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Abstract 
Boosting is a well-known method for improving the 
accuracy of many learning algorithms. In this paper, 
we propose a novel boosting algorithm, VipBoost 
(voting on boosting classifications from imputed 
learning sets), which first generates multiple 
incomplete datasets from the original dataset by 
randomly removing a small percentage of observed 
attribute values, then uses an imputer to fill in the 
missing values.  It then applies AdaBoost (using some 
base learner) to produce classifiers trained on each of 
the imputed learning sets, to produce multiple 
classifiers. The subsequent prediction on a new test 
case is the most frequent classification from these 
classifiers. Our empirical results show that VipBoost 
produces very effective classifiers that significantly 
improve accuracy for unstable base learners and some 
stable learners, especially when the initial dataset is 
incomplete. 

1. Introduction   
Ensemble techniques are popular as they can 
generally produce fairly accurate classifiers.  Two 
well-known ensemble techniques are boosting [1] 
and bagging [2], which learn diverse classifiers, then 
(at performance time) combine their responses for 
each test instance.  

In this work, we propose to inject diversities into 
the learning set by randomly removing observed 
values multiple times, to produce n different 
incomplete learning sets. We then use an imputation 
technique to fill in the missing values to produce n 
different complete training sets, then apply AdaBoost 
[1] (using some base learner) on each of the imputed 
training sets, to produce n different classifiers.  For 
predicting new test cases, each of these classifiers 
returns a classification label for an instance; our 
system returns the most frequent label. 

While removing some attribute values may cause 
the resulting learned classifier to make more 
mistakes, existing research into ensemble methods 
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has shown that many ensemble methods work best 
when the base classifiers are diverse – i.e., when their 
errors are fairly independent [3]. Moreover, our 
preliminary experiments show that the accuracy of 
the classifier trained from an incomplete dataset, 
produced by removing a small number of attribute 
values, is often close to, or occasionally better than, 
the classifiers trained from the original dataset.  

For incomplete data, the classifiers learned with 
the help of an imputation technique is often more 
accurate than one obtained by just applying some 
standard learner directly to the original data [4]. By 
boosting a base learner on these imputed learning 
sets, we may get the further accuracy improvement 
from the boosting method. Therefore, by voting on 
boosting classifications from different imputed 
learning sets originated from the same underlying 
dataset, we expect that our VipBoost (voting on 
boosting classifications from imputed learning sets) 
predictors can outperform conventional machine 
learners, bagging predictors, and boosting predictors 
(i.e., AdaBoost [1]), especially for incomplete data. 

Here, we randomly removed m% of the attribute 
values over the entire training data (here, m=5). Note 
this is the “Missing Completely at Random” (MCAR) 
mechanism, as these removals are independent of the 
actual value of this feature, and of any other feature. 

We evaluate the predictive performance of 
VipBoost using the following 10 base learners (from 
WEKA [5]), including both unstable learners:  
decision tree (C4.5), decision table (dTable), logistic 
regression (LR), neural networks (NN), one rule 
(OneR), decision list (PART), support vector 
machine (SVM); and stable learners: naïve Bayes 
(NB), k-nearest-neighbor (kNN), and random forest 
(RF).  We considered three imputation techniques: 
expectation maximization (EM) [6][7], Bayesian 
multiple imputation (BMI) [8], and mean imputation 
(MEI, the baseline imputation technique).  

Section 2 is the framework of our VipBoost 
algorithm. Experimental design and results are in 
Section 3, and Section 4 presents our conclusions. 



2. Framework 
Our VipBoost algorithm first produces n incomplete 
datasets by removing m% of the observed values 
from the initial dataset, completely at random, n 
times. (If the initial dataset was missing k% of its 
values, including k=0 for complete data, then each 
new dataset is missing (k+m)% of the values.) 
VipBoost then imputes the missing values using 
some imputation techniques Imp, such as EM and 
BMI, to fill in the missing values; it then applies 
AdaBoost (with some base learner L) [1] to each of 
the imputed learning sets to produce n different 
classifiers. It then returns a single classifier that runs 
each of these classifiers, and returns the most 
frequent classification. See Figure 1. 
 
Algorithm: VipBoost( L, Imp D, n, m) 
 
Input: L: base learner (e.g., kNN, SVM, …) 
Imp: imputation method (e.g., EM, BMI, …) 
D: a labeled training dataset with k% missing values  
     (k≥0) 
n: number of generated learning sets with injected 

missing values 
m%: the injected missing ratio 
Output: a classifier 
 
Begin 
For i=1, 2,…, n 
{ 
a. Remove m% observed attribute values in D 

completely at random to generate the i-th 
learning set Di   

  b.  Di’ =  Imp[Di]  -- an imputed dataset; 
  c.  ci = AdaBoost[L](Di’)  
} 
Return the classifier c*(x) = plurality(ci(x)) 
% for any x, c*(x) return the most frequent class label. 
End 
 

Figure 1. The framework of VipBoost 
algorithm 

 
We investigated VipBoost[L, Imp D, n, m] for 10 

machine learning algorithms L, each of which has its 
own method of dealing with missing values. Some 
just ignore missing values during the learning and 
classifying processes, e.g. Naïve Bayes (NB) [9], 
decision table (dTable) [10], decision list (PART) 
[11], and decision tree (C4.5) [12]. Some replace the 
missing values with the mean or median value for 
numeric attributes or the most frequent value for 
nominal attributes, e.g., Logistic regression (LR) [13] 
and Random Forest (RF) [14]. Some – including the 

one-rule classifier (OneR) [15], and the sequential 
minimal optimization (SMO) [16] (WEKA’s 
implementation of support vector machine, SVM) – 
treat missing values as a legitimate value (“missing”). 
K-nearest-neighbor (kNN) counts missing values into 
its distance measure (Euclidean distance for 
continuous attributes and Hamming distance for 
discrete ones). When the two instances each omit the 
values of the same attribute, kNN sets the distance 
wrt that attribute to 0, but when only one has a 
missing value, kNN sets the value to a maximal 
distance [5]. Neural network (NN) replaces the 
missing values using an interval (eg., a unit interval 
[0,1] that includes all the possible values of that 
attribute) [17]. 

As these simple approaches to dealing with 
missing values may not significantly improve 
classification performance, VipBoost uses a different 
imputation technique Imp before handing the 
completed data to AdaBoost [L]. We investigated 
using the state-of-the-art imputation techniques EM 
and BMI, as well as the baseline mean imputation, to 
impute the incomplete learning sets. 

 
Mean Imputation 

In general, let Yu,i be the observed value of the u-
th instance on the i-th attribute.  Mean imputation 
(MEI) fills in a missing value Yv,i with the mean of 
the observed values on each attribute 
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where U(i) is a set of indices of instances that have 
observed values of attribute i. MEI rounds a mean 
estimate to the nearest integer for discrete values. 
MEI is used by many machine learning algorithms 
already (e.g., LR), as it is the simplest imputation 
technique. However, it distorts the shape of 
distributions by creating a spiked distribution at the 
mean in frequency distributions, and it also reduces 
(under-estimates) the variance of the predictions, 
which typically leads to wrong inferences. 

Expectation Maximization Imputation 
In general, expectation-maximization (EM) seeks 

maximum likelihood estimates of parameters in 
probabilistic models in the presence of latent 
variables [6][7]. EM iterates between performing an 
expectation E-step, which calculates an expected 
value of the complete data likelihood, given the 
observed data and the current parameters; and a 
maximization M-step, which computes values of the 
parameters that maximize the expected likelihood 
over the data, including those estimated in the E-step. 
The parameters found on the M-step are then used to 



begin another E-step, and the process is repeated until 
it converges to a stationary point. EM imputation 
requires specifying a joint probability distribution for 
the attribute value to be imputed and other attribute 
values. 

Our implementation of the EM imputation 
algorithm for multivariate Gaussian data 
(parameterized by the mean and the covariance 
matrix) uses ridge regression [7]. It first gives an 
initial guess of these parameters. In each following 
iteration, EM then iterates: (1) fill each missing value 
with its conditional expectation value given the 
observed values in that instance using the estimated 
mean and covariance matrix; (2) re-estimate the mean 
and the covariance matrix, using the instance mean of 
the completed dataset and the covariance matrix as 
the sum of the instance covariance matrix of the 
completed dataset and the contributions from the 
conditional covariance matrix of the imputation 
errors. EM repeats these steps until the imputed 
values and the estimates of the mean and covariance 
do not change [18].  

We round EM imputed values to the nearest 
integers for integer attributes. We also find the 
observed value range [min, max] for each attribute, 
and replace imputed values <min with min, and those 
>max with max for missing values. We also apply 
this post-processing procedure to the BMI imputer 
described below.  

 
Bayesian Multiple Imputation 

Standard single imputation produces a single 
imputed dataset, where each missing value is 
replaced with a single value. While this approach can 
be applied to virtually every dataset, single 
imputation does not account for the uncertainty about 
the predictions of the imputed values; this can lead to 
statistically invalid inferences [8]. By contrast, 
multiple imputation (MI) produces many different 
imputed datasets. In many situations, MI approaches 
have proven to be highly effective even for small 
values of m – say 3 to 10 [8].  

BMI follows a Bayesian framework: it specifies a 
parametric model for the complete data, with a given 
a prior distribution over the unknown model 
parameters θ, then simulates m independent draws 
from the conditional distribution of the missing data 
given the observed data. In non-trivial applications, 
special computational processes, such as Markov 
chain Monte Carlo (MCMC), must be applied to 
perform Bayesian multiple imputation [8]. While 
BMI assumes a multivariate normal distribution 
when generating the imputations for missing values, 
it is robust to non-normally distributed data [19].  

Let P(Ycom|θ) model the complete data, based on 
the parameter θ  (the mean and covariance matrix that 
parameterizes a normal distribution). If Y=(Yobs, Ymiss) 
follows a parametric model P(Y|θ) with θ having the 
prior distribution P(θ),  then the posterior predictive 
distribution for Ymiss is 

∫= θθθ dYPYYPYYP obsobsmissobsmiss )|(),|()|(                 (2) 

Equation 2 suggests that BMI can be drawn by 
repeating the following process for j=1, …, n:  

(1) generate missing values Ymiss
(j+1) from 

P(Ymiss|Yobs,θ(j)); 
(2)  draw parameters θ(j+1) from P(θ|Yobs, Ymiss

(j+1)). 
These two steps are repeated to generate the 

Markov chain {Ymiss
(1), θ(1), Ymiss

(2), θ(2),…, Ymiss
(j), 

θ(j),…} (here Ymiss
(j+1) depends on θ(j), and θ(j) depends 

on Ymiss
(j)). This iterative process continues until the 

distribution P(Ymiss , θ |Yobs) is stabilized. This 
produces the values Y1

C; the then run the same 
procedure many times, to produce m completed 
datasets {Yi

C}. We then take the average as the final 
imputed dataset,  
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3. Experimental Design and Results 
We worked on 10 datasets D with numeric or ordinal 
attributes from the UCI machine learning repository 
[20], half of which have binary classes, and five 
others have multiple classes (see Table 1). We 
applied our VipBoost framework to the 10 commonly 
used machine learners L listed in Section 1. For each 
dataset, we generated n=9 incomplete training sets 
and used the default value (I=10) as the maximum 
number of AdaBoost iterations in the boosting stage 
of VipBoost for each dataset. We use m=5% as 
injected missing ratio for each dataset. We use k=5 
for kNN, and default parameters of WEKA for all 
other machine learned classifier. 

 
Table 1. Description of the datasets used  

Datasets Train # Test # attri # class # 
australian 460 230 14 2 

breast-wisc 466 233 10 2 

diabetes 512 256 8 2 
heart 180 90 13 2 
letter 15000 5000 16 26 
pima 512 256 8 2 
satimage 4290 2145 36 6 
segment 1540 770 19 7 
vehicle 564 282 18 4 
waveform 300 4700 21 3 



 
We compare VipBoost predictors with original 

machine   learned   classifiers,   bagging   predictors, 
AdaBoost on each of the learners, and used the 
imputers Imp in {BMI, EM, MEI}. We first 
investigate the performance of the various learners L 
when the initial training data are complete, in terms 
of classification accuracy over the 10 datasets (see 
Table 2, and Figure 2). We then considered initially 
incomplete data, missing 30% of the values 
(generated by randomly removing observed attribute 
values from the complete datasets, see results in 
Table 3 and Figure 3). We also investigate the 
classification performance on a single dataset 
“waveform” with missing ratios from 0% (complete 
data) to 80%; see Table 4 and Figure 4. 

We considered the average performance over all 
10 learners L and 10 datasets D. On complete data, 
among VipBoost with the three imputers Imp, we 
found  that  VipBoost-BMI  was  the  best ,  as  it   on 

 
Table 2. Average classification accuracy over 

10 complete UCI datasets 

  
classi 
-fiers 

Ada 
Boost 

Bagg 
-ing 

Vip 
Boost 
-MEI 

Vip 
Boost 
-EM 

Vip 
Boost 
-BMI 

OneR 62.95 65.56 64.28 66.64 67.53 67.98 
NB 75.98 75.5 75.7 75.91 75.61 75.03 
dTable 78.18 81.61 80.65 83.64 84.15 84.03 
C4.5 82.27 83.8 84.79 86.08 85.92 86.49 
kNN 83.4 82.11 82.27 82.39 82.52 82.64 
PART 82.51 84.22 84.59 85.96 86.46 86.61 
SVM 83.32 83.76 84.42 83.49 83.81 83.94 
LR 84.28 83.92 84.22 84.22 84.1 84.5 
NN 83.71 84.43 85.08 85.59 86.2 85.84 
RF 86.31 84.72 85.33 85.65 86.23 85.79 
Ave 80.29 80.96 81.13 81.95 82.25 82.28 
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Figure 2. Average classification accuracy over 10 

complete UCI datasets 

 
average had 2.5%, 1.6%, and 1.4% higher average 
classification accuracy than the original classifiers, 
AdaBoost, and bagging predictors (overall average) 
respectively, with 1-sided t-test p<1.4E-5, p<2.0E-9, 
and  p<8.0E-5  respectively (see Table 2 and Figure 2 
for average classification accuracy over 10 datasets; 
stable learners are highlighted). At the same time, 
VipBoost does not improve the accuracy on stable 
algorithms kNN, naïve Bayes, and random forest, 
which is similar to bagging and boosting here. 

On incomplete datasets, VipBoost predictors have 
much bigger advantages over original classifiers, 
bagging predictors, and AdaBoost than on the 
complete data. For the datasets missing 30% of the 
values (see Table 3 and Figure 3 with stable learners 
highlighted), VipBoost-BMI, VipBoost-EM, and 
VipBoost-MEI have 11.0%, 10.5%, and 5.8% higher 
average classification accuracy than the original 
learners respectively. AdaBoost and bagging predict- 

 
Table 3. Average classification accuracy over 10 

UCI datasets with 30% missing ratio 

  
classi 
-fiers 

Ada 
Boost 

Bagg 
-ing 

Vip 
Boost 
-MEI 

Vip 
Boost 
-EM 

Vip 
Boost 
-BMI 

OneR 56.33 58.27 59.09 59.95 68.03 68.06 
NB 73.35 73.02 73.58 71 72.41 72.95 
dTable 66.35 71.02 65.36 75.7 78.32 78.67 
C4.5 73.93 77.07 77.63 79.25 80.67 81.64 
kNN 57.61 48.96 48.38 71.76 78.15 79.36 
PART 75.12 78.13 79.88 79.92 81.12 81.7 
SVM 74.68 75.04 74.82 75.49 78.78 78.83 
LR 75.03 75.15 74.36 74.49 78.19 78.17 
NN 70.72 72.01 74.77 76.4 80.01 79.92 
RF 80.18 79.99 80.45 79.81 81.32 81.43 
Ave 70.33 70.86 70.83 74.38 77.7 78.07 
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Figure 3. Average classification accuracy over 10 

UCI datasets with 30% missing ratio 



ors have limited improvement here (with 0.71% and 
0.75% respectively). VipBoost-BMI and VipBoost-
EM on average outperform AdaBoost by 10.2% and 
9.7% respectively. 

Note that on incomplete data, VipBoost predictors 
overcome the property that most ensemble classifiers 
(e.g., bagging and boosting) can not improve stable 
processes. VipBoost-BMI, VipBoost-EM, and 
VipBoost-MEI greatly improve the classification 
performance of the original kNN, a stable learner, on 
incomplete data, with 37.8%, 35.7%, and 24.4% 
higher average classification accuracy respectively, 
partly due to the crude missing value handling by 
kNN (see Section 2). Bagging and AdaBoost have 
decreased classification performance for kNN here. 
VipBoost predictors also improve another stable 
learner, random forest. VipBoost-BMI and VipBoost-
EM improve the original random forest on average 
by 1.6% and 1.4%. However, they do not improve 
naïve Bayes, which just ignores missing values in 
both learning and classification stages. 

Table 4 and Figure 4 show the average 
classification accuracy of our VipBoost predictors, 
AdaBoost, bagging predictors, and original machine 
learned classifiers on the dataset “waveform”, which 
has different MCAR  missing  ratios  from  0% 
(complete data) to 80%. VipBoost-BMI and 
VipBoost-EM perform the best for datasets with all 
applicable missing ratios. Note even VipBoost-MEI, 
the VipBoost predictor using the simplest imputation 
technique MEI, outperforms the well-known 
ensemble classifiers bagging predictors and 
AdaBoost. Because of eigenvector calculation 
exception, VipBoost-EM does not work for datasets 
with higher missing ratio (i.e., missing ratios > 50%). 

 
 

Table 4. Average classification accuracy over 10 
classifiers on the dataset “waveform” with missing 

ratios 0%~80% 
 Miss 
Ratio 
% 

classi 
-fiers 

Ada 
Boost 

Bagg 
-ing 

Vip 
Boost 
-MEI 

Vip 
Boost 
-EM 

Vip 
Boost 
-BMI 

0 75.64 78.91 77.9 81.21 81.49 81.35 
10 72.86 76.16 74.98 79.27 80.56 80.9 
20 71.21 73.76 73.44 78.08 80.14 80.72 
30 68.3 70.18 69.67 74.77 79.68 79.58 
40 66.67 68.16 68.47 71.85 77.71 78.22 
50 63.91 65.9 64.63 68.46 76.26 76.32 
60 58.53 59.81 59.87 63.72 NA 67.03 
70 56.82 57.11 56.82 60.42 NA 63.03 
80 50.67 50.61 51.16 55.34 NA 57.82 
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Figure 4. Average classification accuracy over 10 

classifiers on the dataset “waveform” with missing 
ratios 0%~80% 

 
The effectiveness of VipBoost depends on the 

imputation technique Imp, the base learner L, the 
missing data rate, and also the injected missing ratio 
m. Our empirical study shows that an m between 
3%~8% is effective. We use m=5% as the default 
injected missing ratio in this work. 
 

4. Conclusions 
We propose a novel ensemble algorithm: VipBoost 
(voting on boosting classifications from imputed 
learning sets). VipBoost injects diversity to the 
baseline learning set by randomly removing observed 
attribute values multiple times and then imputing 
each of the resulting datasets. It makes the final 
classification by voting on boosting classifications, 
learned from the various imputed training sets. Our 
experimental results show that VipBoost predictors 
significantly improve the classification performance 
of conventional unstable learners, and the well-
known AdaBoost and bagging predictors, especially 
for incomplete data. VipBoost can also significantly 
improve the classification performance for some 
stable learners, especially kNN, which traditional 
ensemble classifiers such as AdaBoost and bagging 
predictors fail to improve. 
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