row) from input features to pixel labels as in the case of the standard
approach defined by Equation 3; (solid arrows) from input features
to output features as in the case of h1, h2, h3 corresponding to the
OD-MoE approach defined in Equation 6.

Runtime OD-MoE

At runtime the following steps are carried out :

1. Extract image features by convolving the input image with a
filter bank {Gt}kt=1:

ΦIt = F−1 [F [I]�Gt] ∀t = {1, ..., k}
or equivalently:

ΦIt = I ∗ F−1[Gt] ∀t = {1, ..., k}
where ∗ is the convolution operator.

2. Perform function approximation by applying the trained en-
semble of function approximators defined by Equation 6

Φ̃
L
t (i, j) = ht(f

I (i, j)) ∀(i, j) ∈ S

3. Produce the output labels by combining the output of function
approximators:

L̃ = F−1

[
k∑
t=1

F [Φ̃Lt ]Gα
t

]

4. EMPIRICAL EVALUATION

Evaluation Criteria

To evaluate the performance of each algorithm several criteria were
used. Respectively, TP , TN , FP , and FN , stand for the number
of samples (i.e., pixels) being labeled as true positive, true negative,
false positive, and false negative.

Jaccard measure is defined as TP
TP+FP+FN

, and for binary label
images A and B is also known as intersection-over-union
measure, denoted by |A∩B||A∪B| .

Pixel Accuracy is defined as TP+TN
TP+TN+FP+FN

.



Precision is defined as TP
TP+FP

.

Recall is defined as TP
TP+FN

.

Label score is defined as L = min(S(A, B), S(B, A)),

S(A, B) =
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where Aj is a connected component in image A and Bi is a con-
nected component in image B. This labeling score is a form of local
intersection-over-union (I/U) whereby both errors at the pixel level
and object level are penalized.

Experimental Design

To test the proposed approach, we had a granulometry expert manu-
ally label nine, 236 × 637 pixel images containing mineral ore (see
Figures 1 and 2 for examples). All algorithms, described below,
were trained on image 1 and performance tested on images 2-92.
Feature extraction, for both the input images and output labels, was
performed using a bank of log-Gabor filters as in [5], with 7 scales
and 6 orientations for a total of 42 filters. Since the inverse Fourier
transform of filter responses contains both real and imaginary parts,
we further separated the feature maps into two components corre-
sponding to the even (real) and odd (imaginary) filter responses. As
a result, both inputs and outputs were decomposed into 84 feature
maps. Each of the 84 experts was focused on a single output feature
map and was trained using either: (a) linear regression, or (b) regres-
sion trees [6]. The gating function was designed as in the previous
section. To test the efficacy of frequency domain filtering we run our
system with α ∈ {0, 1}, corresponding to, Raw (i.e., non-filtered)
and Filtered outputs in Equation 7. For further comparison we also
implemented the standard contextual pixel labeling approach, de-
fined by Equation 3, that used the same input features to directly
output labels (depicted by a dashed arrow in Figure 1). In addition,
we also tested several typical ensemble methods based on bagging.
The first version was based on the original bootstrap version of bag-
ging from [7] whereby 60% of the training samples were randomly
selected for training each ensemble member. The second version
was loosely based on [8], whereby we randomly permuted 10% of
the labels within the training set for each member of the ensemble.
Each version was tested with 40 and 80 ensemble members.

Results

Experimental results are presented in Table 1 with examples of test
output presented in Figure 2. In terms of pixel accuracy and Jaccard
measures, all algorithms performed comparably. However, signifi-
cant differences exist in terms of precision, recall and label score.
Regardless of the base classifier, the OD-MoE system produces re-
sults with high precision and low recall when compared to the rest of
the tested algorithms (standard regression and bagging). In turn, that
results in significantly better label score which recall was designed
specifically to evaluate object level information, namely the num-
ber of objects, their location and boundaries. From this perspective,
our algorithm is far more suitable to the object delineation task(s)
as indicated by a label score, of 0.43 for OD-MoE(Filtered) using
regression trees, which is almost three times better than the compe-
tition. As mentioned in the introduction, the identification of object

2Similar results to those presented in this paper were obtained using dif-
ferent train test splits.

Table 1. Average performance on test images. Standard denotes
regression performed directly on the ground truth as is commonly
done for pixel labeling. Raw denotes OD-MoE without filtering.
Filtered denotes OD-MoE with filtering prior to output reconstruc-
tion. Bag denotes a standard bagging procedure with each mem-
ber of the ensemble using randomly selected 60% of the training
samples. RPL Bag denotes bagging where 10% of the labels were
randomly permuted for each ensemble member. Ensemble sizes are
shown in brackets.

Linear Regression as base learner
Algorithm jacq acc prec recall label score
Standard 0.67 0.75 0.78 0.84 0.14

OD-MoE(Raw) 0.64 0.76 0.86 0.72 0.40
OD-MoE(Filtered) 0.59 0.73 0.87 0.64 0.38

Regression Tree as base learner
Algorithm jacq acc prec recall label score
Standard 0.52 0.62 0.68 0.69 0.04

OD-MoE(Raw) 0.61 0.74 0.85 0.69 0.41
OD-MoE(Filtered) 0.62 0.75 0.86 0.68 0.43

Bagged Regression Trees
jacq acc prec recall label score

Bag(40) 0.63 0.70 0.71 0.86 0.04
Bag(80) 0.63 0.71 0.71 0.85 0.04

RLP_Bag(40) 0.59 0.69 0.74 0.74 0.14
RPL_Bag(80) 0.59 0.69 0.74 0.75 0.14

parts lies at the heart of the output decomposition function. Each
log-Gabor filter identifies various frequency components comprising
the target objects. In turn these components are easier to learn than
the unstructured pixel labels. It is thus no surprise that the algorithm
improves the labeling at the object rather than the pixel level. The
difference in segmentation quality can be readily observed in Figure
2. With respect to bagging, although there was an increase in perfor-
mance at the pixel level when compared to using a single regression
tree, the label score clearly remains unaffected. Visually the output
looked very similar to the output of a single regression tree3 which
provides a stark contrast to the output of OD-MoE.

Examining the merit of frequency domain filtering, we can see
mixed results. When linear regression is used to construct the indi-
vidual experts, the filtering step is detrimental to performance. How-
ever, when regression trees are employed at the base level, overall
performance improves. Our results consistently demonstrate that re-
gardless of the base regressor used, precision score improve as a
result of the filtering step. Visually, in Figure 2, we can see a signif-
icant reduction in noise when frequency domain filtering is used in
conjunction with regression trees.

5. CONCLUSION

This paper presented the Output Decomposition Mixture-of-Experts
(OD-MoE) algorithm designed for pixel labeling and object delin-
eation tasks. By using an output decomposition function to identify
coherent parts of the objects, each function approximator, compris-
ing the mixture of experts, can be focused on specific object aspect.
Experimental results indicate that these primitive object structures
are easier to identify than the individual pixel labels and enable OD-

3The output from Bag(40) and Bag(80) looked very similar to the out-
put of standard regression tree, while the output from RLP Bag(40) and
RLP Bag(80) looked very similar to the output of standard linear regression.
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Linear Regression as base learner
Raw Ensemble Output

Filtered Ensemble Output
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Ground Truth (L)
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Fig. 2. Top Row: Test input image and corresponding ground truth. Test output using Linear Regression as base learner Left, and Regression
Tree as base learner Right.

MoE to produce results superior to those of standard pixel labeling
algorithms. More specifically, OD-MoE is able to separate out in-
dividual objects, while the basic pixel labeling algorithms, devoid
of higher level knowledge of objects, consistently fused several ob-
jects together. In addition, the proposed log-Gabor filters, used for
output decomposition, have additional uses as noise filters, which
enable further mitigation of function approximation errors. Over-
all the experimental results indicate that the proposed approach is
highly suitable for image interpretation tasks.
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