
Workload Reduction for Multi-Input Profile-Directed Optimization
Abstract

Profile-directed optimization is an effective tech-

nique to improve program performance, but it may re-

sult in program performance and compiler behavior

that is sensitive to both the selection of inputs used for

training and the actual input in each run of the pro-

gram. Cross-validation over a workload of inputs can

address the input-sensitivity problem, but introduces

the need to select a representative workload of mini-

mal size from the population of available inputs. We

present a compiler-centric clustering methodology to

group similar inputs so that redundant inputs can be

eliminated from the training workload. Input simi-

larity is determined based on the compile-time code

transformations made by the compiler after training

separately on each input. Differences between inputs

are weighted by a performance metric based on cross-

validation in order to account for code transforma-

tion differences that have little impact on performance.

We introduce theCrossError metric that allows the

exploration of correlations between transformations

based on the results of clustering. The methodology

is applied to several SPEC [14] benchmark programs,

and illustrated using selected case studies.

1. Introduction

Profile-directed optimization, or profile directed

feedback (PDF), is an effective compilation technique

to improve program performance1 in terms of execu-

tion speed. For static (or offline) PDF, an instrumented

version of the program is created by the compiler to

measure program characteristics such as the execution

frequencies of basic blocks and functions, function-

pointer targets, dynamic memory allocation amounts,

or divisor values. These values are recorded in a pro-

file file, which is used by the compiler to inform code

transformations during a subsequent optimizing com-

pilation to create the final program executable. Dy-

namic PDF performs similar data-collection and code

optimization operations during program execution, fa-

cilitated by just-in-time compilation. This work con-

siders static PDF where training and execution occur

in different program invocations.

Compiler vendors routinely assist clients in using

the compiler to improve the performance of the client’s

programs. In cases involving the most important cus-

tomers, members of the compiler development team

may be involved in this process, and may implement

improvements in the compiler to better optimize the

client’s code. PDF is one option for improving pro-

gram performance. However, as Berube and Ama-

ral reported, when PDF is used, compiler behavior

and program performance can be sensitive to both the

training input(s) used to generate the profile and the

input(s) used to measure the final performance [2].

In order to reliably measure the performance of

the program (and consequently the benefits of PDF

1Throughout this paper the termperformancewill refer to the
execution speed of a program on a workload of inputs.



and of code transformations based on PDF), a cross-

validation strategy should be used over the workload

of inputs. For important applications, the client can

supply in-house correctness or performance testing in-

puts, along with end-user input, that cover a range of

use-cases. However, consider the case where a client

provides hundreds, or thousands, of inputs to the com-

piler team. Using such a large set of inputs is compu-

tationally prohibitive, and is not suitable for repeated

performance evaluations as the compiler evolves. Each

additional input used for training, and/or evaluation,

increases the time required to evaluate performance

due to additional training runs, program compilations

and execution time measurements. Also, if the com-

piler supports the simultaneous use of multiple train-

ing inputs, the client cannot be expected to use a very

large set of inputs for training in their build process.

Therefore, a minimal set of representative inputs

is required to reduce the time consumed by perfor-

mance evaluation, without compromising evaluation

quality. The method used to reduce the workload

should not rely on human intuition or the experience

of experts. For large, complicated programs, predict-

ing the interactions between the program, the com-

piler, data inputs, and the underlying computer archi-

tecture is likely impossible, even for an expert of all the

involved components. Thus, an automatic workload-

reduction technique is useful for both compiler design-

ers, who may not be experts regarding the client’s pro-

gram or it’s inputs, as well as for the client, who may

not be an expert regarding the compiler. Furthermore,

the method should measure how representative the se-

lected inputs are of the full workload, and thus provide

a quantitative estimate of the trade-off between work-

load size and workload accuracy.

This work presents a compiler-centric methodology

to reduce the size of the workload needed for proper

evaluation of the performance improvements achieved

by an optimizing compiler for a given application. In-

put similarity is based on the code-transformation de-

cisions made by the compiler according to the profile

generated for each input. Inputs are clustered based

on the variations they induce in code transformations.

This clustering produces groups of inputs to which the

compiler responds in a similar fashion, and thus identi-

fies redundancy in the training, and testing, workloads.

Furthermore, we present a novel metric to compare

different clusterings on related data. This metric al-

lows for intuitive investigation of the correlation be-

tween individual transformations.

The goal of this technique is not the immediate

maximization of program performance, and certainly

never to maximize program performance on a partic-

ular input. Rather, the goal is to reduce a large work-

load to a representative set of inputs, enabling time-

efficient improvement of the compiler by the develop-

ment team, and ultimately improving program perfor-

mance on the full workload of inputs.

In the next section, we present related work on

workload reduction and identify why existing tech-

niques are not appropriate in the context of cross-

validation for PDF compilation.§3 presents the details
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of our metrics and methodology, while experimental

design is discussed in§4. We present results and anal-

ysis in§5 and conclude in§6.

2. Related Work

Input characterization and workload reduction are

not new problems. Computer architecture research

is largely simulation-based, necessitating small work-

loads of representative programs using minimally-

sized inputs. The architectural metrics of benchmark

programs are repeatedly scrutinized for redundancy,

while smaller inputs are compared with large inputs.

Alternatively, some work bypasses program behavior

and examines the inputs directly.

Shen and Mao propose the XICL language to allow

programmers to formally describe how to extract the

important properties of an input directly [11]. A fea-

ture selection process removes correlated features, and

basic-block frequency counts are predicted using an

input-behavior model constructed by regression. How-

ever, the programmer must understand the code, the

input, and the compiler, in order to hypothesize impor-

tant features, and then determine a procedure to auto-

matically extract those features from an arbitral input.

Furthermore, the system only predicts basic-block ex-

ecution frequencies. While critical to many current

transformations, these frequencies do not inform any

value specialization transformations.

Maxiaguine et al. examine the variability of in-

put streams for the system-level design of multime-

dia system-on-chip devices [9]. They reduce the input

set to corner cases and the best-case and worst-case

scenarios, the critical concerns of real-time data pro-

cessing systems. However, input characterization that

does not take the run-time characteristics of the pro-

gram into account does not provide much useful infor-

mation in the context of PDF.

Gove and Spracklen test how well the SPEC2006

training inputs represent the reference workloads [6].

They find that in almost every case, based only on the

correspondence of function execution frequencies and

branch behaviors, the training workload is highly rep-

resentative of the reference workload.

Most input characterization and workload reduc-

tion research aims to reduce the time required for de-

tailed architectural simulation, without compromising

the applicability of simulation results. Similarity met-

rics in this area are based on architecture-level pro-

gram characteristics (instructions per branch, cache

miss rates,etc.). Most techniques use clustering to

choose a representative subset of the full workload.

KleinOsiwski and Lilja created the MinneSPEC

benchmark suite from the SPEC2000 suite by reduc-

ing the sizes of the input data [8]. The reference inputs

were truncated, sampled, replaced with the test or train

input, or run with a modified command line. However,

the authors warn that these reduced inputs do not al-

ways conserve all the program characteristics of the

original inputs, and should be used with caution. Fur-

thermore, while program execution time on each input

is of some concern in the context of PDF, the com-

putation required for cross-validation scales with the

number of inputs. Consequently, reducing the size of
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the workload is of greater importance.

Vandierendoncket al. cluster SPEC2000 bench-

marks based on performance numbers reported on the

SPEC web-site [15]. Rank analysis validates the clus-

tering results, but simply predicting the relative per-

formance of machines does not provide enough infor-

mation to determine the reasons for these performance

differences, nor to illuminate opportunities to improve

performance in the future.

A prevailing methodology to select representative

program-input pairs uses Principal Component Anal-

ysis (PCA) to reduce the dimensionality of program-

characteristic data, and then clusters the data in the re-

sulting space. Eeckhoutet al. employ this methodol-

ogy with the SPEC95 and TCP benchmarks [5]. They

find that while there is significant redundancy between

the program-input pairs, the behavior of some pro-

grams is significantly impacted by the choice of in-

put. Phansalkaret al. find that the SPEC2006 bench-

mark suite [10] is more varied than earlier versions of

the suite, though some redundancy still exists. Later,

Eeckhout et al. find that Independent Component

Analysis produces more accurate clusters and smaller

representative sets than PCA for the SPEC2000 and

MinneSPEC benchmark suites [4].

Alternately, Hosteet al. use a correlation re-

duction technique with a genetic algorithm on

michroarchitecturally-independent program character-

istics [7]. They find that this technique provides su-

perior results than PCA and clustering for emerg-

ing benchmarks, while the results are more easily

interpreted because the dimensions of the similarity

space are the measured characteristics. In particular,

two apparently similar programs according to micro-

architecturally dependent characteristics may be sig-

nificantly different, as many program behaviors can

produce similar performance counter values. While

this observation is to be expected, it’s implications are

paramount to our study. Input similarity is dependent

on the level where similarity is measured, which must

match it’s intended use. Consequently, it is essential

to this study that input similarity be determined at the

compiler level.

Sherwoodet al. propose SimPoint, a tool to that

identifies representative program phases that can be

sampled to make predictions about a full simula-

tion [12]. Phases are detected using Basic-Block Vec-

tors (BBV) containing basic block execution counts

for 100 million instruction intervals. Random pro-

jection reduces the dimensionality of the BBVs. The

Manhattan or Euclidean distance is the similarity met-

ric for K-means clustering. However, sampling does

not reduce the number of inputs in a workload.

The work presented here differs from previous

work in several ways. In the preceding works,

dimensionality-reducing techniques, such as PCA, are

applied before the similarity metric is calculated. The

primary motivation for reducing dimensionality is to

minimize the correlations between dimensions, and

thus reduce bias toward redundant characteristics in

the clustering. In this work, there are relatively few

measured characteristics (transformations), and deter-
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mining if they are correlated is one goal of the study.

Thus, correlations between transformations are inves-

tigated directly.

In most studies, only the (small number of) in-

puts provided with the benchmark are considered:

The emphasis is reducing the simulation time for the

benchmark suite, and thus minimizing the number of

program-input pairs that must be simulated. The use

of program-input pairs not withstanding, the focus of

workload reduction for architectural simulation is to

select theprogramsthat are representative of the suite.

In this work, the focus is on finding the representative

inputs from a workloadfor a particular program.

Finally, this work takes a uniquely compiler-

oriented perspective. The primary point of interest is

how training inputs interact with a compiler; how dif-

ferent training inputs result in different code transfor-

mations by a profile-directed compiler. While varia-

tions in code transformations may change architecture-

level program characteristics, these metrics may be too

far removed from the compiler to quickly assist de-

signers at improving the compiler.

3. Clustering Methodology

Consider a programp with a workload of inputs

W = {n1, n2, . . . , nm}, and an optimizing compiler

with a setT = {T1, T2, . . . , Ts} of profile-directed

transformations. Each input inW is used to gener-

ate a profile of an execution ofp. When the compiler

uses the profile generated by inputni it will potentially

either apply transformations fromT to different loca-

tions ofp, or apply such transformations with different

frequencies, than when the compiler uses a profile gen-

erated by inputnj 6= ni. The goal of this paper is to

cluster inputs inW based on how similarly the com-

piler applies the transformations inT to p when us-

ing each of the profiles generated by each input. The

calculated similarities are held in a similarity matrix,

which is the input for the clustering algorithm.

3.1 Input Features and Similarity

LetLTi be the set of program locations where trans-

formationTi may be applied top. A transformation

vectorVTi,nj records how many timesTi is applied at

each location inLTi when the compiler is guided by

the profile generated by training on inputnj . VTi,nj

has|LTi | elements.LTi is the union of all locations

whereTi is applied when the profile from each input is

used, as well as the locations from a baseline compila-

tion that does not use PDF information.

Each investigated transformationTi is instrumented

in the compiler to collect(location, frequency)pairs

that indicate each timeTi is applied. Each location

lc ∈ LTi is identified, as uniquely as possible, us-

ing source-code line numbers and expression identi-

fiers. Most transformations are all-or-nothing transfor-

mations: With the profile generated using inputni, a1

is recorded in positionlc of VTi,nj if Ti is applied atlc;

a 0 is recorded ifTi is not applied atlc. For loop un-

rolling, the unroll factor is recorded as the frequency

in the transformation vector. Due to code replication, a

transformation may be applied multiple times in indis-

tinguishable locations. In these cases, the frequency

values from aliased locations are accumulated at the
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appropriate index ofVTi,nj .

Manhattan distance is used as the similarity metric

between transformation vectors. The Manhattan dis-

tance between two vectors is the sum of the absolute

value of their index-wise differences. Geometrically,

the Manhattan distance is the length of the shortest

path from two points if travel is restricted to move-

ment along a unit grid. Thus, in the context of trans-

formation vectors, the Manhattan distance counts the

number of differences between two vectors.

The difference matrixDTi for transformationTi is

anm×m, symmetric, matrix that encodes the pairwise

Manhattan distances between them VTi,nj vectors:

DTi
[x, y] = Manhattan(VTi,nx

, VTi,ny
)

In order to account for all transformations during clus-

tering, a combined difference matrix includes the data

from eachTi ∈ T . EachDTi is normalized by di-

viding it’s element by the dimension ofLTi . Subse-

quently, the combined difference matrixD is created

by point-wise summing the normalized matrices:

D =
∑

Ti∈T

DTi

|LTi
|

Normalization allows each transformation to have

equal weight inD, even if the number of transfor-

mation sites differs by orders of magnitude between

transformations. Thus, a single transformation will not

dominate the combined difference score.

3.2 Performance Weighting

Compilers make a large number of transformation

decisions while compiling a program. The interac-

Training Input
Data A B C D baseline

A - 59.07 62.08 58.74 61.76
B 71.29 - 74.15 70.09 73.35
C 4.34 4.14 - 4.14 4.29
D 110.14 108.65 115.17 - 116.89

Table 1: Running-times (in seconds)

A B C D
A 0 86.55 91.11 90.05
B 86.55 0 9.38 0.06
C 91.11 9.38 0 9.14
D 90.05 0.06 9.14 0

Table 2: Difference matrixD

tions between these decisions is complex and can re-

sult in unexpected performance results. A single de-

cision may have a large impact on performance, while

many others may not make any measurable difference.

In order to take program performance into account,

and to attempt to filter out the inconsequential differ-

ences in transformation decisions, the elements of the

difference matrix are weighted by a pair-wise perfor-

mance factor. A running example will illustrate how

the weights are determined. Table 1 presents a small

set of actual execution times. The input names are

omitted for clarity since this example has no relation

to the results in§5. Each table row gives execution

times on the listed input. Each column indicates the

training input. Baseline indicates that PDF is not used.

Table 2 presentsD for the example inputs, using

data from the seven transformation discussed later in

§4. Training onA produces significantly different

transformation decisions than the other inputs, while

training onB or D results in nearly the same decisions.

The baseline program is run on each input ofW
to provide reference time measurements. Similarly,

each of the PDF-optimized programs are run onW,
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Training Input
Data A B C D log(tbl,v)

A - 0.96 1.01 0.95 4.12
B 0.97 - 1.01 0.96 4.30
C 1.01 0.97 - 0.97 1.46
D 0.94 0.93 0.99 - 4.76

LNP 0.96 0.94 1.00 0.96
Table 3: Normalized run-time (tu,v/tbl,v), log-weights
(log(tbl,v)), and LNP values

excluding the training input for that program. A log-

weighted normalized workload running time is calcu-

lated for each copy of the program. Given two inputs

u, v ∈ W with u 6= v, let tu,v be the average run-

ning time of the program trained on inputu executing

using inputv. tbl,v denotes the baseline running time

for input v. For example, the value oftB,D in Table 1

is 108.65s. A log-weighted normalized performance

(LNP) vector summarizes the workload performance

for each training inputu inW:

LNP [u] =

∑
v∈W,v 6=u

(
tu,v

tbl,v
× log(tbl,v)

)
∑

v∈W,v 6=u log(tbl,v)

Workload performance should be a weighted av-

erage, such that the weight assigned to relative per-

formance compared to the baseline on any individual

input is in relation to the execution time of that in-

put. Furthermore, the performance measure should

follow a cross-validation methodology, as discussed

by Berube and Amaral [3]. Thus,LNP [u] excludes

values where the training and evaluation input are the

same. In the situation of acquiring many inputs from

a client, there is no control over the running-times of

the inputs. Consequently, the execution times for var-

ious inputs may vary significantly. A long-running

input should not unduly influence the workload per-

A B C D
A 0 19.82 37.21 9.31
B 19.82 0 57.77 10.41
C 37.21 57.77 0 46.87
D 9.31 10.41 46.87 0

Table 4: Performance WeightPW (x1000)

A B C D
A 0 1.716 3.391 0.838
B 1.716 0 0.542 0.001
C 3.391 0.542 0 0.428
D 0.838 0.001 0.428 0

Table 5: Weighted difference matrixD

formance metric. Log-weighting addresses this issue,

while normalizing by the weights ensures comparabil-

ity between different LNP values. Table 3 shows each

execution time from Table 1 relative to the baseline

(tu,v/tbl,v), along withlog(tbl,v), to illustrate the log-

arithm’s effect on the weights.C still has a smaller

weight than the other inputs, but the other three inputs

are assigned similar weights, even though processing

inputD takes nearly twice as long as inputA. The final

LNP values are listed in the last row of Table 3.

The definition of LNP presumes that all runtimes

will be longer than 1 second. With shorter times,

adding 1 to each time keeps the logarithm positive.

LNP is used to calculate the performance

weight matrix PW , which is used to weigh the

transformation-vector differences between inputs in a

difference matrix. Weighing these differences based

on performance helps to identify when the differences

in transformation decisions impact program perfor-

mance, and filters out cases where different decisions

A B C D
A 3.39 1.86 0.00 2.55
B 1.68 3.39 2.85 3.39
C 0.00 2.85 3.39 2.96
D 2.55 3.39 2.96 3.39

Table 6: Similarity matrixS (Table 5)
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have little practical effect. Clustering requires a

symmetric matrix, thusPW must also be symmetric.

PW [x, y] =
max(LNP [x], LNP [y])
min(LNP [x], LNP [y])

− 1

As the difference between the LNP scores for a pair

of programs reduces to 0, so does the weight assigned

to their difference scores. Table 4 shows thePW ma-

trix for the example. The largestPW values corre-

spond toC, as expected. Unlike training onC, training

on the other inputs results in a performance improve-

ment. Therefore, some portion of the transformation

decisions the compiler made differently when using

C’s profile compared to the other profiles have a sig-

nificant (negative) impact on performance. Similarly,

the differences between the other inputs are less impor-

tant, but still impact performance. Complex interac-

tions between transformation decisions make inferring

the performance impact of any individual transforma-

tion difficult. Therefore, when individual transforma-

tions are investigated,DTi is not weighted byPW .

The combined difference matrixD is pointwise-

weighted byPW to generateD. For 0 < x ≤ m

and0 < y ≤ m:

D[x, y] = D[x, y]× PW [x, y]

D for the example is shown in Table 5. Consider the

columns for inputA in Table 2 and Table 5. When the

large, but fairly similar, differences inD are weighed

by PW to createD, A remains similar toD, but be-

come different thanC. This change indicates that while

both D andC had a similar number of transformation

differences when compared toA, the differences be-

tweenA andDhave less impact on performance.

Thus far, input similarity data has been presented in

a difference matrix. However, the clustering technique

requires a similarity matrix as input. As implied by

its name, a similarity matrix measures input similarity

rather than difference. Any difference matrixD can be

converted to a similarity matrixS by subtracting each

element ofD from the maximum element in theD.

For0 ≤ x < m and0 ≤ y < m:

M = max(D[x, y])

S[x, y] = M −D[x, y]

S denotes the similarity matrix forD. S for the

example is shown in Table 6. The lowest values in

the similarity matrix indicate that the strongest combi-

nation of transformation differences and performance

differences occur betweenA andC. In a manual study

this result would indicate that the decisions made by

the compiler using PDF from inputsA and C war-

rant closer examination. However, a complete anal-

ysis should consider the similarity between every pair

of inputs, which is what clustering provides.

3.3 Clustering

The goal of clustering is to group inputs to which

the compiler responds similarly. By comparing each

VTi,nk
, D leverages the expertise and experience built

into the compiler to indirectly identify which aspects

of the profiles are important. Therefore, clusteringS

will group inputs with similar important runtime be-

haviors together, as determined by the compiler.
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For clarity and simplicity, further discussion will

use a graph interpretation of matrices. Each data in-

put is a vertex in a complete, undirected graph. The

similarity matrixSTa for a transformationTa contains

the edge weights for the graph. Clustering can be inter-

preted as breaking the graph into several disconnected

maximal cliques by removing edges. The goal is to

maximize the sum of the weights on the remaining

edges. Unfortunately, the true maximum is not known,

making the choice of an upper bound against which to

judge a particular clustering problematic.

However, minimizing an error metric measuring the

dissimilarity in the graph after partitioning is simpler

and algorithmically convenient — zero is a known,

constant, lower bound on the minimum value of a sum

of edge weights. The error is calculated by applying

the partitioning of the similarity matrix to the corre-

sponding difference matrix.

A clusteringCTa,k = {P1,P2, . . . ,Pk} is a set of

k disjoint vertex partitions that covers the similarity

matrix STa . Each partitionPi{v1, v2, . . . , vn} is a set

of vertices fromSTa . GivenCTa,k and the difference

matrix DTa used to computeSTa , the clustering error

Mismatch(CTa,k, DTa) is defined as the sum of the

edge weights in all clusters ofCTa,k:

Mismatch(CTa,k, DTa
) =

∑
P∈CTa,k

 ∑
vi,vj∈P

DTa
[vi, vj ]


Mismatch is applicable to clusterings based on any

difference matrix:D, D, andDTa are all valid param-

eters, provided that the clustering usedS, S, or STa

respectively. For the combined matricesD or D, the

clustering will be denotedC or C, respectively.

3.4 ε-Greedy Spectral Clustering

A modified version of recursive 2-way spectral clus-

tering [13] is employed. Spectral clustering is conve-

nient because it relies entirely on the similarity matrix,

and does not use the raw vectors to recompute the sim-

ilarity matrix as the partitioning progresses. The stan-

dard formulation of spectral clustering presents two

methods to obtain the partitioning: recursive greedy 2-

way splitting, or a direct method using multiple eigen-

vectors of the similarity matrix. The direct method is

preferable in most cases because it is computationally

efficient and takes the desired number of clusters as an

input. However, to producek clusters, the similarity

matrix must havek distinct eigenvalues. The 2-way

partitioning must compute the eigenvectors for each

subpartition instead of just the eigenvectors of the full

similarity matrix. Furthermore, the 2-way partitioning

relies on a data-sensitive stopping criteria rather than

having direct control over the number of clusters.

Unfortunately, the direct method is unsuitable for

this study because anm × m similarity matrix fre-

quently does not havem distinct eigenvalues. There-

fore, we modify the 2-way partitioning method to pa-

rameterize the number of clusters generated, and miti-

gate the sub-optimality of a purely greedy algorithm.

As in the original formulation, cuts are selected in

a best-first order. Each cut splits one of the current

partitions in two. To select the best cut, a local sim-

ilarity matrix is created using the rows/columns of to

the nodes in the partition. The elements of the partition
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Algorithm 1 : ε-Greedy Spectral Clustering

C = randomPartitioning(S);1

for i ← 1 to N do2

Partition.length = 1;3

Partition[0] =W;4

while Partition.length< k do5

maxCutValue = 0;6

for i ← 0 to Partition.lengthdo7

if rand()< ε18

cut[i] = SpectralCut(Partition[i]);9

else10

cut[i] = RandomCut(Partition[i]);11

endif12

if cut[i].NcutValue> maxCutValue13

maxCutValue = cut[i].NcutValue;14

maxCut = i;15

endif16

end17

if rand()< ε218

p = Random(Partition.length);19

else20

p = maxCut;21

endif22

[partA,partB] = Partition[p].applyCut(cut[p]);23

Partition[p] = partA;24

Partition.add(partB);25

end26

if Mismatch(Partition, D) < Mismatch(C, D)27

C = Partition;28

endif29

end30

return C;31

are ordered by their projection onto the2nd eigenvec-

tor of the local similarity matrix. The partition is cut at

each point along the ordered list of partition elements,

and a cut value is determined. The cut corresponding

to the smallest cut value is selected.

Cut values are calculated using Ncut. Ncut solves

a relaxed version of the NP-Complete minimum cut

problem. Therefore, cuts that are selected based

on the Ncut value are not guaranteed to minimize

Mismatch. Moreover, greedy algorithms can result

in very sub-optimal solutions unless specific condi-

tions are met. For graph partitioning, a greedy al-

gorithm has no optimality guarantees. In particular,

when purely greedy 2-way partitioning is used, the

Mismatch does not always monotonically decrease

as the number of clusters increases.

Therefore, we employ the classic search technique

of injecting a random component to the greedy parti-

tioning, and then iterate the search. In this case, simu-

lated annealing is not appropriate because the solution

space is not smooth and has many local minima. We

use a fixed number of iterations with a constant prob-

ability of making a random choice in each iteration.

As shown in Algorithm 1, the clustering resultC is

initialized randomly (line 1). A fixed, pre-determined

number of iterations,N , are used to search for the best

clustering (line 2). Partition is a vector, thusParti-

tion.lengthis the number of partitions.

Each iteration of partitioning proceeds as follows:

Initially, Partition has a single partition containing ev-

ery vertex ofS (line 4). Two-way partitioning is then

iterated to producek partitions. In order to select

which of the Partition.length < k current parti-

tions to split, and how to split it, a cut is proposed for

each partition (lines 7-17), and the Ncut value recorded

(lines 9, 11). However, a random cut will be proposed

with probability ε1, and a greedy cut calculated by

spectral clustering with probability(1 − ε1) (line 8).

The partition with the lowest Ncut value is selected to

be cut with probabilityε2, while a random partition is

cut with probability(1 − ε2) (line 18). Applying the

selected cut (from line 9 or 11) creates two new parti-
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tions (line 23), which replace the split partition in the

Partition vector (lines 24,25). Partitioning continues

until there arek partitions. At this point, the Partition

object is one possiblek-clustering ofS.

Mismatch(Partition,D) is calculated at the end of

each partitioning. IfMismatch for Partition is less

than the previous best clustering, the clustering result

is updated (line 27). AfterN the iterations of partition-

ing are complete, the best clustering,C, is reported.

3.5 CrossError: Comparing Clusterings

When both the compiler and the application are

evolving, how often should the input clustering be re-

computed? The more significant the gradual changes

due to development work are on the clustering, the

more frequently the clustering process should be re-

peated to ensure that the clustering remains relevant.

Furthermore, if a transformationTi generates cluster-

ing results that are representative of several transfor-

mations, then generating transformation vectors only

for Ti can reduce compilation time and save time and

effort invested by developers into analyzing and inter-

preting clustering data. To address both of these issues,

the clustering methodology must provide a measure of

clustering similarity based on different data-sets.

The clustering similarity measure cannot simply

compare error curves or cluster members. Compar-

ing error curves is only useful for different clustering

methods using the same data. Different data sets are

not equally difficult to cluster — a goodk-clustering of

one data set may also be a goodk-clustering of another

data set, even if theMismatchs are different. Com-

paring the members of the resulting clusters may be

more informative, but does not indicate the importance

of the observed differences. Several near-optimal clus-

terings may exist, with cluster composition differing

only for (possibly many) insignificant elements. We

propose a novel metric,CrossError, to allow quan-

titative clustering comparison.

CrossError requires that each matrix contain the

same amount of potential error, so that allMismatch

measurements share the same range. Transformation

vector dimensions depend on the transformation, the

compiler, and the program, leading to different ranges

of possible Manhattan distances. The original matri-

ces result in error values without context, which are

both incomparable and difficult to interpret. Therefore,

each similarity matrix is normalized by dividing it by

the sum of it’s elements:

S̃[x, y] =
S[x, y]
sum(S)

Normalization makes each edge weight proportional

to the total weight in the graph. Consequently,

Mismatch andCrossError values are a percent of

the total possible error, a more intuitive metric that

enables comparisons between error values. Cluster-

ing uses relative edge weights and is not influenced

by this uniform scaling. Henceforth, normalization al-

ways precedes clustering, but we omit theS̃ symbol to

streamline the notation.

The CrossError metric quantitatively measures

the differences between twok-clusterings of the

same workload, using different edge weights. If the

CrossError is low, one similarity matrix, and con-
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sequently the clustering based on that matrix, may be

representative of the other.

Given code transformationsTa and Tb, with dif-

ference matricesDTa andDTb
, and their clusterings

CTa,k and CTb,k, the CrossError metric is com-

puted:

CrossError(CTa,k/CTb,k, DTb
) =

Mismatch(CTa,k, DTb
)−Mismatch(CTb,k, DTb

)

CrossError evaluatesCTa,k using CTb,k as a

baseline. If CTb,k is an optimal clustering of

STb
, then Mismatch(CTb,k, DTb

) is the mini-

mum error forDTb
and Mismatch(CTa,k, DTb

) ≥

Mismatch(CTb,k, DTb
). Assuming effective cluster-

ing,CTb,k estimates the minimum error forDTb
, which

is a property ofDTb
andk only that is invariant with re-

spect to the clustering. Thus,CrossError measures

(or estimates, for sub-optimal clustering) theextraer-

ror incurred by using the alternate clusteringCTa,k.

ConsiderMismatch over the range ofk. For small

k, clustering separates the greatest differences inD.

As k increases, less significant differences are sepa-

rated until each partition contains identical elements.

Therefore, regardless ofk, if CTa,k is a good clustering

of STb
, CrossError(CTa,k/CTb,k, DTb

) will be low,

implying that Ta provides input similarity data that

is representative of the input similarity data provided

by Tb. The curve forCrossError(CTa,k/CTb,k, DTb
)

over the range ofk provides a quantitative measure of

the strength of the representativeness relationship.

CrossError is not symmetric. As such, ifTa is

judged to be representative ofTb, the reciprocal rela-

tionship is not implied. For example, transformation

Tb might have little impact on the program, and conse-

quently expose few differences between inputs.

Alternately,CrossError can be used to compare

clusterings for similar programs.2 In this case, the

transformationTa and workloadW are held fixed, and

the programsp andq are compared:

CrossError(Cp
Ta,k/Cq

Ta,k, Dq
Ta

) =

Mismatch(Cp
Ta,k, Dq

Ta
)−Mismatch(Cq

Ta,k, Dq
Ta

)

4. Experimental Design

We investigate workload clustering for a range of

programs. Clustering is performed for both individual

transformations and combined multi-transformation

data. These clusterings are analyzed to identify the

impact of performance filtering, the correlations be-

tween transformations and the significance of the

input-processing source code on input similarity.

All programs are compiled using a development

snapshot of the IBM XL 8.0 compiler that is instru-

mented to output transformation vectors. Performance

evaluation is performed using a dedicated machine

running AIX on a POWER4 processor. Five runs are

used for each program on each input, and the average

of these runs is used astni when calculatingLNPn.

All experiments are performed usinggzip ,

bzip2 , VPR, crafty , MCF, and GAP from the

SPEC CPU2000 suite, as well asgcc from the SPEC

2A practical use for such comparison is to evaluate if two ver-
sions of the same program produce similar clustering of inputs.
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CPU2006 suite [14].VPRperforms two digital design

tasks, logic placement and circuit routing, which take

different input files and exercise different portions of

the code. Therefore,VPRis used for these two tasks

separately and identified as vpr.place and vpr.route.

Each program uses a workload of inputs. The pro-

vided inputs from both CPU2000 and CPU2006 are

used when possible (MCF, bzip2 , and gcc ). Fur-

thermore, the CPU2000 program workloads are aug-

mented with inputs made available by Berube and

Amaral [1]. Thegcc workload is augmented with

source code from the CPU2000 benchmark programs

gzip , mesa, parser , and twolf . Gzip and

bzip2 use a common workload that is the union of

their available inputs.

4.1 Transformations

During the training process, transformation vectors

are collected for the transformations that are the pri-

mary consumers of profile information. Inlining and

loop transformations use profile information to or-

der the transformation opportunities by expected prof-

itability (i.e., hottest first). The following transforma-

tions are instrumented:

Early Inlining Inlining at the beginning of the opti-

mization phase focused on removing calls to small

functions to enable subsequent transformations.

Late Inlining Inlining after other high-level trans-

formations such as loop nest optimizations and

function-pointer specialization, focused on remov-

ing function call overhead.

Loop Unrolling The loop unrolling factor is based

on the number of memory streams identified in

the loop, the number of hardware-supported mem-

ory streams, and the number of instructions in the

unrolled loop. Ideally, unrolling should activate

all the hardware memory stream prefetching units

without overflowing the instruction cache.

Loop Unroll-and-Jam Loop unrolling, loop peeling

and loop fusion for the inner loops in loop nests, to

create perfectly-nested loops.

Specialization transformations use value profiling

to replicate code segments, replacing the use of vari-

ables with constants. A test ensures that the run-time

variable value matches the specialized value:

Memory Allocation Specialization Memory alloca-

tion library calls with variable memory block

sizes are specialized with a constant memory size.

These specialized allocations use a pooled memory

allocator that increases the spatial locality of mem-

ory accesses and reduces the overhead of memory

allocation and deallocation.

Function-Pointer Specialization Indirect function

calls are converted to direct function calls. Re-

moving indirection enables other transformations,

e.g., inlining. Furthermore, function call overhead

is reduced on architectures where a branch and

direct call is less expensive than an indirect call.

Value Specialization Integer division and modulus

operations with a variable denominator are re-

placed with constant-denominator versions for fre-

quently observed denominator values. Constant

denominators allow for the generation of more ef-
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ficient code using various architecture-dependent

instruction-level transformations.

4.2 Clustering Comparison

ε-Greedy clustering is performed using a variety of

similarity matrices:

• Each transformation from§4.1, individually, with-

out performance-weighting. The clusterings for a

transformationTa is referred to asCTa .

• The combined, performance-weighted similarity

matrixS, as discussed in§3.2. The clustering gen-

erated fromS is referred to asC.

• The combined, but not performance-weighted,

similarity matrix S produced directly fromD.

These clusterings are referred to asC.

Clusterings are compared in several ways. These

comparisons are not intended to support strong claims

about particular transformations, benchmark pro-

grams, or data inputs. Rather, they serve as single-

point case studies that illustrate the types of ques-

tions that cluster comparison can help answer. Three

variables that influence clustering results are investi-

gated:

Performance Performance-weighting usingPW

serves as a filter to remove the impact of trans-

formation decisions that are distinct but yet have

little impact on program running time. Comparing

the clustering with and without performance

weighting indicates the impact of this filtering.

Transformations Clustering based on one trans-

formation may predict the clustering based on

another, particularly if the transformations are

closely related. If the clustering forTb can be pre-

dicted by the clustering forTa, thenTb could be

omitted from the analysis.

Algorithms Bzip2 and gzip share an identical

workload, but are very different algorithms. Com-

paring the clusterings for the two programs sug-

gests the degree to which input similarity can be

considered independently of the code processing

the input. This information may be significant

when using a reduced workload for evaluation in

the case of rapid program development with fre-

quent and significant code changes.

5. Results

Reliable clustering depends on setting the clustering

algorithm parameters to appropriate values. Once the

ε-greedy clusterer has been tuned3, the workload for

each benchmark program is clustered for each trans-

formation listed in§4.1, along with the combined ma-

tricesD andD, for each possible number of clusters.

5.1 Impact of Performance Weighting

Section 3.2 justified the use of performance weight-

ing as a means of taking program performance into ac-

count when clustering inputs. Compiler decisions that

have a larger impact on the program’s performance

should be given more weight when clustering inputs

than decisions that have little effect on performance.

But does performance weighting change the resulting

input clusters? Comparing theCrossError between

3In this study,ε1 = ε2 = 0.5, N = 1000
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Figure 1: Comparison ofCrossError using weighted (D)
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unweighted and weighted clusters should answer this

question. The results in Figure 1 are typical of this

comparison:D andD are, respectively, the weighted

and unweighted combined difference matrices for the

seven transformations described in§4.1 for gcc , and

C andC are their corresponding clusterings.

CrossError(C/C,D) evaluates the weighted

clustering with the unweighted difference matrix.

As illustrated by the evaluation ofgcc in Fig-

ure 1, an unweighted clusteringC evaluated with a

weighted difference matrixD generally results in less

CrossError than C evaluated withD. This result

indicates thatD is more representative ofD than vice-

versa. Thus, in this case, performance-weighting fil-

ters out performance-irrelevant differences in the data

that would otherwise influence the clustering. The

additional error under theCrossError curves illus-

trates thatD is not a scaled version ofD; in that case,

the clustering results would be equivalent, and both

CrossError curves would be near 0. Instead, the

performance-weighting has changed which pairs of in-
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Figure 2: Clustering error using the early-inlining and late-
inlining clusterings fromVPRrouting

puts are most similar or most different from each other,

thus changing the clustering in a meaningful way.

5.2 Impact of Different Transformations

Section 4.2 discussed the possibility that several

code transformations in the compiler could yield simi-

lar clusterings, and thus some of these transformations

could be eliminated from future input clusterings. This

section illustrates how to evaluate the similarity of two

transformations in relation to the clustering of inputs.

We generatedCrossError graphs for each possi-

ble pairing of clusterings from the 7 transformations

listed in §4.1 plus the combined matricesD andD,

for each of the 7 benchmark programs. Careful exam-

ination of these 252 graphs suggests that transforma-

tions are generally not representative of others. Fur-

thermore, the combined matrices tend not to be good

representatives of any individual transformation, nor is

any single transformation representative of either com-

bined case. The greatest correlation exists between the

two inlining transformations, but even in this case, the

correlation is usually not very strong.
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The Mismatch between a clustering, such as

CEarly, and its corresponding difference matrix,

DEarly, is a measurement of the differences that

exist within nodes that are clustered together in

CEarly. Figure 2 plotsMismatch(CEarly, DEarly)

and Mismatch(CLate, DLate) as a function of the

number of clustersk for theVPRrouting benchmark.

This plot is typical of such curves between early in-

lining and late inlining for most benchmarks. As the

plot shows, while four clusters are sufficient to sepa-

rate virtually all the differences between inputs with

respect to early inlining, theMismatch curve for late

inlining has a long tail, indicating that many more dif-

ferences exist amongst the inputs when late inlining is

considered. Thus, early inlining would be a poor rep-

resentative of late inlining.

Figure 2 also plots theCrossError curves that

evaluate how well the clustering based on late in-

lining, CLate, represents that data in the early

inlining difference matrix DEarly and vice-versa.

CrossError(CEarly/CLate, DLate) stays level in the

3%-3.5% range from 4 clusters to 11 clusters. Over

this range, CrossError is on average 97% of

Mismatch, indicating that applyingCEarly to the late

inlining data results in about twice as much error than

using CLate. The levelCrossError curve through

this range indicates that even with additional clusters,

early inlining does not provide any information to en-

able the extra clusters to better separate the inputs.

On the other hand, since late inlining has more in-

formation regarding input dissimilarity, it could be the

case that this information is a superset of the infor-

mation provided by early inlining. However, from

4 to 8 clusters,CrossError(CLate/CEarly, DEarly)

tracks just belowMismatch(Clate, DLate). Even

at 8 clusters, theCrossError is only slightly less

thanMismatch(Clate, DLate) at 3 clusters. The late-

inlining clustering does not separate the few differ-

ences that do exist in the early-inlining data. There-

fore, in this case, late inlining is not a good representa-

tive of early inlining, despite the conceptual similarity

of the transformations. We observed similar patterns

between early and late inlining for most benchmarks.

An alternate way to try to establish the correlation

between the two inlining transformations would be to

take each pair of inputs as a data point and use the

early-inlining Manhattan distance between the inputs

for one axis and their late-inlining Manhattan distance

for the other axis. The coefficient of correlation cal-

culated this way is 0.99, which would indicate a very

high degree of correlation in the data. The high coef-

ficient of correlation can be attributed to data points

falling into two clusters, with one cluster occurring

very far from the others. Consequently, at the scale

of the data, the clusters become two points and dis-

play a linear relationship. However, looking at each

of the two groups of data individually, the data does

not exhibit any linear or recognizable non-linear rela-

tionship. A systematic study of the same form of data

across all transformation pairings and all programs

suggests that the coefficient of correlation is usually

not a good indicator of a representativeness relation-
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ship between a pair of transformations.

5.3 Input Similarities for Different Programs

If two application programsp and q can use the

same set of training inputs — such is the case, for in-

stance, when the application is a compiler, a translator,

or a data compressing program — then it may be in-

teresting to find out if the clustering generated forp

is also a good clustering forq. A more practical use

of this evaluation is ifp andq are two versions of the

same program.

As a case study, we useBzip2 and gzip , two

data compression programs that use different compres-

sion algorithms. The workload of inputs consists of

the SPEC2000 and SPEC2006 inputs forbzip2 , the

SPEC2000 inputs forgzip , and the additional in-

puts [1]. When different inputs with the same name

exist in the two SPEC benchmark suites, 2000 or 2k6

is appended to the name as appropriate. Many of the

input names clearly indicate the file format of the data

(*jpeg, compressed, html, mp3, mpeg, random, pdf,

xml). Of the rest, gap and program are compiled pro-

grams; source is a tarball of source code; log and

reuters are ASCII text documents; graphic is a TIFF

image; combined contains parts of various other SPEC

inputs; and docs is a tarball of documents from various

office-application suites. Baseline refers to the case

without PDF. Table 7 shows clusters for the two pro-

grams using the combined similarity matrix.Bzip2 ’s

first clustering with less than 2% error occurs with 6

clusters; this same condition is met with 4 clusters for

gzip . The clusters are arranged horizontally by sim-

ilarity, with each distinct input in a row of clusters on

a separate line. When the transformation from 4 to 6

clusters splits a cluster, the new cluster is listed verti-

cally adjacent to the cluster it was split from.

5.3.1 Selecting a Good Clustering

Comparing the two clusterings forgzip in Table 7,

the two largest clusters are split in the transition from

4 to 6 clusters. Cluster 5 is split to create cluster 6, and

cluster 7 is split to create cluster 8. However, this is

not the case withbzip2 . The largest cluster, cluster

7, remains unchanged, while the combined2k6 input is

split out to it’s own cluster from cluster 5. Addition-

ally, 2 of the 5 inputs in cluster 9 are split off to create

cluster 10.

The Mismatch error metric generally encourages

splitting large clusters, since this action removes the

most edges from the graph. However, when the edge

weights are not similar, the benefit of splitting smaller

clusters or splitting a cluster into unequally-sized parts

increases. In the case ofgzip , the edge weights are

likely all of similar value. By splitting the two largest

clusters,9 × 5 + 3 × 4 = 57 edges are removed, and

the error is reduced from 0.66% to 0.16% of total er-

ror. Therefore, given the low error and the behavior

of subsequent clustering, it is reasonable to conclude

that similar inputs are grouped together forgzip by 4

clusters. In fact, checking the difference matrix shows

that thegap input and baseline compilation are the

major points of difference forgzip . Baseline com-

pilation is expected to be significantly different than

PDF compilation, since the compiler has far less data
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Data gzip bzip2
Clusters 4 6 4 6
Error 0.66 0.16 6.25 1.71

1 baseline baseline
2 xml xml
3 gap gap
4 combined2k6
5 byoudoin-jpg byoudoin-jpg byoudoin-jpg byoudoin-jpg

chicken-jpg chicken-jpg chicken-jpg chicken-jpg
compressed compressed compressed
dryer-jpg dryer-jpg dryer-jpg
liberty-jpg liberty-jpg

combined2k6
graphic
mpeg mpeg mpeg

jpeg jpeg
program2000 program2000

6 compressed
dryer-jpg
graphic
mpeg

7 combined2k6 combined2k6
docs

gap gap
html html html html
jpeg
log log log log
mp3 mp3 mp3
pdf pdf pdf
program2000 program2000
program2k6 program2k6 program2k6
random random
reuters reuters reuters reuters
source2000 source2000 source2000 source2000
source2k6 source2k6 source2k6 source2k6
xml

8 docs
jpeg
mp3
pdf
program2k6

9 docs docs
graphic graphic
liberty-jpg
random random
baseline

10 liberty-jpg
baseline

Table 7: Clusterings for the combinedbzip2 andgzip matrices
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on which to base transformation decisions, and per-

forms some transformations differently without PDF

data. Consequently, only very small training inputs

(e.g., SPEC test inputs) that do not exercise the major-

ity of the program code would be expected to share

similarity with the baseline. Once these two points

have been split off into separate clusters, clustering er-

ror is 3.21% of total error. Nonetheless, the 4-cluster

result is likely a better basis for workload reduction

than the 3-cluster result because the reduction in error

is still proportionally large (error is reduced by 80%).

On the other hand, the additional partitioning from

4 to 6 clusters forbzip2 removes only7 + 6 = 13

edges, but reduces error from 6.25% to 1.71% of to-

tal error. From the error value and partitioning behav-

ior, it is difficult to evaluate the quality of the cluster-

ing. Even at 6 clusters, the inputs forbzip2 may not

be sufficiently partitioned. Error is slowly reduced as

more clusters are created, and the partitioning never

clearly converges to largest-cluster splitting. For ex-

ample, cluster 7 remains unchanged until it is split to

form the9th cluster (error at that point is still 0.70).

When have the significant differences between in-

puts been accounted for, and when has over-clustering

begun? How can a good number of clusters be se-

lected? When the answers to these questions are not

clear, a compiler designer should consult more than

the final clustering results to make a decision as to how

many clusters represents a “good” clustering. First, the

similarity (or difference) matrix shows quantitatively

how similar the inputs are to each other. Table 8 and
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Figure 3: Mismatch and CrossError using the com-
bined matrix ofbzip2 andgzip

Table 9 show the difference matrix for clusters 5 and

7 of the 4-cluster partitioning ofbzip2 , respectively.

These tables contain only the upper-triangular section

of the symmetric matrix to improve the clarity of data

presentation. Thecombined2k6 input in cluster 5

is significantly different from the other inputs in that

cluster, so it should be split off into it’s own cluster.

However, the inputs in cluster 7 are all quite similar to

each other, and further partitioning of these inputs is

probably not necessary. Therefore, the 5-cluster par-

titioning (wherecombined2k6 is split off) provides

the desired result. In the case where the combined dif-

ference matrix does not present strong evidence, the

difference matrices of the individual transformations

may be consulted. Finally, investigating the individual

transformations that differ in the transformation vec-

tors may not only provide important information on

how much inputs differ from each other, but also offer

clues about why those differences occur.
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Table 9: Difference matrix of cluster 7 in Table 7 for the 4-cluster partitioning ofbzip2

5.3.2 Clustering Comparison

There are several common sets of inputs between the

bzip2 andgzip clusterings:bzip2 clusters 4 and 5

both overlapgzip cluster 5, andbzip2 cluster 6 has

6 members in common withgzip cluster 6. However,

in all cases, these partially-overlapping clusters have

several members that are not common between the

two programs. CrossError provides a mechanism

to evaluate the significance of the similarities (and dif-

ferences) between these alternate clusterings. Figure 3

shows theMismatch curves for both programs, along

with the correspondingCrossError curves. Recall

thatCrossError measures the amount ofadditional

error incurred by using an alternate clustering.

By 5 clusters, theMismatch for both programs

is near the minimum error. Furthermore, as dis-

cussed above, 5 clusters provides a good clustering

for both programs. However, at the same point, the

CrossError for both programs is more than 18%.

Furthermore, even as the number of clusters increases,

theCrossErrors reduce slowly. This evidence indi-

cates that, from the compiler’s perspective, input sim-

ilarity cannot be adequately measured outside of the

context of the program processing the inputs.

6. Conclusion

PDF is an important tool for minimizing program

execution time. Unfortunately, the standard practice

of PDF can be sensitive to input diversity, and thus
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a cross-validation strategy is require for performance

evaluation. However, selecting an appropriate work-

load for cross-validation is challenging: The workload

must cover all the important aspects of the program,

while also minimizing the number of inputs in the

workload. This paper illustrates a clustering technique

to select this small subset of inputs from the large num-

ber of inputs available to a compiler designer. A sim-

ilarity matrix is constructed from transformation vec-

tors, information extracted directly from the compiler

regarding differences between inputs. This matrix

is weighted by a cross-validation based performance

metric in order to filter out those differences that do

not impact performance. Once the workload has been

clustered, theMismatch curve presents a quantitative

measure of the tradeoff between how many inputs are

selected and how representative these inputs are of the

full workload. Finally,CrossError provides a means

to investigate correlations between transformations.

Rather than developing a case study for a single ap-

plication with a large workload, this study explores the

proposed techniques across a range of standard bench-

mark programs with moderately sized workloads. The

variety of programs used provides an environment

where the generality of the proposed methodology can

be tested, and trends may be observed in transforma-

tion correlations. Furthermore, since the benchmark

programs and several of the inputs are well-known by

compiler researchers and developers, this work is more

accessible than a study using a program encumbered

by proprietary source code and confidential data.
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