
VipBoost: a More Accurate Boosting Algorithm

Xiaoyuan Su

Computer Science and Engineering
Florida Atlantic University

Boca Raton, FL 33431, USA
xsu@fau.edu

Taghi M. Khoshgoftaar

Computer Science and Engineering
Florida Atlantic University

Boca Raton, FL 33431, USA
taghi@cse.fau.edu

Russell Greiner

Department of Computing Science
University of Alberta

Edmonton, AB, T6G 2E8, Canada
greiner@cs.ualberta.ca

Abstract
Boosting is a well-known method for improving the
accuracy of many learning algorithms. In this paper,
we propose a novel boosting algorithm, VipBoost
(voting on boosting classifications from imputed
learning sets), which first generates multiple
incomplete datasets from the original dataset by
randomly removing a small percentage of observed
attribute values, then uses an imputer to fill in the
missing values. It then applies AdaBoost (using some
base learner) to produce classifiers trained on each of
the imputed learning sets, to produce multiple
classifiers. The subsequent prediction on a new test
case is the most frequent classification from these
classifiers. Our empirical results show that VipBoost
produces very effective classifiers that significantly
improve accuracy for unstable base learners and some
stable learners, especially when the initial dataset is
incomplete.

1. Introduction
Ensemble techniques are popular as they can
generally produce fairly accurate classifiers. Two
well-known ensemble techniques are boosting [1]
and bagging [2], which learn diverse classifiers, then
(at performance time) combine their responses for
each test instance.

In this work, we propose to inject diversities into
the learning set by randomly removing observed
values multiple times, to produce n different
incomplete learning sets. We then use an imputation
technique to fill in the missing values to produce n
different complete training sets, then apply AdaBoost
[1] (using some base learner) on each of the imputed
training sets, to produce n different classifiers. For
predicting new test cases, each of these classifiers
returns a classification label for an instance; our
system returns the most frequent label.

While removing some attribute values may cause
the resulting learned classifier to make more
mistakes, existing research into ensemble methods

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

has shown that many ensemble methods work best
when the base classifiers are diverse – i.e., when their
errors are fairly independent [3]. Moreover, our
preliminary experiments show that the accuracy of
the classifier trained from an incomplete dataset,
produced by removing a small number of attribute
values, is often close to, or occasionally better than,
the classifiers trained from the original dataset.

For incomplete data, the classifiers learned with
the help of an imputation technique is often more
accurate than one obtained by just applying some
standard learner directly to the original data [4]. By
boosting a base learner on these imputed learning
sets, we may get the further accuracy improvement
from the boosting method. Therefore, by voting on
boosting classifications from different imputed
learning sets originated from the same underlying
dataset, we expect that our VipBoost (voting on
boosting classifications from imputed learning sets)
predictors can outperform conventional machine
learners, bagging predictors, and boosting predictors
(i.e., AdaBoost [1]), especially for incomplete data.

Here, we randomly removed m% of the attribute
values over the entire training data (here, m=5). Note
this is the “Missing Completely at Random” (MCAR)
mechanism, as these removals are independent of the
actual value of this feature, and of any other feature.

We evaluate the predictive performance of
VipBoost using the following 10 base learners (from
WEKA [5]), including both unstable learners:
decision tree (C4.5), decision table (dTable), logistic
regression (LR), neural networks (NN), one rule
(OneR), decision list (PART), support vector
machine (SVM); and stable learners: naïve Bayes
(NB), k-nearest-neighbor (kNN), and random forest
(RF). We considered three imputation techniques:
expectation maximization (EM) [6][7], Bayesian
multiple imputation (BMI) [8], and mean imputation
(MEI, the baseline imputation technique).

Section 2 is the framework of our VipBoost
algorithm. Experimental design and results are in
Section 3, and Section 4 presents our conclusions.

2. Framework
Our VipBoost algorithm first produces n incomplete
datasets by removing m% of the observed values
from the initial dataset, completely at random, n
times. (If the initial dataset was missing k% of its
values, including k=0 for complete data, then each
new dataset is missing (k+m)% of the values.)
VipBoost then imputes the missing values using
some imputation techniques Imp, such as EM and
BMI, to fill in the missing values; it then applies
AdaBoost (with some base learner L) [1] to each of
the imputed learning sets to produce n different
classifiers. It then returns a single classifier that runs
each of these classifiers, and returns the most
frequent classification. See Figure 1.

Algorithm: VipBoost(L, Imp D, n, m)

Input: L: base learner (e.g., kNN, SVM, …)
Imp: imputation method (e.g., EM, BMI, …)
D: a labeled training dataset with k% missing values
 (k≥0)
n: number of generated learning sets with injected

missing values
m%: the injected missing ratio
Output: a classifier

Begin
For i=1, 2,…, n
{
a. Remove m% observed attribute values in D

completely at random to generate the i-th
learning set Di

 b. Di’ = Imp[Di] -- an imputed dataset;
 c. ci = AdaBoost[L](Di’)
}
Return the classifier c*(x) = plurality(ci(x))
% for any x, c*(x) return the most frequent class label.
End

Figure 1. The framework of VipBoost
algorithm

We investigated VipBoost[L, Imp D, n, m] for 10

machine learning algorithms L, each of which has its
own method of dealing with missing values. Some
just ignore missing values during the learning and
classifying processes, e.g. Naïve Bayes (NB) [9],
decision table (dTable) [10], decision list (PART)
[11], and decision tree (C4.5) [12]. Some replace the
missing values with the mean or median value for
numeric attributes or the most frequent value for
nominal attributes, e.g., Logistic regression (LR) [13]
and Random Forest (RF) [14]. Some – including the

one-rule classifier (OneR) [15], and the sequential
minimal optimization (SMO) [16] (WEKA’s
implementation of support vector machine, SVM) –
treat missing values as a legitimate value (“missing”).
K-nearest-neighbor (kNN) counts missing values into
its distance measure (Euclidean distance for
continuous attributes and Hamming distance for
discrete ones). When the two instances each omit the
values of the same attribute, kNN sets the distance
wrt that attribute to 0, but when only one has a
missing value, kNN sets the value to a maximal
distance [5]. Neural network (NN) replaces the
missing values using an interval (eg., a unit interval
[0,1] that includes all the possible values of that
attribute) [17].

As these simple approaches to dealing with
missing values may not significantly improve
classification performance, VipBoost uses a different
imputation technique Imp before handing the
completed data to AdaBoost [L]. We investigated
using the state-of-the-art imputation techniques EM
and BMI, as well as the baseline mean imputation, to
impute the incomplete learning sets.

Mean Imputation

In general, let Yu,i be the observed value of the u-
th instance on the i-th attribute. Mean imputation
(MEI) fills in a missing value Yv,i with the mean of
the observed values on each attribute

∑∈
=

)(,, |)(|
1ˆ

iUu iu
MEI
iv Y

iU
Y (1)

where U(i) is a set of indices of instances that have
observed values of attribute i. MEI rounds a mean
estimate to the nearest integer for discrete values.
MEI is used by many machine learning algorithms
already (e.g., LR), as it is the simplest imputation
technique. However, it distorts the shape of
distributions by creating a spiked distribution at the
mean in frequency distributions, and it also reduces
(under-estimates) the variance of the predictions,
which typically leads to wrong inferences.

Expectation Maximization Imputation
In general, expectation-maximization (EM) seeks

maximum likelihood estimates of parameters in
probabilistic models in the presence of latent
variables [6][7]. EM iterates between performing an
expectation E-step, which calculates an expected
value of the complete data likelihood, given the
observed data and the current parameters; and a
maximization M-step, which computes values of the
parameters that maximize the expected likelihood
over the data, including those estimated in the E-step.
The parameters found on the M-step are then used to

begin another E-step, and the process is repeated until
it converges to a stationary point. EM imputation
requires specifying a joint probability distribution for
the attribute value to be imputed and other attribute
values.

Our implementation of the EM imputation
algorithm for multivariate Gaussian data
(parameterized by the mean and the covariance
matrix) uses ridge regression [7]. It first gives an
initial guess of these parameters. In each following
iteration, EM then iterates: (1) fill each missing value
with its conditional expectation value given the
observed values in that instance using the estimated
mean and covariance matrix; (2) re-estimate the mean
and the covariance matrix, using the instance mean of
the completed dataset and the covariance matrix as
the sum of the instance covariance matrix of the
completed dataset and the contributions from the
conditional covariance matrix of the imputation
errors. EM repeats these steps until the imputed
values and the estimates of the mean and covariance
do not change [18].

We round EM imputed values to the nearest
integers for integer attributes. We also find the
observed value range [min, max] for each attribute,
and replace imputed values <min with min, and those
>max with max for missing values. We also apply
this post-processing procedure to the BMI imputer
described below.

Bayesian Multiple Imputation

Standard single imputation produces a single
imputed dataset, where each missing value is
replaced with a single value. While this approach can
be applied to virtually every dataset, single
imputation does not account for the uncertainty about
the predictions of the imputed values; this can lead to
statistically invalid inferences [8]. By contrast,
multiple imputation (MI) produces many different
imputed datasets. In many situations, MI approaches
have proven to be highly effective even for small
values of m – say 3 to 10 [8].

BMI follows a Bayesian framework: it specifies a
parametric model for the complete data, with a given
a prior distribution over the unknown model
parameters θ, then simulates m independent draws
from the conditional distribution of the missing data
given the observed data. In non-trivial applications,
special computational processes, such as Markov
chain Monte Carlo (MCMC), must be applied to
perform Bayesian multiple imputation [8]. While
BMI assumes a multivariate normal distribution
when generating the imputations for missing values,
it is robust to non-normally distributed data [19].

Let P(Ycom|θ) model the complete data, based on
the parameter θ (the mean and covariance matrix that
parameterizes a normal distribution). If Y=(Yobs, Ymiss)
follows a parametric model P(Y|θ) with θ having the
prior distribution P(θ), then the posterior predictive
distribution for Ymiss is

∫= θθθ dYPYYPYYP obsobsmissobsmiss)|(),|()|((2)

Equation 2 suggests that BMI can be drawn by
repeating the following process for j=1, …, n:

(1) generate missing values Ymiss
(j+1) from

P(Ymiss|Yobs,θ(j));
(2) draw parameters θ(j+1) from P(θ|Yobs, Ymiss

(j+1)).
These two steps are repeated to generate the

Markov chain {Ymiss
(1), θ(1), Ymiss

(2), θ(2),…, Ymiss
(j),

θ(j),…} (here Ymiss
(j+1) depends on θ(j), and θ(j) depends

on Ymiss
(j)). This iterative process continues until the

distribution P(Ymiss , θ |Yobs) is stabilized. This
produces the values Y1

C; the then run the same
procedure many times, to produce m completed
datasets {Yi

C}. We then take the average as the final
imputed dataset,

∑
=

=
m

i

C
i

C Y
m

Y
1

1 (3)

3. Experimental Design and Results
We worked on 10 datasets D with numeric or ordinal
attributes from the UCI machine learning repository
[20], half of which have binary classes, and five
others have multiple classes (see Table 1). We
applied our VipBoost framework to the 10 commonly
used machine learners L listed in Section 1. For each
dataset, we generated n=9 incomplete training sets
and used the default value (I=10) as the maximum
number of AdaBoost iterations in the boosting stage
of VipBoost for each dataset. We use m=5% as
injected missing ratio for each dataset. We use k=5
for kNN, and default parameters of WEKA for all
other machine learned classifier.

Table 1. Description of the datasets used

Datasets Train # Test # attri # class #
australian 460 230 14 2

breast-wisc 466 233 10 2

diabetes 512 256 8 2
heart 180 90 13 2
letter 15000 5000 16 26
pima 512 256 8 2
satimage 4290 2145 36 6
segment 1540 770 19 7
vehicle 564 282 18 4
waveform 300 4700 21 3

We compare VipBoost predictors with original

machine learned classifiers, bagging predictors,
AdaBoost on each of the learners, and used the
imputers Imp in {BMI, EM, MEI}. We first
investigate the performance of the various learners L
when the initial training data are complete, in terms
of classification accuracy over the 10 datasets (see
Table 2, and Figure 2). We then considered initially
incomplete data, missing 30% of the values
(generated by randomly removing observed attribute
values from the complete datasets, see results in
Table 3 and Figure 3). We also investigate the
classification performance on a single dataset
“waveform” with missing ratios from 0% (complete
data) to 80%; see Table 4 and Figure 4.

We considered the average performance over all
10 learners L and 10 datasets D. On complete data,
among VipBoost with the three imputers Imp, we
found that VipBoost-BMI was the best , as it on

Table 2. Average classification accuracy over

10 complete UCI datasets

classi
-fiers

Ada
Boost

Bagg
-ing

Vip
Boost
-MEI

Vip
Boost
-EM

Vip
Boost
-BMI

OneR 62.95 65.56 64.28 66.64 67.53 67.98
NB 75.98 75.5 75.7 75.91 75.61 75.03
dTable 78.18 81.61 80.65 83.64 84.15 84.03
C4.5 82.27 83.8 84.79 86.08 85.92 86.49
kNN 83.4 82.11 82.27 82.39 82.52 82.64
PART 82.51 84.22 84.59 85.96 86.46 86.61
SVM 83.32 83.76 84.42 83.49 83.81 83.94
LR 84.28 83.92 84.22 84.22 84.1 84.5
NN 83.71 84.43 85.08 85.59 86.2 85.84
RF 86.31 84.72 85.33 85.65 86.23 85.79
Ave 80.29 80.96 81.13 81.95 82.25 82.28

62

65

68

71

74

77

80

83

86

89

OneR NB dTable C4.5 kNN PART SVM LR NN RF

Machine Learned Classifiers

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

original classifiers
AdaBoost
bagging
VipBoost-MEI
VipBoost-EM
VipBoost-BMI

Figure 2. Average classification accuracy over 10

complete UCI datasets

average had 2.5%, 1.6%, and 1.4% higher average
classification accuracy than the original classifiers,
AdaBoost, and bagging predictors (overall average)
respectively, with 1-sided t-test p<1.4E-5, p<2.0E-9,
and p<8.0E-5 respectively (see Table 2 and Figure 2
for average classification accuracy over 10 datasets;
stable learners are highlighted). At the same time,
VipBoost does not improve the accuracy on stable
algorithms kNN, naïve Bayes, and random forest,
which is similar to bagging and boosting here.

On incomplete datasets, VipBoost predictors have
much bigger advantages over original classifiers,
bagging predictors, and AdaBoost than on the
complete data. For the datasets missing 30% of the
values (see Table 3 and Figure 3 with stable learners
highlighted), VipBoost-BMI, VipBoost-EM, and
VipBoost-MEI have 11.0%, 10.5%, and 5.8% higher
average classification accuracy than the original
learners respectively. AdaBoost and bagging predict-

Table 3. Average classification accuracy over 10

UCI datasets with 30% missing ratio

classi
-fiers

Ada
Boost

Bagg
-ing

Vip
Boost
-MEI

Vip
Boost
-EM

Vip
Boost
-BMI

OneR 56.33 58.27 59.09 59.95 68.03 68.06
NB 73.35 73.02 73.58 71 72.41 72.95
dTable 66.35 71.02 65.36 75.7 78.32 78.67
C4.5 73.93 77.07 77.63 79.25 80.67 81.64
kNN 57.61 48.96 48.38 71.76 78.15 79.36
PART 75.12 78.13 79.88 79.92 81.12 81.7
SVM 74.68 75.04 74.82 75.49 78.78 78.83
LR 75.03 75.15 74.36 74.49 78.19 78.17
NN 70.72 72.01 74.77 76.4 80.01 79.92
RF 80.18 79.99 80.45 79.81 81.32 81.43
Ave 70.33 70.86 70.83 74.38 77.7 78.07

48

52

56

60

64

68

72

76

80

84

OneR NB dTable C4.5 kNN PART SVM LR NN RF

Machine Learned Classifiers

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

original classifiers
AdaBoost
bagging
VipBoost-MEI
VipBoost-EM
VipBoost-BMI

Figure 3. Average classification accuracy over 10

UCI datasets with 30% missing ratio

ors have limited improvement here (with 0.71% and
0.75% respectively). VipBoost-BMI and VipBoost-
EM on average outperform AdaBoost by 10.2% and
9.7% respectively.

Note that on incomplete data, VipBoost predictors
overcome the property that most ensemble classifiers
(e.g., bagging and boosting) can not improve stable
processes. VipBoost-BMI, VipBoost-EM, and
VipBoost-MEI greatly improve the classification
performance of the original kNN, a stable learner, on
incomplete data, with 37.8%, 35.7%, and 24.4%
higher average classification accuracy respectively,
partly due to the crude missing value handling by
kNN (see Section 2). Bagging and AdaBoost have
decreased classification performance for kNN here.
VipBoost predictors also improve another stable
learner, random forest. VipBoost-BMI and VipBoost-
EM improve the original random forest on average
by 1.6% and 1.4%. However, they do not improve
naïve Bayes, which just ignores missing values in
both learning and classification stages.

Table 4 and Figure 4 show the average
classification accuracy of our VipBoost predictors,
AdaBoost, bagging predictors, and original machine
learned classifiers on the dataset “waveform”, which
has different MCAR missing ratios from 0%
(complete data) to 80%. VipBoost-BMI and
VipBoost-EM perform the best for datasets with all
applicable missing ratios. Note even VipBoost-MEI,
the VipBoost predictor using the simplest imputation
technique MEI, outperforms the well-known
ensemble classifiers bagging predictors and
AdaBoost. Because of eigenvector calculation
exception, VipBoost-EM does not work for datasets
with higher missing ratio (i.e., missing ratios > 50%).

Table 4. Average classification accuracy over 10
classifiers on the dataset “waveform” with missing

ratios 0%~80%
 Miss
Ratio
%

classi
-fiers

Ada
Boost

Bagg
-ing

Vip
Boost
-MEI

Vip
Boost
-EM

Vip
Boost
-BMI

0 75.64 78.91 77.9 81.21 81.49 81.35
10 72.86 76.16 74.98 79.27 80.56 80.9
20 71.21 73.76 73.44 78.08 80.14 80.72
30 68.3 70.18 69.67 74.77 79.68 79.58
40 66.67 68.16 68.47 71.85 77.71 78.22
50 63.91 65.9 64.63 68.46 76.26 76.32
60 58.53 59.81 59.87 63.72 NA 67.03
70 56.82 57.11 56.82 60.42 NA 63.03
80 50.67 50.61 51.16 55.34 NA 57.82

50

54

58

62

66

70

74

78

82

0 10 20 30 40 50 60 70 80

Missing Ratios (%)

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

original classifiers
Bagging
AdaBoost
VipBoost-BMI
VipBoost-EM
VipBoost-MEI

Figure 4. Average classification accuracy over 10

classifiers on the dataset “waveform” with missing
ratios 0%~80%

The effectiveness of VipBoost depends on the

imputation technique Imp, the base learner L, the
missing data rate, and also the injected missing ratio
m. Our empirical study shows that an m between
3%~8% is effective. We use m=5% as the default
injected missing ratio in this work.

4. Conclusions
We propose a novel ensemble algorithm: VipBoost
(voting on boosting classifications from imputed
learning sets). VipBoost injects diversity to the
baseline learning set by randomly removing observed
attribute values multiple times and then imputing
each of the resulting datasets. It makes the final
classification by voting on boosting classifications,
learned from the various imputed training sets. Our
experimental results show that VipBoost predictors
significantly improve the classification performance
of conventional unstable learners, and the well-
known AdaBoost and bagging predictors, especially
for incomplete data. VipBoost can also significantly
improve the classification performance for some
stable learners, especially kNN, which traditional
ensemble classifiers such as AdaBoost and bagging
predictors fail to improve.

References
[1] Freund, Y., and Schapire, R.E., A decision-

theoretic generalization of on-line learning and an
application to boosting, Journal of Computer and
System Sciences, 55(1), pp. 119-139, 1997.

[2] Breiman, L., Bagging Predictors, Machine
Learning, 24(2), 1996.

[3] Kuncheva, L., and Whitaker, C. Measures of
Diversity in Classifier Ensembles and their
Relationship with the Ensemble Accuracy,
Machine Learning, 51(2), 2003.

[4] Su, X., Khoshgoftaar, T.M., and Greiner, R., Using
Imputa-tion Techniques to Help Learn Accurate
Classifiers, the 20th IEEE International
Conference on Tools with Artificial Intelligence
(ICTAI), 1, pp. 437-444. 2008.

[5] Witten, I.H., and Frank, E. Data Mining: Practical
Machine Learning Tools and Techniques, 2nd
Edition, Morgan Kaufmann, 2005.

[6] Dempster, A.P., Laird, N.M., and Rubin, D.B.,
Maximum likelihood from incomplete data via the
EM algorithm, Journal of the Royal Statistical
Society, B 39, pp. 1-38, 1977.

[7] Schneider, T., Analysis of incomplete climate data:
Estimation of mean values and covariance
matrices and imputation of missing values,
Journal of Climate, 14, pp. 853–871, 2001.

[8] Rubin, D.B., Multiple Imputation for Nonresponse
in Surveys. J. Wiley & Sons, New York, 1987.

[9] John, G.H. and Langley, P. Estimating Continuous
Distributions in Bayesian Classifiers, UAI,
pp.338-345, 1995.

[10] Kohavi, R. The Power of Decision Tables,
ECML, 1995.

[11] Frank, E. and Witten, I.H. Generating Accurate
Rule Sets Without Global Optimization. In
Shavlik, J., ed., Machine Learning: Proceedings of

the Fifteenth International Conference, Morgan
Kaufmann Publishers, San Francisco, CA, 1998.

[12] Quinlan, J.R. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, 1993

[13] Cessie, S. le. and Houwelingen, J.C. van, Ridge
Estimators in Logistic Regression, Applied
Statistics, 41(1), pp. 191-201, 1992.

[14] Breiman, L. Random Forests. Machine Learning,
45(1), pp. 5-32, 2001.

[15] Holte, R.C. Very simple classification rules
perform well on most commonly used datasets,
Machine Learning, 11, pp. 63-91, 1993.

[16] Platt, J. Fast Training of Support Vector
Machines using Sequential Minimal Optimization,
Advances in Kernel Methods Support Vector
Learning, 1998.

[17] Ishibuchi, H., Miyazaki, A., Kwon, K., and
Tanaka H. Learning from Incomplete Training
Data with Missing Values and Medical
Application, IJCNN, pp. 1871-1874, 1993.

[18] Little, R.J.A. and Rubin, D.B. Statistical Analysis
with Missing Data. Series in Probability and
Mathematical Statistics, Wiley, pp. 278, 1987.

[19] Schafer, J.L., Analysis of Incomplete Multivariate
Data, New York: Chapman and Hall, 1997.

[20] Blake, C., and Merz, C. UCI Repository of
Machine Learning Databases, 2000.

 http://www.ics.uci.edu/~mlearn/MLRepository.htm

