
University of Alberta

Library Release Form

Name of Author: Ilya Levner

Title of Thesis: Data Driven Object Segmentation

Degree: Doctor of Philosophy

Year this Degree Granted: 2009

Permission is hereby granted to the University of Alberta Library to reproduce sin-
gle copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Ilya Levner

Date:

If you torture the data long enough,
eventually it will confess to anything

–Anonymous

University of Alberta

DATA DRIVEN OBJECT SEGMENTATION

by

Ilya Levner

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful-
fillment of the requirements for the degree of Doctor of Philosophy

Department of Computer Science

Edmonton, Alberta
Spring 2009

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled Data Driven Object
Segmentation submitted by Ilya Levner in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Dr. Russell Greiner
Co-Supervisor

Dr. Hong Zhang
Co-Supervisor

Dr. Walter Bischof

Dr. Nilanjan Ray

Dr. Mrinal Mandal

Dr. Yoshua Benjio
External Examiner

Date:

Abstract

In recent decades, learning has emerged as the quintessential component of both bi-

ological and artificial vision systems. This thesis develops machine learning meth-

ods to address the problem of object segmentation, whereby the goal is to separate

objects of a specific class from the background and each other. To solve this task

we propose the Data Driven Region Growing framework, which utilizes three ma-

chine learned mappings to identify: (a) foreground regions, (b) object boundaries,

and (c) object markers/seeds. The three pixel maps are subsequently used within

the region growing framework to delineate individual target objects. The second

part of the thesis focuses on machine learning approaches for automated feature ex-

traction and regression methods used to learn the three aforementioned mappings.

In contrast to classical algorithms, which attempt to label individual pixels, we ar-

gue that algorithms should utilize higher order reasoning and label whole image

neighborhoods. To demonstrate the concept, we present several algorithms based

on decomposing the ground truth in a manner analogous to feature extraction. Us-

ing greedy layer-wise learning approach, a deep convolutional neural network can

be trained to automatically extract relevant input image features and utilize them

to produce output patches in a fully automated manner. By using deep neural net-

works utilizing the concept of output decomposition and in conjunction with region

growing methods, a state-of-the-art object segmentation system can be constructed

with minimal input from software engineers and domain experts.

Acknowledgements

Thesis writing is inherently a solitary endeavor. Yet I cannot help remembering

the numerous people who have helped, guided and supported me throughout these

years. First and foremost, this thesis would not have been possible without the

guidance and support of my supervisors, Russell Greiner and Hong Zhang, who

have patiently helped me shape my critical thinking and research skills. Walter

Bischof introduced me to the fascinating area of computational neuroscience, which

has never stopped being a source of inspiration for my work. I owe a loving debt of

gratitude to my wife Ekaterina Levner. Her patience and support has made graduate

studies an incredible journey. Watching my children, Andrew and Victoria, grow

has been the joy of my life and a great inspiration for my work. I would also

like to thank my parents for endowing me with a solid foundation as well as their

unwavering belief in my abilities. Deepest thanks go out to Mark Pollack and David

Laing for helping us run OSA. Likewise, we are grateful to Yury Potapovich for

helping us run the WipFrag system. We are grateful to Li Cheng and Terry Caelli for

providing the Forestry Images and the corresponding ground truth. This research is

supported in part by National Science Research Council, Alberta Ingenuity Fund,

iCORE, Killam Fund, and the University of Alberta.

Contents

1 Introduction 1
1.1 Problem Formulation . 2
1.2 Manually Coded Systems . 2
1.3 Machine Learned Systems . 4

1.3.1 Feature Extraction . 6
1.4 Data Driven Region Growing . 7
1.5 Thesis Statement . 7
1.6 Thesis Outline . 7

2 Data Driven Region Growing 9
2.1 Digital Image Representation . 10

2.1.1 Graph Theory . 10
2.1.2 Regular/Digital Lattices 10

2.2 Image Segmentation . 12
2.2.1 Edge Based Methods . 12
2.2.2 Thresholding and Histogram Based Methods 13
2.2.3 Region Based Methods . 14
2.2.4 General Region Growing 16

2.3 Object Segmentation . 19
2.3.1 Data Driven Region Growing 21

3 Learning to Label 27
3.1 Pixel Classification . 28
3.2 Learning Classifiers . 30
3.3 Neural Networks . 31

3.3.1 Regularization Techniques 33
3.3.2 Cascade Correlation . 34

3.4 Model Fusion . 35
3.4.1 Generalized Pixel Labeling 35
3.4.2 Stacked Generalization . 36
3.4.3 Heterogeneous Stacking 36

3.5 Random Field Methods . 39

4 Automated Feature Extraction and Relevant Applications 41
4.1 Neighborhood Analysis . 42
4.2 Linear Algebra, SVD and Eigenvalue Decomposition 42
4.3 Principal Component Analysis (PCA) 43

4.3.1 Linear Autoencoders . 44
4.4 Independent Component Analysis (ICA) 45

4.4.1 Convolutional Encoding/Decoding of Images 48
4.4.2 ICA based Neural Networks 50
4.4.3 Sparse Code Shrinkage for (Image) Denoising 51
4.4.4 ICA for Feature Extraction from Color and Stereo Images . 53
4.4.5 ICA for Regression . 53

4.5 Autoencoders and Non-Linear PCA 55
4.5.1 Diabolo Networks - Discriminative Autoencoders 57
4.5.2 Deep Greedy Layer-wise Learning 58

4.6 Convolutional Networks . 61
4.6.1 Neocognitron . 62
4.6.2 LeNet . 64

4.7 High Order Random Fields
for image analysis and denoising 66

5 From Pixels To Patches To Structures 69
5.1 Output Decomposition . 70

5.1.1 From pixel labeling to structure labeling 70
5.1.2 Output Decomposition based Mixture-of-Experts 71

5.2 A Unifying Perspective for Generative Learning 75
5.3 A Unified View for Discriminative Learning 77
5.4 Stacked Convolutional Regression Networks 80

5.4.1 Network Growth and Training 80
5.4.2 Online Inference . 82

6 Experimental Results 84
6.1 Classification Driven Watershed Segmentation 85

6.1.1 Feature Extraction . 85
6.1.2 Experimental Procedure 88
6.1.3 Experiment 1 . 88
6.1.4 Experiment 2 . 89
6.1.5 Experiment 3 - Color Image Segmentation 92

6.2 Heterogeneous Stacking and ICA for Classification Driven Water-
shed Segmentation, [76] . 94

6.2.1 Experimental Procedure 94
6.2.2 Experiment 1 . 95
6.2.3 Experiment 2 . 97

6.3 Output Decomposition Mixture of Experts 100
6.3.1 Results . 100

6.4 Stacked Convolutional Regression (SCR) 103
6.4.1 Experiment 1 . 103
6.4.2 Experiment 2 . 108
6.4.3 Experiment 3 . 111
6.4.4 Large Scale Experiments 113
6.4.5 Aerial Forest Images Revisited 115
6.4.6 Post Processing Revisited 117

6.5 Discussion . 118

7 Conclusion 120
7.1 Summary . 121
7.2 Contributions . 122
7.3 Related and Future Research Directions 122

7.3.1 Convolutional Networks 123
7.3.2 Adaptive Processing . 124

7.4 Final Thoughts . 124

A Oil Sand Ore Granulometry 133

B Forest Inventory Building (from [73]) 135
B.1 Special Purpose Forestry Systems 135
B.2 Machine Learning Approaches . 136

C Evaluation Criteria 138

Chapter 1

Introduction

1

1.1 Problem Formulation
Computer based image understanding (IU) is commonly defined as the automa-
tion of a visual task typically done by a human expert. Given an input image, the
goal is to produce an image interpretation with respect to a specific task. In turn,
each specific task forms what is called a domain. This research explores a partic-
ular subtask within IU, namely object segmentation. Given an input image I , we
aim to label pixels corresponding to objects of interest and additionally, we aim
to coalesce individual pixels into connected components corresponding to individ-
ual objects within a given image. Figure 1.1 on p. 3 presents input, I , and desired
output, L images for two different domains. To simplify matters we will concern
ourselves with binary interpretations where a given pixel I(i, j) either belongs to
a target object, L(i, j) = 1, or is part of the background L(i, j) = 0. Once pixels
have been labeled they can be grouped (or clustered) into individual objects. From
there on, parameters of interest can be extracted from individual objects. For exam-
ple, within the forestry domain, groups of individual pixels represent tree canopies.
Once tree canopies have been identified, we can use the canopy shape and area to
automatically infer the width, height, age, and wood volume of the specific tree.
Clearly, without a good initial object segmentation, tree parameters extracted from
erroneous canopy groupings will not approximate actual (physically measured) tree
parameters.

The primary focus of this thesis is therefore, the development of a fully auto-
mated learning framework capable of producing object segmentation systems that
accurately separate objects of interest from the background and each other, in a
wide range of domains.

1.2 Manually Coded Systems
In general, image understanding can be approached in several ways. The traditional
way of building an image interpretation system is through manual design and de-
velopment, whereby for each domain of interest a team of domain and computer
vision experts hand-code a system to produce the necessary image labeling, pixel
grouping and parameter extraction algorithms. Unfortunately, the last three decades
of research produced few successful hand-engineered systems capable of working
in non-trivial domains. The problem is due to the vast range of conditions present
within input images. For example, in the domain of forestry, image variations re-
sult from variable sun and camera angles, seasonal changes, weather conditions,
and many other uncontrollable factors. These image variations require that the im-
age interpretation algorithms be extremely flexible and robust. To accomplish this
feat, the manual engineering process must explicitly take into account all possi-

2

Figure 1.1: Examples of basic image interpretation. Each row corresponds to a
different domain, with their own objects of interest. Left: Input Images Right: De-
sired pixel labeling, where green (see the pdf color version of this document) labels
denote pixels belonging to objects of interest. I.e., L(i, j) = (0, 255, 0) instead of
1. Top: Color image of a forest plantation. The desired objects of interest are
the spruce trees (green), aspen(red), and shadow (blue). Appendix B provides an
overview of this domain. Bottom: Ore conveyor belt. The desired objects of inter-
est are lumps of ore bigger that a specific size. Appendix A provides an overview
of this domain.

3

ble variations that may be encountered during field operation [42, 85, 28]. This is
a painstaking, tedious, and almost always heuristically guided process, which can
take months or even years (see [27] for an in-depth discussion). To circumvent this
problem, research has turned towards machine learning techniques (e.g., [80, 25]) in
order to automate the system development process and (ideally) to improve online
performance.

1.3 Machine Learned Systems
This thesis primarily focuses on supervised machine learning approaches for pixel
labeling (and the subsequent grouping of pixels into objects). Such approaches
require a training set composed of images and corresponding pixel labels. We de-
note this training test as D = {(Ik,Lk)}nk=1, where I is the input image, L is
the corresponding image labeling with L(i, j) ∈ {0, 1} being the label for a pixel
I(i, j) ∈ [0, 1], and k is the number of training pairs (I,L).

The simplest approach is to use the training data D in an attempt to induce
(i.e., learn) a pixel labeling function1 h : I(i, j) 7→ L(i, j), which takes as input
an image pixel (a scalar for grayscale and binary images or a vector in the case of
multi-spectral images). Unfortunately, this approach implicitly assumes that pix-
els are independent of one another. To the contrary, in most domains of interest,
including those depicted in Figure 1.1, pixels exhibit local interactions with neigh-
boring pixels. To generalize the pixel level machine learning approach to this, more
realistic setting more than single pixel attributes need to be examined.

To improve the situation, a feature extraction function, fI (i, j), is typically
utilized, that provides relevant information about pixel I(i, j). This function can,
for example extract: intensity value information from neighboring pixels, multi-
spectral and/or multi-resolution information, and/or other information relevant to
classifying a pixel I(i, j) as L(i, j). Once the feature extraction function f(·) has
been specified, the goal is, therefore, as follows. Given a training set D, a machine
learning algorithm A, and a feature extraction function f , learn a mapping h:

h : fI (i, j)
A{D}7→ L(i, j) (1.1)

induced by the learning algorithm A over the training set D.
1In this dissertation we modify the typical notation for function definition

〈function Name〉 : 〈Domain〉 7→ 〈Range〉

to denote the name of the model, the input type and producing the output type:

〈model Name〉 : 〈input Type〉 7→ 〈output Type〉

.

4

Another way to produce L, is to attempt learning a direct mapping h : I 7→ L.
That is, the input to the machine learning algorithm would be the entire image I
and the desired output would be the entire image labelingL. Unfortunately, images
are composed of thousands or even millions of pixels. The large dimensionality of
the input (and the output) poses a problem to most modern day machine learning
algorithms since a very large number of internal parameters must be estimated from
the data. In addition, a binary label image, L, can take on 2|N |∗|M | unique configu-
rations (i.e., the number of states L can take, grows exponentially in the size of the
image), where |N |, |M | are the dimensions of I and L. Despite this challenge, re-
search into Markov/Conditional/Disciminative Random Field methods [18, 65, 64]
has produced a number of heuristic approaches for maximizing p[L|I]. These are
discussed in Chapters 3 and 4.

To briefly compare the different approaches, observe that classical pixel labeling
attempts to find the following mapping:

hpl : I(i, j) 7→ L(i, j) (1.2)

by computing the probability of pixel I(i, j) belonging to the target class. Equa-
tion 1.2 treats individual pixels as i.i.d., an assumption rarely satisfied in practice,
since most non-trivial domains exhibit complex pixel interactions. To overcome this
problem, contextual pixel labeling defines a feature extraction function, fI (i, j),
for each image pixel I(i, j). Subsequently the newly formed feature vectors are
used to learn the mapping:

hcpl : fI (i, j) 7→ L(i, j) (1.3)

To further improve pixel classification accuracy, recursive contextual pixel classifi-
cation [129] and, more recently, random field methods (e.g., Markov / Conditional
/ Discriminative Random Fields [65, 64]) have been designed to account for label
interactions as well as input pixel interactions. These systems first use the regu-
lar contextual pixel labeling, as in Equation 1.3, to produce an initial labeling L0.
Subsequently a recursive procedure iteratively computes Ld as follows:

hrcpl : [fI (i, j),fLd−1(i, j)] 7→ Ld(i, j) (1.4)

where fLd−1(i, j) is a function extracting features from Ld−1 at lattice site (i, j).
Typically the features extracted fromL are very simple, usually just a neighborhood
centered about (i, j) (or cliques within the MRF framework).

In contrast to the outlined approaches, we proposes a different method. The
Output Decomposition Mixture of Experts (OD-MoE) and Stacked Convolutional
Regression (SCR) algorithms described in Chapter 5, extract contextual features

5

from both input images and ground truth images, and subsequently learn a mapping
from the former to the latter:

hOD-MoE : fI (i, j) 7→ fL(i, j) (1.5)

The essence of the OD-MoE algorithm lies in extracting output features, fL, that
allow the synthesis of output L. Once the input/output decomposition scheme has
extracted the input and output features, machine learning algorithms are utilized to
train models that instantiate the mapping in Equation 1.5.

1.3.1 Feature Extraction
Several options exist for defining the feature extraction functions, fI (i, j) and
fL(i, j). Once again the typical approach, in image processing and many other
domains utilizing machine learning, involves a domain expert who painstakingly
hand-crafts a set of feature extraction routines comprising fI . This is a tedious and
time consuming process, but less so than manually building the whole system. Fur-
thermore, there are practically an infinite number of features one can extract from
an image. For instance even for a small 3 × 3 feature extraction filter restricted
to eight grayscale values, there are 89 = 227 = 134, 217, 728 configurations. Fur-
thermore, even if a domain expert can succeed in finding the ”right” features, these
hand-crafted features will most likely be highly domain dependent, and hence, for a
different domain the feature extraction process will need to be repeated. One way to
circumvent this problem is to code a very large number of features in the hopes that
a subset of the features will be applicable to the problem at hand. One can then em-
ploy a wealth of feature selection methods, roughly divided into filter, wrapper and
embedded methods [41], to select a subset of relevant features for a given domain
(see [11] for a system utilizing a combination of the aforementioned algorithms).

An alternative way to bypass the need for hand-crafting features is to employ
automated or data-driven feature extraction techniques that can directly extract rel-
evant features from the raw data. The most widely used technique for automated
feature extraction typically employ principal component analysis (PCA), or inde-
pendent component analysis (ICA). In contrast, Chapter 5 presents a specialized
Convolutional Neural Network specifically designed for image segmentation. Mo-
tivated by the Output Decomposition Mixture of Experts philosophy, the proposed
Stacked Convolutional Regression method is able to simultaneously extract fea-
tures from both input images and output labels and constructs a regression function
capable of mapping input features to the desired output patches.

6

1.4 Data Driven Region Growing
Despite the capability of Stacked Convolutional Regression to automatically extract
relevant features and be highly accurate, even a single pixel error can merge together
two objects into a single connected component. To further improve the quality of
object segmentation, the Data Driven Region Growing framework (DDRG), is de-
veloped in Chapter 2. The framework, based on the Classification Driven Watershed
algorithm [75], consists of three machine learned mappings for identifying: (i) ob-
ject markers, (ii) foreground-background regions and (iii) object boundaries. These
three components are subsequently combined and utilized by a region growing al-
gorithm (morphological watershed) to improve the separation of individual object
from each other. The need to learn three mappings within the DDRG framework
further necessitates the need for automated feature extraction and relies on the SCR
algorithm for automatically learning the three aforementioned mappings.

1.5 Thesis Statement
The main thesis developed in this dissertation is that there are significant advantages
to manipulating and/or decomposing the ground truth image in a manner analogous
to feature extraction with respect to object segmentation. As subsequent chapters
will demonstrate ground truth manipulation and decomposition notions can be uti-
lized to produce state-of-the-art object segmentation systems.

1.6 Thesis Outline
Chapter 2 introduces notation used throughout this dissertation and image process-
ing algorithms related to image and object segmentation. The chapter also presents
the first major contribution of this thesis, the framework for object segmentation,
called Data Driven Region Growing (DDRG). Chapter 3 presents machine learning
algorithms related and used in subsequent chapters. In addition, the chapter presents
Heterogeneous Stacking, that has been developed specifically for the DDRG frame-
work. Chapter 4 presents an in-depth look at automated feature extraction methods
and develops a unified view of these methods. Chapter 5 presents the other main
contributions of this work, namely Output Decomposition Mixture of Experts and
Stacked Convolutional Regression. Subsequently, Chapter 6 presents detailed ex-
perimental results. Three distinct systems are presented to demonstrate the efficacy
of the data driven region growing framework. In addition, results using Output De-
composition and automated feature extraction using convolutional neural networks
are presented. The efficacy of the aforementioned systems and algorithms is tested

7

on two separate domains depicted in Figure 1.1. Chapter 7 concludes the thesis
with a discussion of future research directions and final thoughts.

8

Chapter 2

Data Driven Region Growing

9

The following chapter introduces the notation used throughout the dissertation
and reviews the literature on image segmentation methods. In addition, the chap-
ter goes on to define the concept of object segmentation and presents the Data
Driven Region Growing framework (DDRG), the first major contribution of this
work. When combined with a machine learning method capable of automated fea-
ture extraction, such as Stacked Convolutional Regression presented in Chapter 5,
the framework can create a highly accurate object segmentation system with mini-
mal input from domain experts.

2.1 Digital Image Representation

2.1.1 Graph Theory
A graph G = (V,E) consists of vertices v ∈ V , and edges e ∈ E ⊆ V × V . Edges
connect vertices e = (v1, v2) and therefore, two vertices are adjacent/connected/neighbors
if there exists an edge between them. The neighborhood function ∂G(v) is the set
of all vertices connected to vertex v. A path πv1,vl

, in graph G, is a set of vertices
πv1,vl

= {v1, v2, ..., vl} that indirectly links vertex vl and v1. A graph is connected
if every vertex is reachable from every other vertex. Intuitively a connected com-
ponent is a subgraph, G1 ⊆ G that forms a connected graph. The set of maximally
(i.e., the largest) connected components partition a graph, G = G1 ∪G2 ∪ ...∪Gn.

2.1.2 Regular/Digital Lattices
A lattice is a specialized graph (usually) defined on a two dimensional grid with
length M and width N corresponding to an N ×M matrix. Formally, we let (i, j)
index a discrete set of sites (i.e., vertices vi,j = (i, j)) on a spatially regular N ×M
lattice, S:

S = {(i, j)|1 ≤ i ≤ N, 1 ≤ j ≤M} (2.1)

The main distinguishing characteristic of a regular lattice is the type of connectivity
imposed on the graph. Usually either a 4-connectivity or an 8-connectivity is im-
posed in the graph. Under the 4-connectivity, lattice site (i,j) is connected to sites
(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1), provided they exist. The 8-connectivity,
includes the 4-connectivity and the four diagonal elements (i+ 1, j+ 1), (i− 1, j−
1), (i − 1, j + 1), (i + 1, j − 1). In order to allow more general connectivity be-
tween (non-adjacent) pixels, let ∂(i, j) refer to the set of neighbors of (i, j). The
neighborhood system defined by ∂(i, j) is symmetric, (i′, j′) ∈ ∂(i, j) ⇒ (i, j) ∈
∂(i′, j′), (i, j) 6∈ ∂(i, j). A clique c is a fully connected subgraph of the original
graph and is defined as a the set of points that are all neighbors of each other,
c = {(i, j) ∈ S, (i′, j′) ∈ S|(i′, j′) ∈ ∂(i, j),∀(i, j)}

10

Figure 2.1: Top: Example of a 5 × 5 image patch, N2(2, 2), centered at location
(2, 2). The set of neighbors, ∂(2, 2) based on a smaller patch N1(2, 2) is shown
in gray. Bottom: Clique examples for a discrete lattice with an 8-connectivity
structure. Figure modified from [14].

Mainly for convenience, let N r(i, j) denote a symmetric neighborhood func-
tion, corresponding to an (2r+ 1)× (2r+ 1) sub-image centered at, and including,
location (i, j). The neighbors of (i, j) are then given by ∂(i, j) = N r(i, j) \ (i, j)
(see Figure 2.1 for an example). Note that {(i, j)} = N 0(i, j) ⊂ N 1(i, j) ⊂ ... ⊂
N r(i, j). To prevent border effects the images are appropriately padded based on r.
Throughout this thesis we may refer toN r(i, j) as an image patch. In more practi-
cal terms images and/or image patches are usually treated as either matrices, in the

11

case of grayscale images, or a tensors in the case of color or other multi-channel im-
ages. Formally, a 2-D image I is then defined as a function I : S ⊂ Z2 7→ [0, 255]d,
where d = 1 for grayscale images and d = 3 for color images, and just to recap,
I(i, j) indexes pixel (i, j).

2.2 Image Segmentation
In computer vision, image segmentation refers to the process of partitioning a dig-
ital image into regions (sets of pixels), whereby each region satisfies some type of
homogeneity criterion[39]. The result of image segmentation is a set of regions
that collectively cover the entire image. Each of the pixels in a region are similar
with respect to some characteristic or computed property, such as color, intensity,
or texture. Adjacent regions are significantly different with respect to the same
characteristic(s). Depending on the nature of the image and the type of region ho-
mogeneity criteria, each region may or may not correspond to an object. Sometimes
a region can correspond to a part of a single object or may represent several simi-
lar objects grouped into a single blob. Therefore, image segmentation, in general,
is an ill-defined problem since there is no unique ground-truth segmentation of a
particular image against which the output of an algorithm may be compared.

Image segmentation can therefore be defined as partitioning the image I into a
set of regions Gr ⊂ S, r = {1, 2, ...}, satisfying (i) S =

⋃
Gr, (ii) Gr1

⋂
Gr2 = ∅

if r1 6= r2, and (iii) each region,Gr, forms a connected component.
General purpose (unsupervised) image segmentation algorithms typically work

by analyzing: (a) regions using a similarity criterion or (b) interfaces - discontinu-
ities between distinct regions. More recently, hybrid techniques utilizing both (a)
and (b) have started to become popular. By unsupervised we mean that these algo-
rithms do not utilize a training phase where the ideal output (i.e., ground truth) is
available for learning purposes. The next few subsections provide a brief overview
of different image segmentation methods, both supervised and unsupervised.

2.2.1 Edge Based Methods
Edge detection is a well-developed field on its own within image processing. Re-
gion boundaries and edges are closely related, since there is often a sharp adjust-
ment in intensity at the region boundaries. Edge detection techniques have there-
fore been used as the base for interface analysis and image segmentation. The edges
identified by edge detection are often disconnected. To segment an object from an
image however, one needs closed region boundaries. Discontinuities are bridged if
the distance between the two edges is within some predetermined threshold.

Unlike traditional edge detection methods, the authors of [82], proposed a much

12

Figure 2.2: Boundary Detection using a machine learned classifier. Top: Input
images. Bottom: boundaries identified by a human for training and evaluation
purposes. Middle: Output produced by the trained classifier. From [82].

more sophisticated technique. Their goal was to accurately detect and localize
boundaries in natural scenes using local pixel characteristics. The first step is to
hand-design features (e.g., filters for edges, brightness, color, and texture) associ-
ated with natural boundaries, denoted fI (i, j). In order to combine the informa-
tion from these features, a machine learned classifier is trained using human labeled
ground truth images, Lboundary (see Figure 2.2). The output of this classifier pro-
vides the posterior probability of a boundary at each image lattice cite (i, j):

P (i, j) = p[L(i, j) = 1 | fI (i, j)]

with p[·] denoting the probability density function.. The precision-recall curves
demonstrated that the resulting boundary detector significantly outperforms classic
approaches. The two main results of this work are: a) cue combination can be
performed adequately with a simple classifiers and b) proper, and explicit treatment
of texture is required in order to detect boundaries in natural images. Traditionally,
neural nets have also been shown to work well for edge detection and boundary
delineation [30]. We build on this idea further in the later sections of this chapter.

2.2.2 Thresholding and Histogram Based Methods
The most basic thresholding technique, [39] partitions a grayscale image I into
two sets of regions (foreground and background), based on a predefined threshold
τ . If pixel I(i, j) ≥ τ , it is labeled as foreground, while pixels falling below

13

the threshold are considered to be background leading to a foreground-background
segmentation Iτ :

Iτ (i, j) =

{
0 if I(i, j) < τ

1 if I(i, j) ≥ τ
(2.2)

Thus the image is partitioned into a set of connected components representing fore-
ground and background objects. For multichannel images, a vector, τ can be used
in lieu of a single scalar threshold.

Multiple thresholds can be used to partition the image into several regional
classes. By computing the histogram from all of the pixels in the image, the peaks
and valleys within the histogram can be utilized to identify the number and locations
or thresholds. If histogram peaks and troughs are well defined an automated pro-
cedure can be easily constructed to automatically find the thresholds. A refinement
of this technique is to recursively apply the histogram-seeking method to clusters
in the image in order to divide them into smaller clusters. This is repeated with
smaller and smaller clusters until no further clusters are formed.

Although thresholding is very efficient, since it typically requires only one pass
through the pixels, it has significant drawbacks. One disadvantage of the histogram-
seeking method is that it may be difficult to identify significant peaks and valleys
in the image. As the histogram in Figure 3.1 demonstrates, for most real world
domains a global threshold does not exist that will adequately separate regions of
interest. To overcome this problem adaptive techniques (e.g., Multistage Adaptive
Thresholding [128]) have been designed, that analyze and threshhold image patches
independent of other image locations. Rather than using global image statistics to
determine a set of thresholds, these algorithms identify and use a different set of
threshold for each image patch, thereby adapting to local image statistics.

2.2.3 Region Based Methods
Unlike edge-based methods, region-based techniques are guaranteed (by definition)
to produce coherent regions. Linking edges, gaps produced by missing edge pixels,
and other anomalies are not an issue. Region based methods inherently work from
the inside out, rather than from the outside inward. Resolving which object a pixel
belongs to is immediate, and not the result of contour/curvature tests needed in
edge-based methods. The methods are, however, not without drawbacks. Region
membership decisions are often more difficult than applying simple edge detectors.
Objects that span multiple disconnected regions (e.g., during occlusion) cannot be
found by basic techniques.

14

Graph Partitioning

The normalized cuts method, first proposed by Shi and Malik in [114], models the
image as a weighted undirected graph, G = (V,Ew). As before, each vertex v ∈ V
represents a pixel and a weighted edge, e ∈ E, is formed between every pair of
connected pixels where the weight associated with an edge w ∈ W , is a measure of
the similarity between two connected pixels. The image is partitioned into regions
by removing the edges connecting the segments. The optimal partitioning of the
graph is the one that minimizes the weights of the edges that were removed (the
cut). Shi’s algorithm seeks to minimize the normalized cut, which is the ratio of
the number of cut edges to all of the edges in the set. The resulting connected
components correspond to image regions.

Clustering Methods

Typically considered an unsupervised machine learning technique, clustering refers
to the process of grouping similar ’items’ together into groups or clusters. The K-
means algorithm is a general purpose clustering method that iteratively partitions
an image into K clusters. The basic algorithm is as follows:

1. Pick K cluster centers, either randomly or based on some heuristic.

2. Assign each pixel in the image to the cluster that minimizes the variance
between the pixel and the cluster center.

3. Re-compute the cluster centers by averaging all of the pixels in the cluster.

4. Repeat steps 2 and 3 until convergence is attained (e.g. no pixels change
clusters)

In this case, variance is the squared or absolute difference between a pixel and
a cluster center. The difference is typically based on pixel color, intensity, texture,
and location, or a weighted combination of these factors. K can be selected man-
ually, randomly, or by a heuristic. This algorithm is guaranteed to converge, but it
may not return an optimal solution (i.e., it can get stuck in a local minima). The
quality of the solution depends on the initial set of clusters, the value of K and as
always the suitability of the similarity metric. Recently, much more specialized and
sophisticated methods have been developed based on clustering, most notably the
mean-shift algorithm and bilateral filtering [5]. By recursively (re)-clustering pix-
els based on both spacial proximity to a given region and intensity based similarity,
these algorithms converge to the modes of the probability density function defined
by the aforementioned joint similarity function. An interesting property of these
algorithms is that they iteratively modify/reassign pixel intensities rather than their
cluster memberships.

15

2.2.4 General Region Growing
One of the first region growing methods, is the seeded region growing method [2].
The algorithm takes as input a set of seeds or markers, along with a correspond-
ing image. Each seed marks an interior subregion of an object to be segmented.
The regions are iteratively grown from seeds by comparing all unallocated pixels
neighboring the current regions. The algorithm uses a similarity function between
a region and a neighboring pixel, in order to decide whether the pixel should be
added to the region. The pixel with the highest similarity to the current region is
added first. The process continues until all pixels are allocated to one of the regions.
Since this type of region growing requires seeds as additional input, the final seg-
mentation is dependent on the choice of seeds (and the similarity function used).
Noise, non-uniform illumination and other image variabilities can cause the seeds
to be poorly placed or erroneously identified.

Region growing without markers, is a modified algorithm that doesn’t require
explicit seeds. It starts off with a single (1-pixel) region S1 the actual pixel chosen
here does not significantly influence the final segmentation. As with seeded region
growing, at each iteration the algorithm considers absorbing the neighboring pixels
using a predefined similarity function. However, in contrast to seeded region grow-
ing, when the pixel-region similarity is above a predefined threshold the pixel is
added to the respective region Sk, regardless if other neighboring pixels are a better
match (i.e., have an even higher similarity score w.r.t. Sk). If the similarity does
not fall above the threshold, the pixel is considered significantly different from the
neighboring region(s) S1, ..., Sk, and a new region Sk+1 is created using this pixel
as the starting point.

At first glance, region growing appears to share many properties with cluster-
ing. However, pixels can move from region to region during the iterative clustering
procedure. On the other hand, once a pixel is assigned to a specific region, it cannot
be reassigned to a different region. The incremental assignment of pixels to regions
is ideal when pixel exhibit strong spacial interdependencies. From a different per-
spective, the mean-shift algorithm converges to cluster modes which in turn have a
loose correspondence to seeds used in region growing.

Split and Merge Algorithms

As with all region based methods, the basic idea of region splitting [39], is to break
the image into a set of disjoint regions that are coherent within themselves. Ini-
tially the image as a whole is taken to be the area/region of interest (ROI). Given
an ROI, the algorithm recursively decides if all pixels contained within the region
satisfy some similarity constraint. If TRUE then the area of interest corresponds
to a region within the image. If FALSE, the region is split up (usually into four
equal sub-areas). Subsequently, each of the sub-areas is now considered for further

16

splitting. The process continues until no further splitting is possible, based on the
aforementioned similarity criteria. In the worst case all the areas are just one pixel
in size. Split and Merge algorithms are top down, divide-and-conquer type meth-
ods. If only a splitting schedule is used then the final segmentation most likely will
contain many neighboring regions that have identical or similar properties. There-
fore, a merging process is used after each split in order to compare adjacent regions
and merge them if necessary, using a second similarity criterion.

Watershed Segmentation

The watershed algorithm [10] is commonly used within the unsupervised setting
of segmenting an image into a set of non-overlapping regions. The framework
of mathematical morphology considers gray-scale images to be sets of points in
a three-dimensional space, with the third dimension constituting gray level image
intensity [39]. This topographical analogy respectively considers light and dark
image areas as the hills and valleys of an image landscape. To segment a given
image the “landscape” is flooded, whereby water flows from high altitude areas
(areas with high gray-scale values) along lines of steepest descent until it reaches
some regional minimum (low gray-scale regions). The watersheds or catchment
basins of the image are the draining areas of its regional minima. These areas are
separated by lines called watershed lines.

Unfortunately, the segmentation produced by a naı̈ve application of the water-
shed algorithm is oftentimes inadequate: the image is usually over-segmented into
a large number of minuscule regions. As a result, several extensions have been
proposed in order to produce more natural image segmentation (e.g., hierarchical
watersheds or region split/merge [12]). The most common remedy is to use markers
for identifying relevant region minima (e.g., [2, 31]). By setting marker locations
as the only local minima within the watershed image the number of regions can be
automatically controlled. Unfortunately, finding markers can itself be problematic
and is one of the focal points of this thesis.

To formally define the watershed segmentation algorithm several preliminary
definitions are in order.

Definition 2.2.1 The global image minimum Ggmin(I) of a grayscale image I , is
defined as:

Ggmin(I) = {(i, j) ∈ S|I(i, j) ≤ I(i′, j′)∀(i′, j′) ∈ S}

Definition 2.2.2 The local image minima Glmin(I) with respect to a neighborhood
∂(i, j) function, is defined as:

Glmin(I) = {(i, j) ∈ S|I(i, j) ≤ I(i′, j′)∀(i′, j′) ∈ ∂(i, j)}

17

Meyers Watershed algorithm [86]

The input to the algorithm is a grayscale image I and a set of markers, with each
marker being a region Gk of image I:

M = {Gk ⊂ S|Gk1 ∩Gk2 = ∅,∃π(i,j),(i′,j′)∀(i, j), (i′, j′) ∈ Gk}

where the existence of a path π between site (i, j) and (i′, j′) implies that Gk is
connected. In the trivial case, the marker regions correspond to the local minima
of I , i.e., M = Glmin(I)1. The algorithm expands as much as possible the set M,
while preserving the number of connected components in M.

Let G0 = S \ M represent the set of as yet unassigned pixels, Gws = ∅
the (initially empty) set of watershed pixels, and ∂Gk = {(i, j) ∈ G0|(i, j) ∈
∂(i′, j′), (i′, j′) ∈ Gk} denote the unassigned neighbors of region Gk. The basic
watershed algorithm is then given by the following steps:

1. Compute ∂M =
⋃
∂Gk, k ≥ 1, the set of unique pixels adjacent to, but not

part of M.

2. If ∂M = ∅ terminate, otherwise go to Step 3.

3. Find (i, j) ∈ Ggmin(I(∂M)), the neighbor of M with the lowest grey level
value. If

∃(i1, j1), (i2, j2) ∈ ∂(i, j) | (i1, j1) ∈ Gk1 , (i2, j2) ∈ Gk2 ,

k1 6= k2, k1 ≥ 1, k2 ≥ 1

then the point (i, j) is adjacent to two distinct regions Gk1 , Gk2 , and is thus
assigned to Gws, the set of watershed pixels.

Otherwise, ∃k ≥ 1|∂(i, j) ∈ G0 ∪ Gws ∪ Gk, the neighborhood of (i, j) is
composed of: (i) unassigned locations, (ii) watershed locations, and (iii) only
one region Gk, and therefore location (i, j) is assigned to region Gk.

Notice that the number of regions is equivalent to the number of markers and
the set of watershed points comprising the watershed lines is the complement of
the set of labeled points. The outlined algorithm neither labels nor propagates these
watershed pixels, which stop the growing process.

1 Here the notation is slightly abused, since the set of markers actually corresponds to the con-
nected components of Glmin(I). This ensures that individual pixels belonging to the same local
minima (i.e., flat spots) do not get assigned to different marker regions.

18

Level Set Methods

Curve propagation is a popular technique in image analysis for object extraction,
object tracking, stereo reconstruction, etc. The central idea behind such an ap-
proach is to evolve a curve towards the lowest potential of a cost function, where
its definition reflects the task to be addressed and imposes certain smoothness con-
straints. Lagrangian techniques are based on parameterizing the contour according
to some sampling strategy and then evolve each element according to image and in-
ternal terms. While such techniques can be very efficient, they suffer from various
limitations including: (i) deciding on the sampling strategy, (ii) estimating the in-
ternal geometric properties of the curve, (iii) changing its topology, (iv) addressing
problems in higher dimensions.

The level set method was initially proposed to track moving interfaces by Os-
her and Sethian [94], and has spread across various imaging domains since then.
It can be used to efficiently address the problem of curve/surface propagation in
an implicit manner. The central idea is to represent the evolving contour using a
signed distance function, where its zero level set corresponds to the actual contour
of interest.

Then, according to the motion equation of the contour, one can easily derive
a similar flow for the implicit surface that when applied to the zero-level set will
reflect the propagation of the contour. The level set method encodes numerous
advantages: it is implicit, parameter free, provides a direct way to estimate the geo-
metric properties of the evolving structure, can change the topology and is intrinsic.
It is, therefore a very convenient framework to address numerous applications of
computer vision and medical image analysis2. In fact, the watershed algorithm is a
special case of the more general level set algorithm family.

2.3 Object Segmentation
In contrast to image segmentation, we define object segmentation as the identifi-
cation and delineation of target objects from the background and each other. As
an example consider the images depicted in Figure 2.3. The input image (top left)
contains several blobs, some of which are very close to each other. The goal is to
identify each blob and distinguish it from both the background and other blobs. The
bottom left sub-figure presents the result of global thresholding. While the method
adequately separated foreground objects from the background, individual objects
are not identified. In contrast, the result of watershed segmentation, depicted in the
bottom right sub-figure, separated objects (for the most part) from both the back-

2Excerpt based on http://en.wikipedia.org/wiki/Segmentation_(image_
processing)

19

http://en.wikipedia.org/wiki/Segmentation_(image_processing)
http://en.wikipedia.org/wiki/Segmentation_(image_processing)

Figure 2.3: Image Segmentation versus Object Segmentation. Top left: The input
image containing several objects, some of which are in very close proximity to each
other. The goal is to identify each blob and distinguish it from both the background
and other blobs. Bottom left: The result of global thresholding. While the method
adequately separated foreground objects from the background, individual objects
are not identified. Top Middle: The result of watershed segmentation, which sep-
arated objects from both the background and each other. Bottom left: Individual
objects delineated by white lines. Top right: Visualization of the input image as a
3-D topology.

ground and each other. Unlike image segmentation, where the objective function is
ill defined, it is possible (and relatively easy) to precisely define the goal of object
segmentation using a ground truth image, L. Figure 2.4 on p. 22 presents an ex-
ample input image, the desired ground truth image, and a candidate object segmen-
tation. Observe that while the majority of individual pixels are correctly labeled,
the candidate segmentation completely obscures the characteristics (e.g., size, ori-
entation, position) of individual objects present within the input image. Hence, the
candidate object segmentation is of high quality with respect to individual pixels
but is extremely poor with respect to objects. To properly evaluate the quality of
the segmentation, all experimental results will use both pixel level and object level
metrics presented in Appendix C on p. 138.

In general, to produce a ’good’ object level segmentation, an algorithm needs
to identify: (i) foreground/background pixels, and (ii) object-object boundaries.
Despite the earlier criticism of pixel level analysis, pixel labeling is clearly an im-

20

portant intermediate step necessary for identifying foreground/background regions.
With that in mind, the next chapter is entirely devoted to machine learning ap-
proaches for pixel labeling. For the moment let us define a general mapping from
image I to a binary label image Lregion as:

hregion : I 7→ Lregion (2.3)

where Lregion(i, j) ∈ {0, 1}. The hregion classifier models the separation of pix-
els into foreground and background. Clearly if Lregion = L, we have solved the
problem. Unfortunately, many pixel labeling algorithms produce results akin to the
candidate segmentation in Figure 2.4 and hence require subsequent object-object
boundary identification step to be of practical use. Before describing the proposed
Data Driven Region Growing framework, we first generalize Equation 2.3. Since
machine learning algorithms will be employed as an intermediate step, the goal of
this intermediate step is to produce a probability map P region, where P region(i, j)
denotes the likelihood of pixel (i, j) belonging to a foreground object (or for non-
probabilistic methods an un-normalized potential). To produce the label image, the
probability map is thresholded via:

Lregion(i, j) =

{
0 if P region(i, j) < τ

1 if P region(i, j) ≥ τ
(2.4)

.

2.3.1 Data Driven Region Growing
A popular approach to resolve object-object boundaries is to use region growing
methods such as watershed. However, to be effective these methods require object
markers. Using ad-hoc rules to extract markers requires a priori knowledge of either
(a) the number of objects within an image as in [2], (b) specific image properties, or
(c) object locations (e.g., medical images registered to an anatomical template). In
each of these cases, the parameters governing marker extraction tend to vary from
image to image. In contrast, our goal is develop robust and portable end-to-end ob-
ject segmentation systems without the need to recode the system for every domain.
This motivates the use of machine learning approaches for robust identification of
object markers.

In [77], the Bayesian marker extraction algorithm utilized a naive Bayes classi-
fier in order to generate object markers. Unfortunately, since the classifier is trained
on the ground truth delineating whole objects, the approach does not provide any
constraints to ensure that only one marker per target object is extracted, nor that
the extracted markers even lie within the object boundary. Naturally, one could
threshold the probability map, P region, using a higher value for threshold τ . As a
consequence, fewer pixels will be labeled as foreground, thus improving precision

21

Input Image (I)

Ground Truth (L)

Candidate Object Segmentation (Lregion)

Figure 2.4: Top: Input image of a granulous material (in this case frozen oil sand
ore) on a conveyor belt. Middle: Ground truth image produced by a domain expert.
Bottom: An example of a good pixel labeling but a very bad object segmentation.
See Appendix C for quantitative evaluation measures of image/object segmentation.

at the cost of recall. The potential outcome may be that pixels corresponding (with
higher probability) to object markers may be extracted. However, there is still no
guarantee that the markers will be within object boundaries, nor that there will be a
one-to-one correspondence between objects and markers. To improve the situation,
we propose training: (i) a marker identification classifier, hmarker, (ii) a bound-
ary identification classifier, hboundary, and (iii) a foreground-background classifier,
hregion. Let:

Leroded = L	B (2.5)

Ldilated = L⊕B (2.6)

22

hmarker

hregion

hboundary

Watershed

Figure 2.5: A depiction of the desired mappings used by the Data Driven Region
Growing.

respectively denote the morphological erosion/dilation [39] of the true label image
L by a suitably chosen structural element B3. Based on these transformed ground
truth images, two auxiliary mappings to produce markers and boundaries can now
be constructed as follows:

Lboundary = Ldilated −Leroded (2.7)

Lmarker = Leroded (2.8)

To make the notational distinction more pronounced, henceforth let htype, denote
the classifier trained to produce probability map P type = htype(I), which is subse-
quently thresholded to produce the label image, Ltype:

Ltype(i, j) =

{
0 if P type(i, j) < τtype

1 if P type(i, j) ≥ τtype

3We use a disk inscribed within an Nr(i, j) patch. The typical size is r = 3. See Chapter 6 for
details.

23

On-line DDRG (I, hregion, hmarker, hboundaryτ1, τ2, τ3, ExtractFeatureMaps())

INPUT:

I: an input image.
hmarker: a classifier trained to produce markers.
hregion: a classifier trained to delineate object-background.
hboundary: a classifier trained to detect object contours.
τ1, τ2, τ3: thresholds used to segment probability maps.
ExtractFeatureMaps(): function for feature extraction.

OUTPUT: L - a labeling for image I .

1 f = ExtractFeatureMaps(I) // Extract features for each pixel
2 Pmarker = hmarker(f) // create probability map
3 Pregion = hregion(f) // create probability map
4 Pboundary = hboundary(f) // create probability map
5 bg = invthreshold(Pregion, τ1) // find background regions
6 seeds = threshold(Pmarker, τ2) // create object seeds
7 contours = threshold(Pboundary, τ3) // create object contours
8 ws = setlocallmin(1− Pregion, seeds) // set seeds ws(seeds)=−∞
9 ws = setlocallmax(ws, contours) // set contours ws(contours)=∞
10 L = watershed(ws)− bg // label image, remove background

Figure 2.6: On-line testing/execution phase of Data Driven Region Growing.

where type ∈ {region, boundary,marker} and region denotes the standard ground
truth output. The Data Driven Region Growing algorithm, depicted in Figure 2.5,
therefore consists of three mappings:

hregion : I 7→ Lregion (2.9)
hmarker : I 7→ Lmarker (2.10)
hboundary : I 7→ Lboundary (2.11)

As the experimental results in Section 6.1.2 will demonstrate, the hmarker classifier
is overly conservative (i.e., higher precision, lower recall) and produces superior
object markers as compared to thresholding P region using higher values of τ .

Having described bothP region, used to delineate object-background boundaries,
and Pmarker used to identify object markers, the topological surface utilized by the
watershed algorithm is discussed next. Again, several options exist, with the de
facto standard approach utilizing the gradient of the original image. However, since
the probability maps themselves form a topological surface, the machine learned
output, P region can be once again utilized. Intuitively, the highest intensity values
within the P region image correspond to pixels with the highest probability of be-
ing part of the target class, hence using the inverted probability map, 1 − P region,
can be advantageous because the aforementioned high probability regions will be
flooded first. Unfortunately, more than one local maximum may be present within

24

large sized objects, thereby motivating the need for markers. To produce a topol-
ogy amenable to the watershed algorithm, we invert the probability map P region,
and set the regional minima to correspond with marker locations extracted from
the Pmarker probability map by thresholding via Equation 2.2 on p. 14. Further-
more, to provide additional constraints during the region growing step, potential
object boundaries, identified by the hboundary mapping, are used as barriers to pre-
vent growth. In other words, the output of hboundary is used to set the local maxima,
whereby the pixels identified by the boundary classifier act as potential watershed
pixels and are forced to be flooded last. The original formulation, in [75] did not
use the boundary constraints, but as the experimental results in Chapter 6 will re-
veal, boundary constraints can provide a significant performance boost. In gen-
eral, perfect Pregion, or perfect Pmarker plus Pboundary will produce optimal results.
However, in practice, none of the probability maps will be perfect as can be seen in
Figure 2.7. In chapter 6, experimental results will demonstrate that the introduced
redundancy is highly beneficial for improving the final object segmentation. To
provide additional details, Figure 2.6 on p. 24 presents the pseudo-code describing
the on-line phase of the data driven region growing algorithm (DDRG).

Having defined the mappings constituting the data driven region growing frame-
work, we turn our attention to learning the models: hregion, hboundary, and hmarker.
As mentioned in the introductory chapter, manually defining these mappings would
be a tedious and difficult process, that would need to be repeated for each new do-
main. In order for the framework to be of practical use, an automated algorithm
is needed to extract image features and map these features to the aforementioned
probability maps, P type. The next three chapters explore the machine learning pos-
sibilities for a fully automated instantiation of the DDRG framework.

25

Figure 2.7: Actual components used as input into the Data Driven Region Growing
Framework (DDRG).

26

Chapter 3

Learning to Label

27

This chapter reviews a number of commonly used machine learning techniques
for pixel labeling. Particular focus is given to neural networks that form the basis of
subsequent discussions on Automated Feature Extraction and Deep Convolutional
Networks presented in subsequent Chapters. Chapter 3 also presents the second
contribution of this dissertation, namely the Heterogeneous Stacking algorithm. In
a manner analogous to the previously presented DDRG framework, Heterogeneous
Stacking used Ground Truth manipulation to build a set of base classifiers which
are subsequently fused together by a higher level model enabling improved object
segmentation quality.

3.1 Pixel Classification
A very common data driven approach to image segmentation attempts to learn a
pixel classifier that assigns to each pixel the probability of belonging to a given
class. Recall that (i, j) index a discrete set of sites on a spatially regular N ×M
lattice:

S = {(i, j)|1 ≤ i ≤ N, 1 ≤ j ≤M}

For each input image I and the corresponding image labelingL, let I(i, j) ∈ [0, 1]d

andL(i, j) ∈ {0, 1} respectively denote the intensity values of image pixels and the
corresponding (binary) labels. Throughout this thesis, L(i, j) = 0 labels the lattice
site (i, j) as background, while L(i, j) = 1 denotes the pixel belongs to the target
object class. The main objective is to produce a probability map P :

P (i, j) = p[L(i, j) = 1 | I(i, j)] ∀(i, j) ∈ S (3.1)

with p[·] denoting the probability density function. To obtain the final image seg-
mentation, L̂, the probability map P is globally thresholded:

L(i, j) =

{
0 if P (i, j) < τ

1 if P (i, j) ≥ τ
(3.2)

The process in Equation 3.1 treats individual pixels as i.i.d. (independent iden-
tically distributed). Unfortunately, this assumption is rarely satisfied in practice,
since most non-trivial domains exhibit complex pixel interactions and dependen-
cies. Therefore, simply using raw pixel values for classification in equation 3.1
results in very poor segmentation. (Otherwise thresholding the input image at every
pixel I(i, j) > τ would produce the desired result. The histogram at the bottom
of Figure 3.1 clearly demonstrates the practical shortcomings of this approach.) To
overcome this problem, feature extraction techniques are needed to produce a set of
feature maps describing local (and possibly global) image characteristics. The spe-
cific feature extraction methods used in our research, are discussed in later sections

28

Input Image (I)

Ground Truth (L)

Histogram of pixel values of I w.r.t. class labels

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

3500

Figure 3.1: Top: Input image of a granulous material (in this case frozen oil sand
ore) on a conveyor belt. Middle: Ground truth image produced by a domain expert.
Bottom: Histogram of pixel intensities for each class.

of this dissertation. For the moment, let f(i, j) denote the extracted feature vector
at each lattice site (i, j). The probability map can now be conditioned on the feature
vectors rather than just the raw grayscale or multi-spectral values as follows:

P (i, j) = p[L(i, j) = 1 | f(i, j)] ∀(i, j) ∈ S (3.3)

29

3.2 Learning Classifiers
The general form p[y = l|x] in equation 3.3 defines an arbitrary probabilistic bi-
nary classifier, where the column vector x ∈ Rd consists of d input features, and
y ∈ {0, 1} is the (desired) output. Numerous machine learning methods exist for
learning such classifiers, given a set of training data D = {xk, yk}nk=1. Perhaps the
simplest such classifier is a linear function approximator obtained by using linear
regression:

hω(x) = ω0 + ωT1 x (3.4)

The parameters, ω = {ω0,ω1} can be easily determined by solving:

ω = (XTX)−1XTy (3.5)

where the d-dimensional vector x is

x = [x(1), ..., x(d)]T (3.6)

the data matrixX0 is then formed by:

X0 = [x1|...|xn]T (3.7)

andX symbolizes the mean normalized (i.e., centered) data matrix augmented with
a vector of ones, 1:

X = [1 (X0 −M)], M = [µ|...|µ]T , µ =
1

n

n∑
k=1

xk (3.8)

and y is a vector of target outputs. Note, hω henceforth denotes the trained pixel
classifier. In general linear regression has two major drawbacks: (i) invertingXTX
becomes an ill conditioned problem if the features inx are collinear (i.e., correlated)
1, and (ii) the output is not a true probability, which must be bound to be in the range
[0, 1].

To overcome the second limitation, another widely used algorithm models the
class conditional using the Generalized Linear Model [45] with the logistic link
function as follows:

hω(x) = p[y = 1 | x] =
1

1 + e−(ω0+ωT
1x)

(3.10)

1Let E{·} denote expectation. Then two (zero mean) variables are (linearly) uncorrelated if their
covariance, Cx,y , is zero:

Cx,y = E{xy} = 0 (3.9)

30

here the model parameters, ω = {ω0,ω1}, can be estimated by maximizing the
log-likelihood of the training data using standard non-linear optimization routines2.
The logistic transform,

σ(x) =
1

1 + e−x
(3.11)

ensures that the output is in the range [0, 1], however, the assumption that the input
features are uncorrelated is still present and can result in substantial estimation er-
rors for parameters ω. To overcome this problem feature, decorrelation techniques
need to be used. These are discussed at some lengths in the context of automated
feature extraction in the next chapter.

3.3 Neural Networks
There is, however, one particular class of algorithms that can handle correlated in-
puts. Artificial neural networks (ANN) [110] are a general class of function approx-
imators that can, in theory, approximate arbitrary functions3. Technically speaking
the aforementioned linear and logistic regression models are special cases of ANNs
with no hidden layer. Research on application of Neural networks to image pro-
cessing spans several decades and had produced a number of interesting algorithms
[30].

The standard (2 layer) Multi-Layer Perceptron (MLP) is defined by:

hω(x) = g(W 2 g(W 1x+ b1) + b2)(x) (3.12)

where ω = {W 1,W 2, b1, b2}, and function g is a monotonic non-linear transform
(Typically g is either the sigmoid function from equation 3.11 or the hyperbolic
tangent). The matrices W 1,W 2 connect the input layer to the hidden layer, and
the hidden layer to the output layer (respectively), while the bias vectors b1, b2 are
analogous to ω0 in equations 3.4 and 3.10. For the sake of compactness we will
henceforth incorporate the bias terms into the weight matrices and assume the input
is extended with a constant term as defined in Equation 3.8. A simple ANN is
depicted in Figure 3.2.

The class of MLP’s is by no means limited to two layers. We define a neural net
with an arbitrary number of hidden layers l by:

hω(x) =
(
gl+1 ◦W l+1 ◦ gl ◦W l ◦ ... ◦ g1 ◦W 1

)
(x) (3.13)

where (f ◦ g)(x) = f(g(x)), is a functional composition operator. Note that a
weight matrixW is just a linear operator and hence we useW (x) = Wx to denote

2 The details of the optimization procedure can be found in [45] and [122].
3For computational complexity results pertaining to neural networks see [93].

31

2x

1x

3x

1y

2y

1W 2W

Figure 3.2: Depiction of a standard 3− 5− 2 neural network containing 3 inputs, 5
hidden nodes, and 2 outputs. Figure modified from [1].

the matrix-vector product. The parameters, ω = {W 1, ...W l}, can be learned
in numerous ways. Here we present the simplest one, namely stochastic gradient
descent, for minimizeing the mean squared error loss, Emse:

Emse(y,hω(x)) = ‖y − hω(x)‖2
`2

(3.14)

where ‖ · ‖`2 is the Euclidean norm4. The stochastic weight updates are defined by:

W new(i, j) = W (i, j)− η∂Emse(y, hω(x))

∂W (i, j)
(3.15)

where W (i, j) indexes a single matrix element much like I(i, j) indexes a sin-
gle pixel element, since both are similarly defined on regularly spaced lattices,
∂Emse(y, hω(x))

∂W (i,j)
is the partial derivative of the loss function with respect to weight

W (i, j), η is the learning rate and y is the desired output vector. If the learning
rate, eta = c

n
is annealed as a function of pattern presentations n, then stochastic

gradient descent will (provably) converge to a global minima [68]. In practice, such
an annealing schedule may be too fast. However, stochastic gradient descent has
proven to be the method of choice, when large redundant training sets are utilized.

4The Euclidean norm or the `2-norm is defined for a d-dimensional vector x as: ‖x‖`2 =(∑d
i=1 x(i)2

) 1
2

. In general, the `p-norm is defined as ‖x‖`p =
(∑d

i=1 x(i)p
) 1

p

.

32

3.3.1 Regularization Techniques
Before describing most common regularization techniques, let us define an entry-
wise `p-norm for matrixW as:

‖W ‖`p =

(∑
i

∑
j

|W (i, j)|p
) 1

p

(3.16)

`2-Regularization

In order to prevent overfitting, the typical approach is to add extra constraints over
the entries of the weight matrices W l. Weight decay is often used in conjunction
with error minimization by penalizing the Frobenius norm:

E(y,hω(x), λ) = ‖y − hω(x)‖`2 −
1

2
λ‖ω‖`2 (3.17)

The weight updates are then defined as:

W new(i, j) = W (i, j)− η
(
∂Emse(y, hω(x))

∂W (i, j)
+ λW (i, j)

)
(3.18)

Reed et al. [105] prove that using `2-regularizaton is equivalent to: (a) training
with noisy inputs, (b) convolutional output smoothing, and (c) scaling the non-
linear transfer function g, to reduce the slope. In all cases the (equivalent) effect
is to reduce the magnitude of the weights W (i, j). From a Baysian point of view,
`2-Regularizaton induces a Gaussian prior over the weights.

`1-Regularization

Another way to prevent overfitting is `1-regularization [125] or weight shrinkage
also used in conjunction with error minimization as follows:

E(y,hω(x), λ) = ‖y − hω(x)‖`2 − λ‖ω‖`1 (3.19)

The weight updates are then defined as:

W new1(i, j) = W (i, j)− η ∂Emse(y, hω(x))

∂W (i,j)
(3.20)

W new2(i, j) = sign(W new1(i, j)) max(0,W new1(i, j)− ηλ) (3.21)

From a Bayesian point of view, `1-regularization induces a Laplacian prior over
the weights. In contrast to weight decay, `1-regularization, can drive the weights
completely to zero, rather than simply make their magnitudes small. In turn this
produces several interesting phenomena.

33

1 2 3 4x

y

Figure 3.3: An example of a neural network built by cascade correlation algorithm
with four hidden nodes.

First and foremost, this type of regularization enables feature selection. If the
`1-norm of jth column vector is zero (i.e., ‖W (·, j)‖`2 = 0), then all the entries
are zero, then the jth feature, x(j), is never used and can therefore be removed.
Analogously, the topology of the whole neural network can be controlled by letting
`1-regularization prune unnecessary nodes in a manner analogous to feature selec-
tion. Once again, if a given column vector is zero for a weight matrix W l, the
output of the corresponding hidden unit in layer l− 1 is not used by hidden units at
the lth layer.

3.3.2 Cascade Correlation
The cascade correlation algorithm is designed to incrementally grow a neural net-
work. It starts with a network containing just one hidden node, and iteratively adds
one node at a time to the current architecture. As input, each new node is connected
to all base inputs and the outputs of all previous nodes. Therefore, each hidden
layer contains just one node and there are as many layers as there are nodes. At
each iteration of training, only the weights connected to the newly added node are
updated.

To address the issues of creating extremely deep and narrow networks, with
large fan-in, a modified variant of cascade correlation was proposed in [4]. In this
case, the algorithm creates networks with hidden layers containing multiple nodes.
At each iterative step, the modified algorithm creates two networks, one with a new
unit added to the current layer and another network where the unit is added to a
new hidden layer. The network with the higher error after training is discarded and
the process repeats it self. Thus, the algorithm either starts a new hidden layer or
makes the current hidden layer wider. Empirically, this process creates shallower
networks with smaller fan-in while retaining performance analogous to their deep-
and-narrow counterparts.

Another modification to cascade correlation proposed removing the “jump con-

34

nections” linking inputs with deeper hidden layers. These connections create a
non-standard network topology making implementation more difficult and increase
the fan-in of nodes at deeper layers. To remedy the situation, [98] proposes to create
a “strictly layered” topology prohibiting the use of “jump connections” that connect
non-adjacent layers. The number of inputs to a given node, the fan-in, is therefore
only dependant on the number of nodes at the preceding layer.

3.4 Model Fusion
From a Bayesian perspective, a model represents a random draw from some un-
derlying (and unknown) distribution, pω . This is partly due to samples xk, being
random draws from px. Hence, to ensure robustness and generalization accuracy,
parameters ω need to be integrated over using some prior distribution. This, how-
ever, is usually intractable and is approximated in practice by learning a set of clas-
sifiers Ω = {hω1 , ..., hωn}, each optimized over a different subset of the training
data. The output of each classifier is subsequently merged by uniform averaging as
in bagging [15] by:

HΩ(x) =
1

n

n∑
k

hωk(x) (3.22)

To simplify the notation, we will refer to HΩ simply as h in the remainder of the
thesis.

3.4.1 Generalized Pixel Labeling
Using equation 3.22 to model the probability map elements in equation 3.3 we get:

P (i, j) = p[L(i, j) = 1 | f(i, j)]

=
1

n

n∑
k

hωk(f(i, j))

= h(f(i, j))

(3.23)

Provided relevant features f(i, j) have been identified, and the chosen machine
learning technique, used to build the conditional probability model in equation 3.3,
is capable of utilizing the extracted features, the outlined approach can achieve a
high pixel classification accuracy. Unfortunately, as depicted in Figure 2.4, even if
the method exhibits good generalization performance, objects of the same class that
are in close spatial proximity to one another will be merged together into a single
connected component. Hence, while the machine learned classifier may have a
high pixel classification score, due to the unresolved object-object boundaries (i.e.,
under-segmentation), the resulting object labeling can still be very poor.

35

Figure 3.4: Stacked Generalization. Input Feature Vectors are feed into k base
classifiers/function approximators. The output of the base classifiers is then feed
into another classifier/function approximator to improve accuracy.

3.4.2 Stacked Generalization
In [126], Wolpert introduced stacked generalization, which utilized the output of
several base level (L0) classifiers as inputs to the higher level (L1) classifier, thereby
improving classification accuracy. Figure 3.4 depicts the process. From a differ-
ent perspective, one can view stacking as learning a gating function to control a
mixture-of-experts [59], which in this case are the L0 classifiers. The mixture-
of-experts algorithms attempt to partition the input space into different regions or
categories. In contrast to model averaging, the stacked classifier is trained and can
therefore adjust to the peculiarities of the base classifiers. Notice that cascade corre-
lation, presented in the previous section can be viewed as a special case of stacking,
designed for neural networks. Under this point of view each new layer learns to
fuse the output of the preceding layer(s).

3.4.3 Heterogeneous Stacking
Recall the view of stacking as learning a gating function to control a mixture-of-
experts, which in turn partition the input space into different regions or categories.
An alternate approach presented here is to explicitly partition the output space and
subsequently train (a set of) classifiers on each newly created target concept. To
combine these heterogeneous sources of information, a second set of classifiers is
employed, analogous to stacking. To train the L0 modules, observe that even simple
objects like the rocks presented in Figure 3.1 are not homogeneous, but instead con-
tain several components that can be readily extracted by manipulating the ground
truth in a manner analogous to producing Leroded labels. Figure 3.6 presents four
label images produced by applying the following morphological operations to the

36

I 7→ f {0}
h{0}7−→P {0} 7→ f {1}

h{1}7−→P {1} 7→ ... 7→ P {λ} 7→ f {ws}
ws7−→L{final}

Figure 3.5: Generic set of mappings describing the process of Heterogenous Stack-
ing with λ + 1 levels. The last level represents the application of the watershed
algorithm, abbreviated as ws.

original label image L:
Leroded = L	B (3.24)

Ldilated = L⊕B (3.25)

Le′ = L−Leroded (3.26)

Ld′ = Ldilated −L (3.27)

The transformations denote morphological erosion, dilation and two difference op-
erators resembling top-hat and bottom-hat operations. As before, Leroded identi-
fies object markers, while Le′ and Ld′ identify inner and outer object boundaries
(respectively). In turn, boundary information indicates where markers and object
regions (i.e., L) cannot be found. Hence, these newly extracted target concepts are
complementary to each other and to the original ground truth. Consequently, the L1

gating network needs to fuse the output of L0 classifiers together rather than select
the output of a single base classifier as in de-facto mixtures-of-experts algorithm.
From this point of view, the proposed method resembles ensemble learning algo-
rithms, e.g., bagging [15] and boosting [35], which are inherently cooperative in na-
ture. However, these methods introduce diversity into the ensemble by re-sampling
the training set as does stacked generalization. In contrast, heterogenous stacking
aims to modify the label image L and otherwise keep the training set unchanged.
Random label flips have been previously explored in [104, 16, 83]. Of course once
the i.i.d. assumption has been made, as was done in the aforementioned references,
there is nothing more ’intelligent’ one can do with the training data other than to
try and regularize the learning algorithm via the aforementioned random label per-
mutations. In contrast, image pixels, for any non-trivial domain, are definitively not
i.i.d. (c.f., Figure 3.1) and are, therefore amenable to much more interesting label
modification schemes. To the best of our knowledge, the research in this thesis and
is the first to propose explicit and knowledge directed modification of the ground
truth image.

Having defined all target concepts,Ltype, where type ∈ {region, eroded, dilated, e′, d′},
the corresponding probability maps are created by generalizing equation 3.3 as fol-

37

Leroded Ldilated

Le′ Ld′

Figure 3.6: New target creation via morphological operations on the original ground
truth (L). See equations 3.24-3.27 for definitions.

lows:

P
{0}
type(i, j) = p[Ltype(i, j) | f {0}(i, j)]

= h
{0}
type(f

{0}(i, j))
(3.28)

Noting that this set of probability maps forms a multi-dimensional image, we sim-
plify the notation by letting P {0} = {P {0}type}. Recently, Ting and Witten [119],
have empirically demonstrated that using the raw probability maps rather than the
thresholded classification labels as input to L1 classifier(s) improves performance.
As our experimental results will demonstrate, for non i.i.d. data, one can go fur-
ther and interleave feature extraction with learning to further improve performance.
Once again, this effectively allows us to take advantage of the rich domain structure
present within images and the resulting probability maps. Consequently the sec-
ond round of feature extraction can be implemented via the mapping:P {0} 7→ f {1},
where f {i} denotes the ith level of feature extraction. Subsequently the extracted
features can be utilized to train a set of L1 classifiers h{1}type. The final labeling
L{final} can then be produced by creating a topology usable by the watershed algo-
rithm from the probability maps P {1} and applying the watershed algorithm. The
process was described in the previous section. Within the stacking framework,
the topology creation process can be viewed as a feature extraction step mapping
P {1} 7→ f {ws}, while the watershed process can be viewed as an unsupervised clas-
sifier. The heterogeneous stacking process can now be succinctly summarized by a
sequence of mappings presented in Figure 3.5. Experimental results demonstrating
the efficacy of Heterogeneous Stacking are presented in Chapter 6.

38

3.5 Random Field Methods
Despite the apparent computational complexity of mapping I 7→ L, as discussed in
the introduction chapter, research into Markov/Conditional/Disciminative Random
Field methods [18, 65, 64] has produced a number of heuristic approaches for com-
puting L in a more holistic manner. Following [64], random field methods cast the
image segmentation problem as learning a noncausal model of the form:

p[L] =
∏
c∈C

hc(Lc) (3.29)

where C is the set of pixel cliques5, and hc are (learned) clique potentials. Within
the Markov Random Field (MRF) framework, the posterior over the labels is ex-
pressed using Bayes’ rule as:

p[L|I] ∝ p[L, I] = p[L]p[I|L] (3.30)

The generative MRF model, aims to learn the joint probability of the data and labels,
p[L, I], by modeling the prior, p[L] as an MRF (usually taken to be a homogeneous
isotropic Ising model) and assumes that the data likelihood term has a factorized
form:

p[I|L] =
∏

(i,j)∈S

p[I(i, j)|L(i, j)] (3.31)

In turn, this implies that the image pixels are conditionally independent from each
other, given the corresponding labels. Using the Hammersley-Clifford Theory [8]
and the above assumption allows the density of the MRF to be modeled as a Gibbs
distribution:

p[L] =
1

Z
exp

(∑
c∈C

hc(Lc)

)
where Z is the partition function. To incorporate data and spatial dependencies the
posterior MRF is modeled as:

p[L|I] =

1

Z
exp

 ∑
(i,j)∈S

ln
(
p[fI (i, j)|L(i, j)]

)
︸ ︷︷ ︸

association potential

+β
∑

(i,j)∈S

 ∑
(i′,j′)∈∂(i,j)

L(i, j)L(i′, j′)︸ ︷︷ ︸
interaction potential




(3.32)
where β is the interaction parameter.

5Recall, a clique is a fully connected subgraph of the original graph as discussed in the previous
chapter.

39

To generalize Equation 3.32, Conditional/Discriminative random field methods
incorporate additional data terms for modeling the posterior. For example, the DRF
model in [64] is given by:

p[L|I] =

1
Z

exp

 ∑
(i,j)∈S

hω1(L(i, j),fI (i, j))︸ ︷︷ ︸
association potential

+
∑

(i,j)∈S

 ∑
(i′,j′)∈∂(i,j)

hω2(L(i, j),L(i′, j′),fI (i, j))︸ ︷︷ ︸
interaction potential




(3.33)
where both the associative and interaction potentials incorporate the image features.
This enables abrupt transitions (i.e., edges) to be modeled. Parameter estimation
can be carried out in many ways, although usually the pseudo-likelihood maxi-
mization is used (see [64] for details). Inference (i.e., on-line computation of the
posterior for a test input) can be done in many ways however, empirical results in
[33] demonstrated that using the Iterated Conditional Modes (ICM) yields reason-
able performance. Since it is difficult to maximize the joint probability of an MRF,
[9] proposed the deterministic ICM algorithm that sequentially maximizes local
conditional probabilities. Given an initial estimate L0 of L, the algorithm iterates
over:

hICM : [fI (i, j),fLd−1(i, j)] 7→ Ld(i, j) (3.34)

where fLd−1(i, j) is the set of label values from lattice cites neighboring loca-
tion (i, j) determined during previous iteration d − 1. Formally, fLd−1(i, j) =
{L(i′, j′)|(i′, j′) ∈ ∂(i, j)}. The initial estimate L0 is usually produced by maxi-
mizing the association potential. The algorithm stops once some predefined con-
vergence criteria is satisfied, which is usually based on the difference betweenLd−1

and Ld.
While the random field models significantly improve on the basic model from

Equation 3.1, where image pixels (and labels) are unconditionally independent,
these models have never-the-less been found to be overly restrictive in practice.
Specifically, while the MRF/CRF model allows pairwise label interaction, analysis
of higher order interactions (see Figure 2.1) quickly becomes intractable. Further-
more, exact computation of the partition function, Z is also usually intractable6 and
in practice is approximated using sampling methods. Employing these ’short-cuts’,
still makes random field models difficult to train and apply in practice. More re-
cently, higher-order random fields have been developed in [109]. These are briefly
discussed in the next chapter. In addition, to eliminate the costly computation of the
partition function Z, energy minimization based methods have been proposed [70],
that learn raw potential function and do not require normalizing terms.

6In general computing the partition function, Z, is NP-hard [37].

40

Chapter 4

Automated Feature Extraction and
Relevant Applications

41

This chapter focuses on the feature extraction function fI (i, j). The typical
goal of feature extraction is the identification of information relevant to a particular
task at hand. In contrast to the manual feature design coupled with feature selection,
this chapter focuses on fully automated methods for feature extraction and a few
relevant applications (e.g., image denoising). These approaches remove the need
for manual feature creation altogether, by learning a set of (possibly non-linear)
filters, that can extract ’interesting’ aspects of a given image.

4.1 Neighborhood Analysis
Recall our initial assumption that a pixel I(i, j) does not contain enough infor-
mation about the label L(i, j) and we must therefore (at the very least) examine
neighboring pixels. LetN r(i, j) denote a symmetric neighborhood, corresponding
to an (2r + 1) × (2r + 1) subimage centered at, and including, location (i, j)1.
Therefore, a square image patch N r(i, j) has dimensions (2r + 1)× (2r + 1) and
contains (2r+ 1)2 = 4r2 + 4r+ 1 pixels. The neighborhood of pixel (i, j), defines
the most basic set of features, f(i, j) = vec(N r(i, j)), for describing the proper-
ties of a given pixel. Let x = vec(N r(I(i, j))), be a column vector representing a
vectorized image patch extracted from I . Now we can define the data matrix X0

as in Equation 3.7, with each row being a sample ofN r(·) and each column ofX0

corresponding to a different feature, and representing one neighbor of (i, j). The
centered data matrixX can then be calculated as in Equation 3.8 by subtracting the
mean feature vector from each row ofX0.

4.2 Linear Algebra, SVD and Eigenvalue Decompo-
sition

Following [47], let us define the `p of the vector x ∈ Rn by

‖x‖`p =

(
n∑
i=1

x(i)p

) 1
p

(4.1)

where x(i) is the ith component of vector x. Then given an m × n matrix A ∈
Rn×m, the matrix norm induced by the vector norm in 4.1 is:

‖A‖`p = max
x 6=0

‖Ax‖`p
‖x‖`p

(4.2)

1To prevent border effects the images are padded based on r.

42

It is well known that the `2 norm of a matrix corresponds to the largest singular
value σmax, where the singular value decomposition is given by A = UΣV and
the matrix Σ is an m× n diagonal matrix with:

σij =

{
0 if i 6= j

σi ≥ 0 if i = j

Furthermore, the set of singular values, σ(A) = {σi}, are related to the eigen-
values λ(ATA) = {λi}, by σi = +

√
λi, which are the solutions to the eigen-

value/eigenvector problem:
ATAx = λx (4.3)

for an n × n matrix ATA. The spectrum of ATA is given by λ(ATA), while the
spectral radius of ATA is given by ρ(ATA) = max λ(ATA). For now let us
consider a simpler case of a square n × n matrix A and the corresponding eigen-
value/eigenvector decomposition:

Ax = λx (4.4)

The eigenvectors ofA describe directions where the effect of the linear transforma-
tion given byA is simple to understand. Given a vector x solving equation 4.4, the
transformationAx simply multiplies x by eigenvalue λ. Hence SVD and eigenvec-
tor/eigenvalue decompositions provide the means for understanding the behavior of
a general linear transformationA.

4.3 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) [62] is a multivariate statistical technique that
calculates an orthogonal basis describing the variability in data. For zero mean data,
if two features are orthogonal, then they are uncorrelated. If E{·} denotes expecta-
tion, then two (zero mean) variables are (linearly) uncorrelated if their covariance,
Cx,y, is zero:

Cx,y = E{xy} = 0 (4.5)

By projecting the original correlated variables onto the PCA basis, a new set of
uncorrelated variables can be produced, that are linear combinations of the original
variables. The basis vectors (a.k.a. principal components) thus represent the major
(orthogonal) directions of variability in the dataset and are described by the eigen-
vectors of XTX , where X is the (mean normalized) dataset in matrix form, with
data samples represented by rows and each column representing a variable.

More specifically, PCA performs an eigenspace projection, which is calculated
by identifying the eigenvectors of the covariance matrix derived from a set of (train-
ing) data, denoted as X . The eigenvectors corresponding to non-zero eigenvalues

43

of the covariance matrix form an orthonormal basis that rotates and/or reflects the
data in the N -dimensional space. The covariance matrix is then computed as:

CX = XTX (4.6)

The eigenvectors of CX , given by the solution of either Equation 4.3 or 4.4, de-
scribe the principal directions of variability in the data set X . In the case of image
processing, data samples xi represent vectorized image patches, usually sampled
at random from a set of images. In turn, the principal components of this data set
represent a set of (vectorized) linear, orthogonal filters that can be used to extract a
set of features describing an image patch.

From a historical perspective, SVD was independently derived by Beltrami in
1873 and Jordan in 1874. The earliest description of PCA is given by Pearson in
1901 and Hotelling in 1933. Since then it has become a fundamental analytical
technique in numerous fields and is the basis of numerous other algorithms, in-
cluding canonical correlation analysis and partial least squares. PCA for computer
vision and image processing was first pioneered by Kirby and Sirvovich [116], who
showed that face images (registered and intensity normalized) comprised of thou-
sands of pixels can be characterized by just the first few eigenvectors (correspond-
ing to the eigenvalues with largest magnitudes). In [97] the approach was refined to
multiple subspaces each characterizing a facial feature. In essence the researchers
manually split the face into its constituent parts such as the eyes, mouth, nose, and
created a separate subspace for each part. By factoring the face into constituents,
face recognition was made more robust and required even fewer principal com-
ponents (in total) than the original PCA method. In general, PCA can effectively
preprocess the data for use by linear and logistic regression2.

4.3.1 Linear Autoencoders
Like the rest of the automated feature extraction algorithms presented in this chap-
ter, PCA can be reformulated as a special type of neural network. In this case the
(column) eigenvectors can be grouped/formed into a weight matrixW 1 and learned
by the following network topology:

x̂ = (W 2 ◦W 1)x (4.7)

In order to have convergence to the true PCA eigenvectors, the weight matrices
must be constrained to be orthonormal and W 2 = W T

1 . Notice that the features
of the input vector, x, can be extracted as f(x) = W1x and conversely, the orig-
inal input vector can be reconstructed via x̂ = W2f(x). Thus, the autoencoder

2The use of PCA with linear regression is sometimes called PCR for principal component re-
gression.

44

for learning PCA parameters is a linear network that constrains the weight matrices
such that the norm of each (eigenvector) is unity and that the ’feature extraction
matrix’, W 1 is equivalent to the transpose of ’output synthesis’ matrix, W 2, i.e.,
W 1 = W T

2 . The network in Equation 4.7 defines what is known as a linear au-
toencoder, which can be used to approximate the closed form PCA solution. In
most cases, the closed form eigenvector decomposition is usually preferred over
the autoencoder approach, due to the possibility of estimation errors that may occur
as a result of performing gradient descent. Nevertheless, if online gradient descent
is used to learn the weight matrices, the amount of data an autoencoder can pro-
cess is no longer bounded by the amount of RAM, as in the case of the eigenvector
decomposition. Furthermore, if the problem at hand is non-stationary, the online
autoencoder can continuously adjust to the changing environment by readjusting
the eigenvectors stored as weight matrices.

4.4 Independent Component Analysis (ICA)
Like PCA, independent component analysis [57] is statistical technique for analysis
of multivariate data. Both PCA and ICA try to discover hidden factors underlying
the data set. In contrast to PCA, which performs an analysis of the covariance
matrix, ICA goes further and analyzes higher order statistics, typically kurtosis,
in order to find independent rather that simply decorrelated components. A well
known fact in statistics is that if two Gaussian distributions are uncorrelated, then
they are independent. That implies that PCA, which finds an orthogonal and hence
decorrelated basis for the data set, is optimal for factors that have Gaussian distribu-
tions. On the other hand, ICA aims to uncover factors (also referred to as sources)
that are both non-gaussian and statistically independent.

Strictly speaking let x,y be observations of random variables x, y, represented
as vectors. Then

x,y are linearly independent If @a ∈ R such that ax = y and x 6= 0,y 6= 0,
where 0 is a vector of zeros.

x,y are orthogonal If 〈x,y〉 = xTy = 0, i.e., their dot-product is zero.

x,y are uncorrelated If 〈x− µx1,y − µx1〉 = 0, where µx, µy are the means,
and 1 is a vector of ones.

The relationship between uncorrelated, orthogonal and linearly independent is illus-
trated in Figure 4.1. The concept of statistical independence is different from linear
independence in linear algebra. From a statistical point of view, if two zero-mean
random variables are linearly independent then they are uncorrelated. Note that this

45

Figure 4.1: Visualization of the relationship between uncorrelated, orthogonal and
linearly independent variables. From [107].

only holds for zero mean variables. (See [107] for additional discussion.) However,
linear independence does not imply statistical independence. Two random variables
are statistically independent iff:

p(x, y) = p(x)p(y) (4.8)

That is, the joint density, p(x, y), must factor into a product of marginal densities
p(x) and p(y) [54]. It can be shown that two independent random variables x, y,
satisfy:

E{g(x)h(y)} = E{g(x)}E{h(y)} (4.9)

where g(x), h(y) are any absolutely integrable functions. By letting g(x) = x, h(y) =
y, equation 4.5 is obtained as a special case of 4.9. Another well known fact [54] is
that if two uncorrelated random variables are Gaussian, then they are independent.
This is due to the fact that a product of two Gaussian distributions is still a Gaus-
sian, and a distribution can be described by its moments, {mi}∞i=0. However, the
third and higher moments of a Gaussian distribution are zero. Hence, if x and y are

46

uncorrelated Gaussian random variables:

E{mi(x)mj(y)} = E{g(x)h(y)}
= 0

= E{g(x)}E{h(y)}
= E{mi(x)}E{mj(y)}, ∀i, j ≥ 3

where mi(·) is the ith moment. Thus PCA is optimal for linear mixtures of Gaus-
sian variables. In other words, if the latent factors are gaussian, only the covariance
of the data matrix needs to be analyzed. However, most real world data including
natural images, are not composed of linear, Gaussian mixtures, rather the distribu-
tions are very leptokurtic, i.e., the typical components comprising real world data
are super-Gaussian, having a higher kurtosis than a Gaussian random variable with
the same mean and variance (see Figure 4.3 for examples). Kurtosis (”excess”) is
defined as κ(x) = E{x4}

[E{x2}]2 − 3, and is zero for a Gaussian distribution. Therefore,
to find the true latent factors, independent components need to be identified.

The basic model for ICA assumes that a number of unknown (non-gaussian, and
statistically independent) sources s are linearly mixed by a mixing matrixA into a
set of observed mixtures x:

x = As (4.10)

Conversely, to identify the sources s, ICA computes a decomposition matrix A†

such that:
s = A†x (4.11)

where A† = A−1 if the mixing and decomposition matrices are square and non-
singular; otherwise it is the pseudo-inverse ofA. To uncover the independent com-
ponents, the data is first whitened/sphered in order to remove first and second order
statistical dependencies. This step can be easily done by using PCA. It can be shown
that by projecting the data onto normalized eigenvectors, the covariance of the new
data is set to identity. The second (iterative) step of ICA is to minimize fourth
order dependencies by finding a set of projections that mutually maximize one of
many non-linear contrast functions measuring the degree of sparseness or indepen-
dence between the projections. Research into Independent Component Analysis
(ICA) has produced a myriad of algorithms [54] capable of extracting linear, non-
gaussian components and can be readily applied to the problem at hand. Most of the
algorithms are iterative, and are based on maximizing a contrast function measur-
ing the degree of non-Gaussianity. Example measures of non-Gaussianity include:
kurtosis, entropy, Fisher score, and many others [54].

47

Figure 4.2: Visualization of 8 × 8 filters. Top Left: PCA basis, Top Right: ICA
basis (àα),Bottom Left: Analogously reshaped ICA filters (à†α), Bottom Right:
orthogonalized ICA with filters and basis being identical, as in the case of PCA.

4.4.1 Convolutional Encoding/Decoding of Images
This section describes an efficient implementation of ICA based image encod-
ing/decoding and is extensively used in the remainder of the dissertation. Let
x = vec(NIr (i, j)) be a column vector representing a vectorized image patch ex-
tracted from I andX be a centered matrix of samples.

Once the matrix A† has been learned from X , features can be efficiently ex-
tracted by reshaping the rows of A† into filters, rotating the filters by 180◦, and
subsequently convolving an input image with the newly created filter bank3. (Al-
ternatively one can forego the 180◦ rotation and use spatial correlation instead of

3Typically the input image is z-scaled (normalized) by subtracting the mean and dividing by the
standard deviation. Furthermore, the local mean is then subtracted from each n×n patch. The local
mean normalization can be efficiently implemented via convolution as well.

48

convolution.) We denote by à†α the filters created from A†. The set of filters is
denoted by Φ = {à†1, ..., à

†
k}. Hence, for a given image I , the feature maps fIα can

be produced via convolution by:

fIα = I ∗ à†α (4.12)

The feature vector fI (i, j) = s(i, j) is the set of latent variables describing the
n × n pixel neighborhood centered at site (i, j) (i.e., an Nr(i, j) patch where n =
(2r + 1)).

Furthermore, given a set of feature maps, f = {fα}kα=1, the original image
can be also efficiently reconstructed using convolution. Before presenting convo-
lutional decoding, a few preliminaries are in order. Observe that the Nr(i, j) patch
is generated by reshaping the vector output of As(i, j) into an n× n patch, where
n = 2r + 1. Let α index the individual components of s = [s1, ..., sk], and drop
spatial indices (i, j). ThenAs = A1s1+...+Aksk =

∑
αAαsα, whereAα is a αth

column vector. Let Ψ = [à1, ..., àk] be the set of filters created from the columns
of matrixA. Then

N̂r(i, j) =
k∑
α

àαsα(i, j)

represents the reconstruction of Nr(i, j). Intuitively, if (i′, j′) ∈ ∂(i, j), then
patches Nr(i

′, j′) and Nr(i, j) overlap. To produce the final reconstructed image Î ,
the method of sliding windows, averages out the output for all the patches overlap-
ping (i, j). For interior pixels, there are n2 = (2r+1)2 overlapping patches that are
averaged over to produce the final output. A straightforward implementation of ICA
based image reconstruction would involve starting with Î(i, j) = 0, ∀(i, j) ∈ S.
Then adding the output of each patch to Î(i, j) one at a time, as

N
ˆI
r (i, j) = N

ˆI
r (i, j) +

k∑
α

àαsα(i, j) ∀(i, j) ∈ S

The final step would be to normalize Î based on the number of patches that overlap
(i, j). Rather than multiplying àα with a scalar fα = sα(i, j), convolutional decod-
ing convolves the spatial feature map fα with the filter àα4. In this implementation,
the output is given by:

Î = f ∗Ψ =
k∑
α

fα ∗ àα (4.13)

where f ∗ Ψ, denotes tensor based convolution. Once again the final step is to
normalize each location (i, j) based on the number of overlapping patches. In order

4Equivalently, correlation can be used: Î =
∑k
α fα ? à−α , where ? denotes spatial correlation

and à− is a filter rotated 180◦.

49

to understand convolutional decoding let us consider a single 3 × 3 feature map f
and a 3× 3 filter à:

f =
f1,1 f1,2 f1,3

f2,1 f2,2 f2,3

f3,1 f3,2 f3,3

à =
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

à− =
a3,3 a3,2 a3,1

a2,3 a2,2 a2,1

a1,3 a1,2 a1,1

Next consider the contribution to Î(2, 2) made when filter à is positioned over loca-
tion (1, 1), which is f1,1a3,3. Recall that location (1, 1) produces as output a patch
N1(1, 1) = f(1, 1)à the bottom left location of N1(1, 1) corresponds to location
Î(2, 2). The full contribution is then Î(2, 2) = f1,1a3,3 + f1,2a3,2 + f1,3a3,1 + ... +
f3,1a1,3 +f3,2a1,2 +f3,3a1,1. But this is precisely the convolution with à and, equiv-
alently spatial correlation with à−, which is à rotated 180◦ about the center pixel.
Hence, feature extraction and output synthesis can be efficiently performed via
convolutional operations based on Equations 4.12 and 4.13. This approach will
is utilized for a number of algorithms presented in the remainder of this chapter
and is also the fundamental building block of Stacked Convolutional Regression.
Additional insight can be gained by observing that averaging over multiple over-
lapping patch outputs is similar to model averaging presented previously. In this
case, the output for a given location (i,j) is given under different context. Each
neighbor (i′, j′) ∈ ∂(i, j) proposes its own estimate for location (i, j) which is
subsequently integrated with other estimates into a single output. One immedi-
ate observation is that PCA/ICA algorithms inherently ignore interactions between
overlapping patches, I.e., these algorithms implicitly consider image patches inde-
pendent of one another. Clearly this is an incorrect assumption, which several al-
gorithms try to address. These are discussed in the context of High Order Random
Field Methods at the end of the chapter.

4.4.2 ICA based Neural Networks
As in the case of PCA, a single hidden layer autoencoder can be used for learning
ICA parameters. Letting the first weight matrix equal the de-mixing (feature extrac-
tion) matrix A† = W 1 and the reconstruction matrix equal to the second weight
matrix,A = W 2, we get an autoencoder neural network:

x̂ = (W 2 ◦W 1)x (4.14)
= W 2(W 1x) (4.15)
= W 2s (4.16)

As previously, the first layer of this neural net extracts latent components s, from
the input vector x, while the second layer reconstructs the input vector x̂, from the
latent components. The constraint of W 2 = W †

1 is still required. Hence, we could

50

try to learn the mixing/demixing matrices by minimizing the reconstruction error,
MSE(x, x̂). Unfortunately this approach can only produce a representation of the
data congruent to PCA. To produce ICA-like components we need to introduce a
non-linearity, g1, to capture higher order moments of the input matrix (see [57] for
details).

x̂ = (W 2 ◦ g1 ◦W 1)x

Later sections of this chapter further discuss the link between neural nets and PCA/ICA.
For now, observe that once learned, this type of neural network also acts as a bank
of filters that can be applied to an image. The first set of weights W 1 extracts a
set of feature maps, f = {fα}, while the second set of weights, once properly re-
shaped, is used to synthesize the approximation to the initial input. I.e., Equations
4.12 and 4.13 can be used with neural networks as well.

To briefly review, in contrast to using a monolithic set of hand-crafted features,
ICA (like PCA) learns a new feature extraction matrixA† for each new domain in an
unsupervised and automated way. Furthermore, the features are independent of one
another, resulting in improved estimates of linear and logistic regression parameters
ω during the learning stage. Conveniently, since the rows (resp. columns) of A†

(resp. A) can be reshaped into image patches, the learned filters are can be readily
visualized as in Figure 4.2, which depicts the filters learned by PCA and ICA used
for extracting orthogonal and independent components. Furthermore, filters learned
by ICA resemble Gabor filters, and more importantly respond to stimuli in a manner
similar to cells found in V1, an area of the brain responsible for initial processing
of visual information [92, 120]. Experimental results utilizing ICA, in conjunction
with heterogenous stacking (c.f., Section 3.4.3), are presented in Chapter 6.

4.4.3 Sparse Code Shrinkage for (Image) Denoising
A simple method for image de-noising via ICA uses a set of “clean” images to learn
the independent components. Subsequently, when a noisy image is projected onto
the ICA basis, the resulting independent components can be shrunk (towards zero)
to reduce noise. The (optimal) shrinkage function depends on the distribution of
the independent component as shown in Figure 4.3.
The typical noise model used is:

y = s+ v (4.17)

where y is the noisy observation, s is the signal corresponding to the true indepen-
dent component, and v ∼ N (0, σ) is zero mean Gaussian noise with variance σ2.
In [55] the following denoising functions were proposed:

ŝ = y − σ2f ′(y) (4.18)

51

Figure 4.3: Left: Plots of densities corresponding to different models of sparse
components. Solid line: Laplace density. Dashed line: a typical moderately
sparse(super-Gaussian) density. Dash-dotted line: a typical strongly sparse(super-
Gaussian) density. Dotted line: Gaussian density. Right: Plots of (optimal)
shrinkage functions for each distribution above. Solid line: shrinkage corre-
sponding to Laplace density. Dashed line: shrinkage corresponding to moder-
ately sparse(super-gaussian) density. Dash-dotted line: shrinkage corresponding
to strongly sparse(super-gaussian) density. Dotted line: y = x for reference. Figure
and text from [55].

and
ŝ = sign(y)max(0, |y| − σ2|f ′(y)|) (4.19)

where f(y) = −log(p(y)), the negative log density of the distribution of y and f ′(y)
is the corresponding derivative. The shrinkage functions are designed to reduce the
entropy of a distribution (i.e., making it even sparser). The shrinkage functions
work in exactly the same way as regularization does within neural networks by
driving the magnitude of components/weights towards zero. Notice the similarity
of the shrinkage functions to the regularization terms of Equations 3.18 and 3.21.
In [55], the researchers show that the more kurtotic the distribution of a random
variable is, the easier it is to denoise, since small component values almost surely
denote noise and can be set to zero. Thus, by using ICA, sparse, super-gaussian
components can be identified that in turn are easily de-noised and converted back
into the image patches. In order to denoise images rather than patches two potential
approaches exist. One approach is to divide the image into non-overlapping tiles
and denoise each tile independent of others. Unfortunately, this introduces signifi-
cant blocking artifacts where the tiles meet one another. In addition the procedure is
not invariant to translation since the output for a given pixel location would depend
on its relative position within the tile.

In contrast, the aforementioned sliding window approach analyzes each loca-

52

tion, (i, j), after padding the image appropriately. I.e., given an Nr(i, j) patch, the
image is padded by r pixels on all sides. For interior image regions, the net ef-
fect is that location (i, j) is actually analyzed (2r + 1)2 times5. The final output is
then produced by taking an average of all outputs for a given location (i, j). Un-
like tiling, this technique is translation invariant, and eliminates blocking artifacts.
There are however border effects, but this is a general issue in image processing. As
previously described convolutional decoding can be used to implement the sliding
window algorithm in an efficient manner.

ICA denoising methods are closely related to wavelet shrinkage and wavelet
coring [115]. More recently researchers extended these basic models to include a
Markov random field [109], which specifies a prior on the spatial distribution of
components S which is discussed later in the chapter.

4.4.4 ICA for Feature Extraction from Color and Stereo Images
In [51], researchers applied the FastICA algorithm [58] to color and stereo image
data. By concatenating the color/stereo channels into a single vector and subse-
quently running ICA on the new joint vectors, the approach was able to learn color
and stereo filters. More specifically, for two stereo image patches, vectorized into
x1,x2, and in correspondence with one another, the joint vector, z is produced by:

z =

(
x1

x2

)
(4.20)

Then finding the latent factorsA, by solving(
x1

x2

)
= z = As =

(
A1

A2

)
s (4.21)

results in a joint representation of the stereo channels. The matricesA1 andA2 can
be once again visualized by reshaping each row into an n × n filter. The result of
applying ICA to stereo images is depicted in Figure 4.4.

4.4.5 ICA for Regression
Hyvrinen et al. [56] proposed independent component regression (ICR), which
elegantly demonstrates the intricate relationship between ICA, artificial neural net-
works [46] and projection pursuit regression [52]. More specifically, the goal is
to identify a joint latent space that can succinctly model both input and output in
a manner similar to modeling stereo image patches. To accomplish this feat, first

5The borders, e.g., location (1,1) would only be analyzed (r + 1)2 times, or if padding is not
used, just one output would be produced.

53

Figure 4.4: ”ICA basis of stereo images. Each pair of patches represents one basis
vector ai of the estimated mixing matrixA. Note the similarity of these features to
those obtained from standard image data. In addition, these exhibit various degrees
of binocularity and varying relative positions and phases.” Figure and Text from
[51].

consider a set of vectorized image patches X as defined in equation 3.8 and the
corresponding vectorized patches of labels Y defined in a similar manner. Then,
let Z be the concatenated input-output matrix given by:

Z =

(
X
Y

)
(4.22)

Applying ICA (after removing linear dependencies between X and Y) to Z iden-
tifies the joint latent space. Throughout the text we refer to this and related tech-
niques as associative component analysis. One related and well known technique
is partial least squares (PLS) (e.g., [84]) which extracts and associates decorrelated
input/output components. As such PLS performs associative PCA, simultaneously
extracting principal components from input and output and performing linear re-
gression between the two. In contrast, ICR is a non-linear procedure. The following
formulation follows [56]. By performing ICA on z, formed by concatenating input
x and output y vectors, a joint latent space is found given by:(

x
y

)
=

(
Ain

Aout

)
s (4.23)

54

where, once again, s is a vector of joint independent components. The output, y
can now be approximated as:

ỹ = E{y|x} = Aout

∫
s=AT

inx

sp(s) ≈ Aoutg(AT
inx) (4.24)

To understand equation 4.24, first observe that AT
inx = s̃, is a (noisy) approxima-

tion to the joint latent factors s. The function g can then be viewed as denoising s̃.
The denoised components g(s̃) are then transformed via Aout into the final output
ỹ. A simpler version of this idea was successfully applied to image denoising and
presented in a preceding section of this chapter. In addition, [55] shows that the
more super-gaussian the distribution p(si) is, the better the denoising results are
(provided that the noise is distributed as a zero mean Gaussian with known vari-
ance). This is not surprising, since the essence of the algorithm is to shrink each
si towards zero. The more leptokurtic a distribution, p(si) is, the less entropy is
present and hence small (in absolute value) non-zero components are more likely
to be noise. As a result, sparse code shrinkage via soft thresholding works better
for highly kurtotic distributions. The method is closely related to Bayesian Wavelet
Coring [115].

Turning our attention back to the soft thresholding function g(u) = [g1(u1), ..., gn(un)]
from equation 4.24, [53] shows that letting each gk(uk) = −tanh(uk) + cuk, where
c is a global constant common to all k, corresponds to a model based neural network
(with a single hidden layer). In this case each hidden node of the neural net is per-
forming feature extraction via W 1 = Ain, denoising via g1 = −tanh(uk) + cuk,
and reconstruction usingW 2 = Aout . In essence, each component uk is shrunk by
−tanh(uk) in order to compensate for noise during the feature extraction process
resulting from the missing data, y.

4.5 Autoencoders and Non-Linear PCA
An auto-encoder is an artificial neural network used for learning efficient encod-
ings. As the name implies, the aim of an auto-encoder is to learn an encoding or a
representation of the data. Auto-encoders, depicted in Figure 4.5, use one or more
hidden layers and have the input layer identical to the output layer. Formally an
autoencoder, with l layers is given by the function:

x̂ = (gl ◦W l ◦ ... ◦ g1 ◦W 1)x (4.25)

where x̂ is the reconstruction of input x. As mentioned, the goal is to learn a
representation of the data matrix X . More specifically, an autoencoder can be
thought of as a feature extraction method. The output of any hidden layer, fk(x) =

55

Figure 4.5: Nonlinear PCA. A typical auto-associative neural network. The net-
work’s output is forced to be equal to the input x. Illustrated is a [3− 4− 1− 4− 3]
network architecture with biases omitted for clarity. Three-dimensional samples x
are compressed into a scalar component z by the extraction part. The reconstruction
part synthesizes x̂ from z. The samples are usually noise-filtered representations of
x. Text and Figure modified from [112].

(gk ◦W k ◦ ... ◦ g1 ◦W 1)x, 1 ≤ k < l, can be thought of as features representing
x, while the remaining layers k+ 1, ..., l can be viewed as the reconstruction layers
that synthesize an approximation of x from the features, fk(x).

If the transfer functions, gi, are linear then the auto-encoder has the represen-
tational power of PCA, regardless of depth. With a single non-linear layer of hid-
den units, and some simple additional constraints, it is possible to produce an ICA
like representation of the data. In this case the feature extraction is performed by
W 1 = A†, while the reconstruction is performed byW 2 = A.

In contrast to simple shallow architectures, deep non-linear architectures at-
tempt to learn hierarchical structure, and hold the promise of being able to first
learn simple concepts, and then successfully build up more complex concepts by
composing together the simpler ones. However, it is extremely difficult to opti-
mize the weights in non-linear autoencoders that have multiple hidden layers and
millions of parameters. With large initial weights, autoencoders typically find poor
local minima and with small initial weights, the gradients in the early layers are tiny,
making it infeasible to train autoencoders with many hidden layers. This inability
to learn is the main reason this potentially powerful nonlinear dimensionality re-
duction algorithm has not found many practical applications. However, if the initial
weights are close to a good solution, gradient descent works well, but finding such
initial weights requires a very different type of algorithm that learns one layer of
features at a time.

56

Figure 4.6: Architecture of the Diabolo Networks. Each autoencoder is trained to
minimize the reconstruction error of one specific class of samples. At runtime the
reconstruction error of each autoencoder is used to decide the class label for a given
sample. Figure from [113].

4.5.1 Diabolo Networks - Discriminative Autoencoders
In [113], a set of autoencoders was used in a discriminative manner. Each autoen-
coder is trained to minimize reconstruction error of samples belonging to one of
k classes. During the on-line phase, the algorithm applies each autoencoder and
measures the reconstruction error (MSE) each autoencoder produces. The label
corresponding to the autoencoder with the lowest error is then assigned to a given
test sample. Figure 4.6 depicts the diabolo classifier used for character recognition.

To further improve performance, each autoencoder can utilize information from
other classes. Recall the gradient descent procedure defined by Equation 4.5.1. In
discriminative mode, the autoencoder employs both gradient descent, to minimize
MSE for the target class samples, and gradient ascent to increase the reconstruc-
tion error of the non-target class samples. Thus the weight update rule of the kth

57

Motivation

 To understand the workings of the diabolo network, recall that we are trying to
detect outliers by measuring the reconstruction error. The regular autoencoder assumes
the training set is free from outliers (or some type of regularization procedure is used to
make the autoencoder resilient to outliers). Hence the autoencoder attempts to minimize
the reconstruction error on all samples. In contrast when examples of outliers are
available (as in fraud detection) we can leverage this knowledge by forcing the network
to increase the reconstruction error for samples deemed to be outliers by performing
gradient ascent instead of descent.

 MSE

 Normal Fraud

As previously mentioned the standard autoencoder attempts to minimize the
reconstruction error on training samples. One (of many) problems observed in the
literature1 is that autoencoders can sometimes generalize “too well”, that is, after training
they are capable of reconstructing “everything” rather well, including outliers. This, to
some extent is not surprising since no counter examples (of what not to reconstruct well)
were never presented to the network. Hence, there are no apriori constraints (accept
thought the network topology, and regularization) as to what the network should and
should not reconstruct. In contrast, when counter examples are readily available they can
be used by the diabolo network to constrain the network’s reconstruction abilities.

Application to Fraud Detection

 In the case of telco fraud detection consider the fact that we train several models
for each segment. For example, for business customers two models are trained to detect
Subscription fraud and technical fraud. The rationale is that each type of fraud behaves
differently. However, note the fact that normal samples are drawn from the same pool
for each model! Furthermore the number on “normals” greatly outweighs the number
fraud samples. These imbalanced classes pose problems for standard classifiers such as
neural networks and to a somewhat lesser extent logistic regression. In either case the

1 The Diabolo Classifier, Holger Schwenk, Neural Computation, Vol 10, 2175-2200.

Page 1 of 1

8/30/2008http://yann.lecun.com/exdb/publis/images/loss-func.png

Figure 4.7: Energy Based Learning. Top: The push/pull effect on the energy sur-
face. Bottom: The evolution of the energy surface with the black dots representing
the training data. Figure modified from [70].

autoencoder becomes:

W new(i, j) =


W (i, j)− η1

∂Emse(y, hω(x))

∂W (i,j)
if y = k

W (i, j) + η2
∂Emse(y, hω(x))

∂W (i,j)
if y 6= k

(4.26)

The concept of ‘tugging’ up or down on an energy function is also related to the
wake-sleep and contrastive divergence algorithms [49] used to train a Restricted
Boltzmann Machine presented in the next section. The algorithms maximize prob-
ability of training points, while minimizing the likelihood of samples confabulated
during the ’dream’ phase. The idea was generalized by energy based models (EBM)
of [70]. In contrast to probabilistic graphical models6, where a probability is associ-
ated with each configuration, energy based models simply assign an un-normalized
energy and eliminate the need for computing the partition function. In the genera-
tive case, the goal of (EBM) is to minimize the energy of training data and nearby
points, while raising the energy of points far from the training data as depicted in
Figure 4.7. Similar to the random field models, in the discriminative case, one
must search for the configuration with the lowest energy by querying the generative
model or following the energy gradient. In [89] an energy based model [71] was
used in a manner analogous to heterogeneous stacking and was also shown to be
effective at ‘cleaning up’ label noise.

4.5.2 Deep Greedy Layer-wise Learning
As previously mentioned, for networks with many (more than four) hidden lay-
ers, conventional learning procedures fail. However, the problem can be remedied

6Technically probabilistic graphical models are a subclass of energy based models.

58

Figure 4.8: Learning Deep Autoencoders. The deep 784-400-200-100-50-25-6 au-
toencoder makes rapid progress after pretraining but no progress without pretrain-
ing. From [48].

by using initial weights that approximate the final solution. The process to find
these initial weights is often called pretraining. The effectiveness of pretraining is
demonstrated in Figure 4.8.

The pretraining technique, developed by Hinton et al. [48], for training many-
layered ”deep” auto-encoders involves treating each neighboring set of two layers
as a Restricted Boltzmann Machine for pre-training to approximate a good solution
and then using a backpropagation technique to fine-tune the whole network. Hin-
ton et al. [48] describe a way to perform fast, greedy learning of deep, directed
belief networks by training a stack of Restricted Boltzmann Machines one layer at
a time. In addition, Bengio et al. [7], proposed a similarly greedy algorithm, but
directly based on a single hidden layer autoencoders, called stacked autoencoders.
Ranzato et al. [103] developed an energy-based hierarchical algorithm, based on a
sequence of sparsified autoencoders/decoders. In related direction, several studies
have compared models such as these, as well as non-hierarchical/non-deep learning
algorithms, to the response properties of neurons in area V1. In [120] van Hateren
and van der Schaaf demonstrated that the filters learned by independent components
analysis (ICA) on natural image data match very well with the classical receptive
fields of V1 simple cells. Filters learned by sparse coding also give responses simi-
lar to V1 simple cells.

The aforementioned greedy learning algorithms for pretraining autoencoders,

59

Figure 4.9: Learning Deep Autoencoders using greedy layer-wise training and fine-
tuning. From [48].

progressively discover low-dimensional representations. As an interesting side-
note, observe the similarities between pre-training, cascade correlation and stacked
generalization. Both use previous output as input to a new layer of machine learning
algorithms. After the pretraining stage, the model is unfolded as shown in the mid-
dle column of Figure 4.9, to produce encoder and decoder networks that initially
use the same weights as learned during pretraining. Subsequently, a global fine-
tuning stage uses backpropagation through the whole autoencoder to fine-tune the
weights for optimal input reconstruction. The key idea is that these greedy learning
algorithms will perform a global search for a good, sensible region in the parameter
space. Therefore, with just pretraining, a good data reconstruction model can be ob-
tained. Backpropagation is better at local fine-tuning of the model parameters than
global search. So further training of the entire autoencoder using backpropagation
can result in a good local optimum.

To formalize the approach a succinct description for each of the three phases,
pre-training, unrolling, and fine-tuning, using the notation defined thus far, is as

60

follows:

Pre-training starts by training an autoencoder with a single hidden layer, either
using contrastive divergence as in the case of RBMs [48] or back propagation
as in the case of stacked autoencoders [6]. Let fk(x) represent the hidden
layer output of the kth autoencoder with respect to original input x. That
is fk(x) =

(
g ◦W k

1

)
fk−1(x), with f 0(x) = x, and the kth autoencoder

given by:

f̂k−1(x) =
(
W k

2 ◦ g ◦W k
1

)
fk−1(x) (4.27)

subject to the constraint that W k
1 = W kT

2 . This constraint has already been
discussed in previous section describing PCA and serves to produce a single
encoding/decoding matrix. Furthermore, in contrast to the autoencoder for
PCA this type of network has a non-linear transfer function g.

Unrolling is performed once all individual layers have been learned. The deep
autoencoder is assembled from the constituent parts, namely the previously
learned single layer autoencoders:

x̂ = (W 1
2◦g◦W 2

2◦g◦ ...◦g◦W k
2 ◦g◦W k

1 ◦ ...◦g◦W 2
1◦g◦W 1

1)x (4.28)

Fine-Tuning Once the deep net has been constructed, backpropagation as in Equa-
tions 4.5.1, 3.18 or 3.21 can be used to fine tune all the weights in all the
layers. The constraint W k

1 = W kT

2 is now relaxed (i.e., ignored) to improve
reconstruction.

As a final thought we quote Yoshua Bengio [6] on this utmost critical topic:

Deep architectures and the greedy layer-wise strategy exploits the prin-
ciple, apparently also exploited by humans (Piaget, 1952), that one can
more easily learn high-level abstractions if these are defined by the
composition of lower-level abstractions, with the property that these
lower-level abstractions are useful by themselves to describe the data,
and can thus be learned before the higher level abstractions are learned.

4.6 Convolutional Networks
Convolutional neural networks (CNN) are deep multi-layer artificial neural net-
works with a brain-inspired architecture motivated by vision tasks. Unlike con-
ventional neural networks, they have local connectivity. In every hidden layer of

61

conventional neural nets, each input is connected to each node of the subsequent
layer, i.e., they are fully connected. In contrast, local connectivity constrains the
input field of each hidden layer neuron to a small window of neurons at the pre-
vious layer. CNN’s are further constrained by the concept of parameter sharing,
whereby neurons with exactly the same input weights but a different spatial input
fields are spatially replicated across a Cmap that preserves the topology of the input
image, see Figure 4.10. The same concept can be applied to one-dimensional data
(sequences), yielding so-called time-delay neural networks, as well as to higher-
dimensional structures. What is important about convolutional neural networks is
that they can be trained to be extremely robust to a large number of invariance
factors in object recognition, such as of translation, rotation, slant, scaling, edge
thickness, illumination, clutter (and to some degree occlusion). Since these factors
can be composed and present a combinatorial explosion of variations, it appears
hopeless to attack such tasks with template-based or local kernel algorithms. On
the other hand, convolutional neural networks have been found to be extremely
successful in object recognition and object detection tasks in vision.

4.6.1 Neocognitron
One of the first hierarchical multilayered neural networks, capable of learning, was
the neocognitron, proposed by K. Fukushima [36]. It has been used for handwrit-
ten character recognition and other pattern recognition tasks. Figure 4.10 shows
a typical architecture of the neocognitron network. The lowest stage is the input
layer consisting of a two-dimensional array of cells, which represent the ”photo-
receptors” of the retina. Connections between cells of adjoining layers are retino-
topically7 organized. Each cell receives input connections that lead from cells sit-
uated in a spatially localized area on the preceding layer. The rest of the hierarchy
is composed of alternating layers of ”S-cells” and ”C-cells”. (The network shown
in Figure 4.10, contains an additional contrast-extracting layer, which is usually
manually coded). S-cells work as feature-extractors. Functionally, they resemble
simple cells of the primary visual cortex and their input connections are modified

7Retinotopy describes the spatial organization of the neuronal responses to visual stimuli. In
many locations within the brain, adjacent neurons have receptive fields that include slightly different,
but overlapping portions of the visual field. The position of the center of these receptive fields
forms an orderly sampling mosaic that covers a portion of the visual field. Because of this orderly
arrangement, which emerges from the spatial specificity of connections between neurons in different
parts of the visual system, cells in each structure can be seen as forming a map of the visual field
(also called a retinotopic map, or a visuotopic map). Retinotopic maps are a particular case of
topographic organization. Many brain structures that are responsive to visual input, including much
of the visual cortex and visual nuclei of the brainstem (such as the superior colliculus) and thalamus
(such as the lateral geniculate nucleus and the pulvinar), are organized into retinotopic maps, also
called visual field maps. From http://en.wikipedia.org/wiki/Retinotopy

62

http://en.wikipedia.org/wiki/Retinotopy

Image:ScholarFig1.gif
From Scholarpedia

This page is not peer reviewed. Only curators can edit it.

Image
File history
Links

ScholarFig1.gif (21KB, MIME type: image/gif)

File history
Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.
Click on date to see the file uploaded on that date.

(del) (cur) 02:55, 16 December 2006 . . (21134 bytes)

Upload a new version of this file
Edit this file using an external application
See the setup instructions for more information.

Links
The following pages link to this file:

Neocognitron

Retrieved from "http://www.scholarpedia.org/article/Image:ScholarFig1.gif"

Page 1 of 2Image:ScholarFig1.gif - Scholarpedia

4/28/2008http://www.scholarpedia.org/article/Image:ScholarFig1.gif

Figure 4.10: Architecture of a Neocognitron From http://www.
scholarpedia.org/article/Neocognitron.

through learning. After learning, each S-cell selectively responds to a specific fea-
ture present within its receptive field. Generally speaking, local features, such as
edges or lines in particular orientations, are extracted in lower stages resembling
the learned filters of ICA. More global features, such as parts of learning patterns,
are extracted in higher stages.

C-cells, which resembles complex cells in the visual cortex, are inserted in the
network to allow for positional errors in the features of the stimulus. The input con-
nections of C-cells, which come from S-cells of the preceding layer, are fixed and
invariable. Each C-cell receives excitatory input connections from a group of S-
cells that extract the same feature, but from spatially different positions. The C-cell
responds if at least one of the S-cells within its receptive field is active. Thus, the
C-cell’s response is locally invariant to spatial translation of the input pattern. From
a technical perspective, the C-cells execute a blurring (low pass filtering) operation,
because the responses of preceding S-cells are summed by C-cells. Since the re-
ceptive fields of C-cells overlap each C-cell in essence averages out the outputs of
spatially localized S-cells.

Each layer of S-cells or C-cells is divided into sub-layers, called ”cell-planes”,
according to the features to which the cells responds. As usual the cells in each cell-
plane are arranged in a two-dimensional lattice such as the one defined in Equation
2.1. A cell-plane is a group of cells that are arranged retinotopically and share the
same set of input connections. In other words, the connections to a cell-plane have a
translational symmetry. As a result, all the cells in a cell-plane have receptive fields
of an identical characteristic, but the locations of the receptive fields differ from

63

http://www.scholarpedia.org/article/Neocognitron
http://www.scholarpedia.org/article/Neocognitron

cell to cell. The modification of S-cell connections during the learning process is
also constrained by the sharing of connections. The final layer of the network, of
C-type cells acts as a linear classifier that outputs the class of the input image (e.g.,
the image is the digit ’1’).

The original neocognitron used unsupervised learning to modify the weights of
S-cells and was able to extract ’interesting’ features from the data. Unfortunately it
did not produce good performance (on the character recognition task).

4.6.2 LeNet
In contrast to the neocognitron, LeNet, also a Convolutional Neural Network ar-
chitecture proposed by Yann LeCun [69], utilized supervised back-propagation to
learn the weights for S-cells. In addition, these networks, depicted in Figure 4.11,
have different C-cells. The C-cells in the CNN downsample the input maps rather
than just filter them. This results in smaller and smaller feature maps further up the
hierarchy. In addition, conventional layers have been added at the very top of the
hierarchy in order to further improve object recognition performance.

Unfortunately, the major difference between neocognitron and the CNN archi-
tecture maybe notational rather than conceptual. The description of the neocog-
nitron [36] uses the concept of C-cells and S-cells to denote Simple and Complex
cells, where by the simple cells learn while the complex cells perform a fixed spatial
averaging operation. On the other hand, the description of the CNN uses C-maps
and S-maps to mean Convolutional and Sub-sampling layers, thereby reversing the
notational logic. Despite the confusing notation, after training both systems func-
tion in a similar manner.

In both cases, due to the weight sharing constraints, the systems produce a deep
neural network that utilizes a set of learned weights very similar to those learned by
PCA/ICA and autoencoders. As the name implies, these weights can be reshaped
into filter banks and convolved with input images in a manner analogous to meth-
ods presented in Section 4.4.1. In essence, rather than working on single vectorized
image patches, CNNs work on images. Despite the apparent complexity, convolu-
tional networks can be described using the neural network notation developed thus
far. Consider a set of learned convolutional weights, ω = {W 1,W 2, ...}. The
first set of weights, W 1, can be reshaped much like the ICA filters into 2-D filters,
Φ1 = {ẁ1, ẁ2, ...}. Each convolution produces a set of feature maps, fα = I ∗ẁα.
The individual feature maps are subsequently transformed by the transfer function
g, sub-sampled, and composed into a multidimensional feature map (i.e., a tensor),
f = [f 1,f 2, ...,fα, ...]. The second set of weights,W 2, is now reshaped into a set
of multidimensional filters Φ2, which are convolved with the feature map f . The
process repeats itself until all the convolutional and sub-sampling operators have
been applied. The remaining feature map, flast is reshaped into a vector, x which

64

Figure 4.11: Architecture of Convolutional Neural Networks. Top: From [32].
Bottom: From [69]. The key difference between the top and bottom architectures is
that the top architecture performs a multidimensional convolution in layer 3. On the
other hand, the bottom network, the original LeNet5, performs standard convolution
in layers 3.

is fed into a conventional neural net to produce the final output y. In this fashion an
image, for example containing a digit, can be classified. In terms of image/object
segmentation, CNN’s have been applied with promising results in [60] and [89].

65

4.7 High Order Random Fields
for image analysis and denoising

As mentioned in the previous chapter, a major limitation of random field methods
is the practical restriction to pairwise clique potential within the interaction term of
Equations 3.32 and 3.33. The limitation stems from the combinatorial explosion
of potential clique configurations possible as the size of the cliques gets larger. To
overcome this problem a number of research endeavors have tried to create higher
order random field methods using a limited but useful subset of clique configura-
tions. Early attempts made use of hand-selected filter banks in order to efficiently
describe an n× n patch thereby circumventing the need to integrate over all poten-
tial clique configurations. A brief review of these methods and further references
can be found in [108]. Within the random field framework, the selection of rele-
vant cliques is analogous to manual feature selection. More recently, research on
automated feature extraction, such as PCA, ICA and a myriad a variants has been
integrated into the random field framework. The combined methodology, enables
simultaneous parameter learning and selection of relevant filters constituting a sub-
set of cliques. One of the first such systems, called Field of Experts [109], is based
on the product of experts (PoE) methodology of [50, 49].

Like ICA, the PoE methodology models image patches as a set of latent features.
Prior to describing the PoE model, recall that by assumption the ICA components
are independent. Therefore, the likelihood of observing a vectorized image patch x
is given by product of the empirical distributions:

p[x] ∝
∏
k

gk(sk) =
∏
k

gk(A
†
kx)

where the kth independent component sk = A†kx, is the dot-product of the input x
and the kth row of the ’un-mixing’ matrix A†, and gk is the empirical likelihood of
observing the value sk for the kth independent component. From a practical point
of view, given an n × n image patch, ICA in general cannot find a set of n2 fully
independent components, thereby making the above model an approximation.

In contrast to ICA, the PoE approach models the likelihood function, gk, in
addition to the filters JTk ≈ A

†
k. The generative product of student-t experts (PoT),

from [117] is given by:

pω[x] =
1

Zω

∏
gk(J

T
kx, αk) (4.29)

where the learned parameters are ω = {J ,α}, Zω is the partition function, and gk
is modeled as a student-t expert:

gk(J
T
kx, αk) =

(
1 + (

JTkx

2
)2

)αk

, αk ≥ 0 (4.30)

66

Figure 4.12: Fields of Experts architecture visualized as a specialized Convolutional
Neural Network. From [108]

Observe, each expert functions in a manner analogous to a single hidden node of a
neural network, whereby the linear filter response is transformed by a non-linearity,
gk. A major advantage of the PoE model over ICA is its ability to create over-
complete representations, where the number of components exceeds the dimension-
ality of x. The over-complete case enables the PoE to model filter dependencies and
is therefore regarded as a more expressive model. Observe that an autoencoder, in
particular a deep autoencoder can create over and under complete representations
as well, and can also model the aforementioned filter dependencies.

One of the limitations of both ICA and PoE approaches is that they model im-
age patches rather than whole images. As a result, the interactions between label
patches are ignored, i.e., these algorithms view image patches as independent. To
remedy the situation, the Field of Experts model [109] proposed to learn an MRF
model over the PoT model via:

pω[I] =
1

Zω

∏
l

∏
k

gk(J
T
kxl, αk) (4.31)

where l indexes over the image patches xl extracted from image I . This model
accounts for interactions of overlapping patches and is (arguably) better suited for
modeling images. Equation 4.31 actually implements a special type of convolu-
tional neural network, depicted in Figure 4.12. The first layer of this architecture
convolves the input image with filters created from columns of J . The next layer
applies a pixel-wise non-linearity gk. The last layer multiplies all outputs of all ex-
perts for all spatial locations to produce a single scalar that, after being normalized
by the partition function Z represents the likelihood of observing a given image. To
learn the parameters of Equation 4.31, a variant of contrastive divergence is used
in a manner similar to training the PoE model [117]. Once the model for image
prior p[x] is learned, it can be applied to a number of low level image processing
tasks, such as denoising and in-painting. For denoising a gradient ascent procedure
is used. Given an observed, noisy image I t0 , the goal is to recover the true image

67

I? via an iterative process given by:

I t+1 = I t + η

[
β

K∑
k=1

J−k ∗ g
′(Jk ∗ I t, αk) +

1

σ2

(I t0 − I t)

]
(4.32)

where σ is the variance of the corrupting noise, η controlls the gradient step size
and β controls relative importance of the gradient of the FoE prior with respect to
the observed image. Observe that the partition function is not involved in the de-
noising process, making the computational demand relatively light. One drawback
of this model is the need to specify the noise variance, which may not always be
known. Notice that the gradient of the FoE prior resembles the ICA based denoising
procedure using convolutional encoding/decoding. Therefore the main difference
between patch based and image based models is the type of filters they learn (at
least in the context of image denoising).

68

Chapter 5

From Pixels To Patches To Structures

69

This chapter presents the third and fourth major contributions of this work,
namely the Output Decomposition Mixture Of Experts and the Stacked Convo-
lutional Regression algorithms. The latter approach is fully automated requiring
minimal human intervention and is therefore well suited for use within the Data
Driven Region Growing Framework presented in Chapter 2.

5.1 Output Decomposition
In this section we propose to first decompose the ground truth into output features.
Subsequently, input features are mapped to output features by employing an en-
semble of function approximators. Once output features have been produced they
are synthesized into the final image labeling. The output decomposition scheme al-
lows each function approximator to focus on a different aspect of the pixel labeling
problem. The goal of the approach is to operate in between low level pixel labels
and high level objects. As an example, consider the rock objects depicted in Figure
5.1. The contour of each rock is composed of differently oriented edges. For each
oriented edge we can train a specific detector and then synthesize the object contour
by combing the outputs of each detector. Hence by decomposing the ground truth
into a set of object parts describing a patch of ground truth labels, we can break a
difficult pixel labeling problem into a set of easier structure labeling problems.

5.1.1 From pixel labeling to structure labeling
As described in Chapter 3, classical pixel labeling attempts to find the following
mapping:

hpl : I(i, j) 7→ L(i, j) (5.1)

by computing the probability of pixel (i, j) belonging to the target class (as in Equa-
tion 3.1 and then thresholding the probability map at level τ via Equation 3.2).
Equation 3.1 treats individual pixels as i.i.d., an assumption rarely satisfied in prac-
tice, since most non-trivial domains exhibit complex pixel interactions. To over-
come this problem, contextual pixel labeling defines a feature extraction function
that computes local (and possibly global) contextual features, fI (i, j), for each
pixel (i, j). Subsequently the newly formed feature vectors are used to learn the
mapping:

hcpl : fI (i, j) 7→ L(i, j) (5.2)

To further improve pixel classification accuracy, recursive contextual pixel classifi-
cation [129] and, more recently, random field methods (e.g., Markov / Conditional
/ Discriminative Random Fields [65, 64]) have been designed to account for label
interactions as well as input pixel interactions. These systems, employing Iterated

70

Conditional Modes for inference, first use the regular contextual pixel labeling, as in
Equation 5.2, to produce an initial labeling L0. Subsequently a recursive procedure
iteratively computes Ld as follows:

hrcpl : [fI (i, j),fLd−1(i, j)] 7→ Ld(i, j) (5.3)

where fLd−1(i, j) is a function extracting features from Ld−1 at lattice site (i, j).
Typically the features extracted from L are very simple, usually just a neighbor-
hood centered about (i, j) (i.e., cliques). In contrast to the approaches defined by
mappings in 5.1, 5.2 and 5.3, the following algorithm tackles the problem from a
different point of view. The algorithm, named Output Decomposition Mixture of
Experts, explicitly extracts contextual features from both input images and ground
truth images, and subsequently learns a mapping from the former to the latter:

hOD-MoE : fI (i, j) 7→ fL(i, j) (5.4)

as depicted in Figure 5.1. The essence of the algorithm lies in extracting output
features, fL, that allow the synthesis of output L. Once the input/output decom-
position scheme has extracted the input and output features, we utilize machine
learning algorithms to train a set of models that instantiate the mapping in Equation
5.4. At runtime, the outputs of individual models are fused together to produce the
final segmentation L̃.

5.1.2 Output Decomposition based Mixture-of-Experts
For simplicity, let us consider a single feature extraction function, extracting k fea-
tures for each site (i, j), and applicable to both the input image I and the output
labels L. Using this function we produce a set of input feature maps {ΦIt }kt=1 and
a set of output feature maps {ΦLt }kt=1. For lattice site (i, j), the feature vectors are
therefore given by:

fI (i, j) = [ΦI
1(i, j), ...,ΦI

k(i, j)] ∈ Rk

fL(i, j) = [ΦL
1 (i, j), ...,ΦL

k (i, j)] ∈ Rk

Using these input/output feature maps we train a set of function approximators
H = {h1, ..., hk} as:

ht : fI (i, j) 7→ Φ̃L
t (i, j) (5.5)

that map input feature vectors, to individual output components. Pictorially, each
induced mapping ht corresponds to an expert depicted by solid arrows in Figure
5.1.

71

I

ΦI
1

ΦI
2

ΦI
3

1

 h2

h

 h3

Input Feature Maps Output Feature Maps

st
an

da
rd

 a
pp

ro
ac

h

 h1

Input Image Ground Truth

L

ΦL
1

ΦL
2

ΦL
3

Figure 5.1: Output Decomposition based Mixture of Experts approach. Left: In-
put Image, I , and the extracted feature maps, ΦI

1,Φ
I
2,Φ

I
3. Right: Corresponding

Ground Truth image, L, and the extracted feature maps, ΦL
1 ,Φ

L
2 ,Φ

L
3 . For demon-

strational purposes we applied the Difference of Gaussians (DoG) decomposition
scheme to both I and L. The following mappings are represented: (dashed arrow)
from input features to pixel labels as in the case of the standard approach defined
by Equation 5.2; (solid arrows) from input features to output features as in the case
of h1, h2, h3 corresponding to the OD-MoE approach defined in Equation 5.5.

Frequency based Feature Extraction and Output Synthesis

The discrete 2-D Fourier transform [39] of a function g(i, j) and its inverse, each
defined on lattice S from Equation 2.1 on p. 10, are given by:

G(u, v) =
1√
NM

N−1∑
i=0

M−1∑
j=0

g(i, j)e−(
√
−1)2π(ui

N
+ vj

M
)

g(i, j) =
1√
NM

N−1∑
u=0

M−1∑
v=0

G(u, v)e(
√
−1)2π(ui

N
+ vj

M
)

To simplify notation we define:

F [g] = G ; F−1[G] = g

72

to denote the Fourier Transform and its inverse. Next, we define a set of frequency
filters {Gt(u, v)}kt=1 with the constraint:

k∑
t=1

|Gt(u, v)| = 1, ∀(u, v) ∈ S

This constraint enables input reconstruction to be given as simply the summation of
filter responses for a given frequency (u, v). The frequency feature coefficients of
an arbitrary function q(i, j), defined over lattice S, are then simply the point-wise
product of filter Gt with the frequency representation of the function, Q � Gt =
Q(u, v)Gt(u, v), ∀(u, v) ∈ S, with Q = F [q]. The spatial feature maps of q(i, j)
are therefore defined as:

Φq
t = F−1[Q�Gt], t = {1, ..., k}

Finally, for this specific decomposition scheme, the reconstruction (i.e., the output
synthesis) function is defined in the Fourier domain as:

Q̃ =
k∑
t=1

F [Φq
t]�Gαt (5.6)

where α = 0 is the default approach1. By setting α ≥ 1, the algorithm is able to
perform online filtering. Experimental results in Section 6.3, will demonstrate the
ability of this filtering procedure to attenuate noise resulting from function approx-
imation.

Runtime OD-MoE

At runtime, the following steps are performed :

1. Extract image features by convolving the input image with a filter bank {Gt}kt=1:

ΦIt = F−1 [F [I]�Gt] ∀t = {1, ..., k}

or equivalently:
ΦIt = I ∗ F−1[Gt] ∀t = {1, ..., k}

where ∗ is the convolution operator.

2. Perform function approximation by applying the trained ensemble of function
approximators defined by Equation 5.5

Φ̃
L
t (i, j) = ht(f

I (i, j)) ∀(i, j) ∈ S
1In the case of α = 0, the summation can be performed in the spatial domain as q̃ =

∑
t Φqt

73

Test Image (I)

Ground Truth (L)

Ensemble Output with Linear Regression as base learner

Standard Linear Regression Output

Figure 5.2: Output Decomposition test result versus regular linear regression.

3. Produce the output labels by combining the output of function approximators:

L̃ = F−1

[
k∑
t=1

F [Φ̃L
t]Gαt

]

The improved boundary detection and object separation can be readily observed
in Figure 6.6, which depicts part of the detailed experimental results presented in
the next chapter.

74

5.2 A Unifying Perspective for Generative Learning
Previous chapter presented window based automated feature extraction algorithms.
We have demonstrated that PCA, ICA, PoE and Autoencoders are all specific cases
of neural networks. Furthermore, the Field of Experts (FoE) algorithm corresponds
to a special convolutional neural network. However, based on the Convolutional
Encoding/Decoding algorithm of Section 4.4.1, one can show that all the afore-
mentioned algorithms can in fact be represented as convolutional neural networks
without the down-sampling layers. Recall that given an encoding matrix W 1, the
feature maps can be created via

fIα = I ∗ ẁ1,α (5.7)

where ẁ1,α is the filter created from row α of matrixW 1. Similarly we can recon-
struct the image from the feature maps using the decoding matrix W 2 either using
the sliding window method or convolutional decoding:

Î =
k∑
α

fIα ∗ ẁ2,α (5.8)

where ẁ2,α is the filter created from column α of matrixW 2. The image denoising
process can then be abstractly represented by:

Î =
k∑
α

gk(I ∗ ẁ1,α) ∗ ẁ2,α (5.9)

where gk represents the denoising function, which can be either hand-coded (as in
ICA) or learned as in the case of PoE/FoE (presented in previous chapter). In turn,
Equation 5.9 represent a convolutional neural network depicted in Figure 5.3. In
summary, patch based neural networks can be transformed into an equivalent con-
volutional neural network and (in special cases) vise versa. As a concrete example
consider an autoencoder mapping for learning a representation for 21 × 21 image
patches. The patch-based mapping is then given by

NI10(i, j) 7→ N̂I10(i, j)

Equivalently, one can train a convolutional network containing two convolutional
layers:

NI20(i, j) 7→ N̂I0 (i, j)

which maps 41× 41 patches to single pixels (recall I(i, j) = NI0 (i, j)).
Thus one has a choice, either learn an autoencoder or an equivalent convolu-

tional networks that performs regression. This fundamental duality not only offers

75

convolution pixelwise denoising convolution

Figure 5.3: Architecture of a Convolutional Denoising Network. For the last con-
volutional layer, blue depicts the sliding window decoding method, while the red
denotes the convolutional decoding equivalent. See Section 4.4.1 for more details.

a unique insight into the workings of both conventional and convolutional networks
but can have practical benefits as well. These are explored within the context of
discriminative learning in the next chapter.

Gradient Descent

Based on the above discussion regarding the duality of patch-based networks and
convolutional networks one must assume a similar duality between conventional
gradient descent and convolutional gradient descent. In light of this, one may ques-
tion the actual differences between the output of PoE and FoE presented previously.
In [108], Roth presents an argument that PoE samples independent image patches
while FoE samples independent images during the training process. This contrast in
training methodology holds when comparing general patch based and convolutional
based learning.

However, if one samples every patch in a given image, then the differences
in learning procedures between patch based and convolutional networks vanish, at
least for batch learning. Convolutional backpropagation simply allows one to forgo
the need to extract a large redundant set of patches, while retaining the information

used to calculate the gradient ∂Emse(x, hω(x))

∂W .
On the other hand, in the case of stochastic gradient descent, there are differ-

ences between patch-based and convolutional networks. The general contrast be-
tween stochastic versus batch gradient descent, is succinctly presented in [68]. One
specific property of stochastic gradient descent is that it tends to converge much
more rapidly, especially in the presence of non i.i.d. samples. Clearly overlap-
ping image patches are not i.i.d. Images, however are independent2 of one an-
other provided they do not contain overlapping parts. Thus, in the case of patch

2While images may be independent of one another, there is still no guarantee they are identically
distributed.

76

based stochastic gradient descent, network parameters would be updated after a pre-
sentation of a single randomly selected image patch. For convolutional networks,
stochastic gradient descent entails weight updates after presentation of a single im-
age. Therefore, one can conclude that stochastic gradient descent would be much
more beneficial for patch-based while for convolutional networks the improvement
would depend on the number of images available for training.

Often (but not always) the fastest converging learning method is mini-batching,
whereby the gradient and subsequent weight updates are based on the presenta-
tion of a random subset of data. As the sample size increases, mini-batch learn-
ing converges to batch learning, while a decrease in sample size allows mini-batch
learning to approximate stochastic gradient descent. For appropriate batch size, the
algorithm can inherent beneficial properties of both stochastic and batch learning
since the mini-batch gradient approximation is more accurate than that of stochastic
gradient, while convergence on a redundant data set is still much faster than batch
learning.

In light of the above discussion, we conjecture that if for a given image I all
patches, {Nr(i, j)}∀(i,j)∈S were used to learn the filters, both PoE and FoE3 would
converge to a very similar set of filters.

5.3 A Unified View for Discriminative Learning
The proposed output decomposition Mixture of Experts method has shed light on
the importance of analyzing a neighborhood of pixel labels via feature extraction.
Building on this idea, let us adopt a restricted view object segmentation as a map-
ping from image neighborhoods, N I

r1
(i, j), to label neighborhoods NL

r2
(i, j) via

three functions:

f : N I
r1

(i, j) 7→ f I(i, j) (5.10)
h : f I(i, j) 7→ fL(i, j) (5.11)
F : fL(i, j) 7→ NL

r2
(i, j) (5.12)

where f is the feature extraction function, h is the classifier (or the set of classi-
fiers as in the mixtures of specialists case), and F is the (inverse) output synthesis
function. As mentioned in previous chapters, manual feature extraction is a tedious,
time consuming, and error prone task. The creation of the two feature extraction
functions (one for images and another one for labels) seems to be even more diffi-
cult. Furthermore, if the concept of output decomposition is to be embedded into
the data driven region growing framework, potentially six unique feature extrac-
tion functions may need to be defined, two for each of the thee mappings, hregion,

3Recall PoE stands for Product of Experts, while FoE stands for Fields of Experts

77

NI15(i, j) NL15 (i, j)

Mapping patches to patches
Try to map from image patches to label patches

(,) (,) (,) (,)I I L L
r rN i j f i j f i j N i j→ → →

Figure 5.4: Example of 31 × 31 input/output training patches in correspondence
with one another.

hmarker, hboundary. This further exacerbates the problems with manually defining
feature extraction functions and motivates the use of automated feature extraction
methods described in the previous chapter.

Ideally, one should learn a specific set of features for each domain, for each
mapping within DDRG, and for each input/output pair. To that end, previous sec-
tion examined algorithms for automated feature extraction. We have also demon-
strated the equivalence of several patch based methods (PCA/ICA/Autoencoders)
to convolutional networks composed of two convolutional layers. Furthermore this
duality between patch based and convolutional neural networks can be easily ex-
tended for use within the discriminative setting.

Consider a conventional patch based (i.e., non-convolutional) neural network
with l hidden layers implementing the mapping:

NIr (i, j) 7→ L(i, j) (5.13)

Letting x = vec(NIr (i, j)) and y = L(i, j) the conventional neural net is given by
Equation 3.13:

yω(x) =
(
gl+1 ◦W l+1 ◦ gl ◦W l ◦ ... ◦ g1 ◦W 1

)
(x) (5.14)

Analogous to the discussion in Section 5.2, this corresponds to a convolutional
network with a single convolutional layer and l conventional pixelwise layers4. Now
consider the mapping:

NIr (i, j) 7→ NLr (i, j) (5.15)

whereby the output is a label patch rather than a single pixel label. Figure 5.4
depicts the input and output patches. The conventional network is then given by:

yω(x) =
(
gl+1 ◦W l+1 ◦ gl ◦W l ◦ ... ◦ g1 ◦W 1

)
(x) (5.16)

4The meaning of ‘layer’ is different for conventional ANN than for CNN’s. Recalling the dis-
cussion from previous chapter, a conventional linear autoencoder, e.g., ICA network, with a single
hidden layer has an equivalent convolutional counterpart consisting of two convolutional layers.

78

where the network structure is similar to Equation 5.16 with the exception that
y = vec(NLr (i, j)). Now the equivalent convolutional network is given by:

fIk = I ∗ ẁ1,k, k = {1, ...K}

fL(i, j) =
(
gl−1 ◦W l−1 ◦ ... ◦ g2 ◦W 2

)
fI (i, j)

L̂ =
K∑
k=1

fLk ∗ ẁl,k (5.17)

From the point of view of sliding windows 4.4.1, patch labeling defined by Equation
5.16 produces many candidate labels for a given cite (i, j). Recall that the neighbor-
hood function Nr(i, j) is symmetric, i.e., (i′, j′) ∈ Nr(i, j) =⇒ (i, j) ∈ Nr(i

′, j′).
Hence, for a patch of radius r, cite (i, j), will be labeled (2r + 1)2 times. This can
be quite beneficial since the final labelL(i, j) will incorporate predictions based on
different context and will actually utilize information from a much larger N2r(i, j)
image patch. For example, letting r = 10, results in Equation 5.13 mapping from/to
21× 21 pixel patches. However, as noted above, the final label L(i, j) will actually
incorporate data from a much larger 41 × 41 image patch. In turn, the averaging
process can be viewed as a mixture-of-experts, where each expert uses different
context for labeling location (i, j). Therefore, under this formulation, the larger the
output patch the larger the number of experts that label a particular cite (i, j) (and
the more regularized the output will be).

Since the formulation of the CNN model in Equation 5.17 is equivalent (and as-
suming conventional backpropagation will produce similar results) to convolutional
backpropagation, the CNN model must also extract ’features’ from the output la-
bels. This result also ties in with Independent Component Regression presented in
Section 4.4.5, whereby ICA and discriminative neural networks with one hidden
layer are shown to be approximately equivalent. Under this model Regression is
performed by running ICA on a joint vector z = [xT yT]T . The result of ICR is a
matrixA approximately satisfying:

z =

[
Ax

Ay

]
s

where s is a vector of joint independent components. Online prediction of y is then
performed as follows:

ŷ = Ay g(A†xx) (5.18)

where g is the denoising function taken to be a component-wise hyperbolic tan-
gent due to assumption of a kurtotic distribution on s. Clearly the result holds for
deeper patch based networks and presents a new point of view for greedy layer-wise
learning approaches presented in the previous section. In this case the feature ex-
tractorsAx,Ay stay the same while the denoising function becomes more and more

79

convolution Pixel based Pixel based convolution

Figure 5.5: Convolutional Regression Network with three hidden layers (and four
weight matrices). The columns of first and rows of last weight matrices are reshaped
into filters for convolution, while the second and third weight matrices are used in
a conventional pixel-wise manner. For the last convolutional layer, the blue de-
picts the sliding window decoding method, while the red depicts the convolutional
decoding equivalent. See Section 4.4.1 for more details.

complex as a result of learning a deeper and deeper network via greedy layer-wise
strategy. Furthermore, if x y, are vectorized input/output patches then Equation
5.18 can be rewritten as a convolutional network as well, indicating that this type of
convolutional neural network performs a joint feature extraction on the input/output
vector z.

This result casts a new light on the previously presented Output Decomposition
Mixture of Experts. If OD-MoE uses two sets of filter banks then it is in fact an
instance of a convolutional neural network whereby the two filter banks correspond
to the first and last (convolutional) layers and the Mixture of Experts function ap-
proximators correspond to the inner layers or equivalently the denoising function
g.

5.4 Stacked Convolutional Regression Networks
This section presents an incremental strategy for learning deep (convolutional) neu-
ral networks, similar in spirit to both the greedy layer-wise learning, and to cas-
cade correlation. The proposed algorithm, called stacked convolutional regression
(SCR), directly maps image patches to label patches, and contains several novel
features: (1) It uses a cascade correlation like approach for (2) learning a convo-
lutional neural network in order to simultaneously analyze and map corresponding
image and label patches as discussed in the previous section.

5.4.1 Network Growth and Training

Recalling the previously defined notation, let x = vec(NIr (i, j)) and y =

vec(NLr (i, j)), respectively denote vectorized patches extracted from image I and

80

Figure 5.6: Stacked Convolutional Regression. At each iteration, the algorithm
adds, and subsequently trains, one hidden layer. Figure modified from [98]

label image L depicted in Figure 5.4. The incremental learning algorithm progres-
sively trains larger and larger networks using the previously learned weights as the
initial starting points. The training algorithm starts with a standard neural network,
hω1 containing a single hidden layer and randomly initialized weight matricesW 1

and W 2. Once trained, a new network, hω2 , is constructed containing two hidden
layers and three weight matrices, W 3,W 2,W

hω1
1 . The weight matrix W

hω1
1 is

initialized with previously learned values from hω1 , while the other two matrices
are randomly initialized. The following equations summarize the growing process.

hω1 = (g2 ◦W 2 ◦ g1 ◦W 1) (x) (5.19)

hω2 =
(
g3 ◦W 3 ◦ g2 ◦W 2 ◦ g1 ◦W

hω1
1

)
(x) (5.20)

hω3 =
(
g4 ◦W 4 ◦ g3 ◦W 3 ◦ g2 ◦W

hω2
2 ◦ g1 ◦W

hω2
1

)
(x) (5.21)

...

hωl
=
(
gl+1 ◦W l+1 ◦ ... ◦ g3 ◦W

hωl−1

3 ◦ g2 ◦W
hωl−1

2 ◦ g1 ◦W
hωl−1

1

)
(x) (5.22)

Training of each hωk
, can be done using any one of a multitude of gradient descent

techniques, in particular those described in Chapter 3 and in Section 5.2. For the
experimental results presented in the next chapter mini-batch gradient descent was
used. The Growth process is illustrated in Figure 5.6. Note that all layers of hωk

are modified by gradient descent. In contrast, cascade correlation modifies only
the current, randomly initialized node, while greedy-layer-wise learning has two
phases: (i) pre-training, and (ii) fine-tuning. On the other hand, the SCR algorithm
incorporates both fine tuning and initialization into a single training iteration. While
the newly created topmost layers are being initialized, fine tuning is performed at

81

the previously initialized layers. Figure 5.7 presents the learned filters at the first
and last convolutional layers. Experiments (not presented) that split the pre training
and fine tuning stages did not produce significantly different results.

Furthermore, examining the input/output filters for networks with only one hid-
den layer in Figure 5.7 reveals an interesting symmetry. The input and output filters
are in correspondence with one another. This is in fact predicted by the ICR the-
orem in Section 4.4.5. The input/output filters for networks with only one hidden
layer represent the joint latent feature extractors of z = [xT yT]T . As the networks
grows, this correspondence ‘diffuses‘ throughout the network.

5.4.2 Online Inference
The duality of patch-based and convolutional neural networks, enables us to pick
and choose how to test and how to train. We chose to use patch based training but
then transform the model into a fully convolutional network for online testing.

82

Input Filters

Learned Input Filters

721 {10021 } 21 21× ×121 {10021 } 21 21× × 421 {10021 } 21 21× ×

Visualizing columns of W1

Output Filters

Learned Output-Synthesis Filters

721 {10021 } 21 21× ×121 {10021 } 21 21× × 421 {10021 } 21 21× ×

Figure 5.7: Evolution of Input/Output filters as a function of network depth. Both
input and output patches are 21×21 pixels (i.g., N10(i, j)). The size of each hidden
is kept at 100 nodes. The number of hidden layers in a network is given by h in
21× 21 7→ {100}h 7→ 21× 21. Top: Evolution of the input filters. As the network
grows, filters in the initial layer mature and sharpen. Some ’blank filters’ develop
only after the network has grown beyond a certain depth. Bottom: Re-learning of
output synthesis filters. As the network grows the representation at the output layer
dramatically changes. Initially, when the network is composed of a single hidden
layer, the output filter is in correspondence with the input filters. As the training
progresses the hidden layer absorb some of the representational complexity, leaving
the output layer to re-learn simpler, less defined filters.

83

Chapter 6

Experimental Results

84

This chapter presents extensive experimental evaluation of several systems im-
plementing DDRG, the Data Driven Region Growing framework for object delin-
eation.

The first generation of the DDRG framework utilized only the Lregion and
Lmarker. The initial system [75], Classification Driven Watershed Segmentation
(CDWS), implemented these mappings via traditional contextual pixel labeling, as
in Equation 5.2, using a set of hand crafted features and logistic regression. Exper-
iments focused on evaluating the efficacy of learning markers and region growing
topology produced by the logistic regression. The second system, Heterogeneous
stacking for classification driven watershed segmentation (HS-CDWS) [76], at-
tempted to automate the feature extraction process by employing Independent Com-
ponent Analysis. In conjunction the research proposed the heterogenous stacking
concept, whereby the output of several classifiers, each trained on different targets,
was combined by a second level classifier. This was the first system that was capa-
ble of instantiating the DDRG framework in a fully automated fashion. However,
the performance was worse than the previous system utilizing hand-crafted features.
In order to achieve state of the art performance, the third system utilized Stacked
Convolutional Regression (SCR), as presented in the previous chapter. This system
is capable of automatically learning all three mappings, Lregion, Lmarker, Lboundary
and produced superior object segmentation results.

6.1 Classification Driven Watershed Segmentation
The Classification Driven Watershed Segmentation (CDWS) system represents the
first generation of data driven region growing methods. It utilized two sets of logis-
tic regression classifiers, based on Equation 3.10, to produce Lregion and Lmarker.
The feature extraction function was manually coded and is described in the next
subsection.

6.1.1 Feature Extraction
Currently many different approaches for feature extraction have been proposed in
the literature, with texture features being most relevant [43, 90, 102]. Common
descriptions of texture include: (a) co-occurrence matrices [44], (b) local binary
patterns [91], (c) random field methods [20]. In contrast, our feature extraction re-
sembles Viola’s team work in [13, 118] and to some extent that of [38], whereby
a sequence of linear filters was used to produce the feature maps. In contrast, we
allow more general algorithms to extract feature maps such as those depicted in
Figure 6.1. The feature extraction procedure creates a multi-channel image, f ,
whereby each pixel vector, f(i, j), corresponds to a training/test sample. Further-

85

Raw erode(Raw,5) dilate(Raw,5)

open(Raw,5) close(Raw,5) bot-hat(Raw,5)

LHE(Raw,25) erode(LHE(Raw,25),5) dilate(LHE(Raw,25),5)

open(LHE(Raw,25),5) close(LHE(Raw,25),5) bot-hat(LHE(Raw,25),5)

LHE(Raw,50) erode(LHE(Raw,50),5) dilate(LHE(Raw,50),5)

open(LHE(Raw,50),5) close(LHE(Raw,50),5) bot-hat(LHE(Raw,50),5)

LHE(Raw,75) erode(LHE(Raw,75),5) dilate(LHE(Raw,75),5)

open(LHE(Raw,75),5) close(LHE(Raw,75),5) bot-hat(LHE(Raw,75),5)

LHE(Raw,100) erode(LHE(Raw,100),5) dilate(LHE(Raw,100),5)

open(LHE(Raw,100),5) close(LHE(Raw,100),5) bot-hat(LHE(Raw,100),5)

Figure 6.1: CDWS Features. The first 30 of the 150 extracted feature maps (at
the highest resolution). Local Histogram equalization (LHE) used window sizes of
{25, 50, 75, 100}. Morphological operations used a 5× 5 square kernel.

86

40 60 80 100 120 140

-2000

-1000

0

1000

2000

3000

4000

5000

6000 non-eroded
 eroded

Figure 6.2: Weights (indexed on the X-axis) learned by the logistic regression al-
gorithm using (a) standard ground truth, (b) eroded ground truth. Note that the
weights for the first 30 features have been omitted since they were mostly zero in
both cases.

more, notice in Figure 6.1 that a large number of simple and redundant feature
maps, fi, i ∈ [1, ..., k], is produced, thereby removing the need to spend copious
amounts of time creating a small set of highly domain specific features. In fact,
the proposed approach does the exact opposite, it tries to create a large number of
weak features and expects the classifier to weight them according to their relevance
during training. In general, many of the features may turn out to be irrelevant for a
given application. However, our approach begins with a large set of features in or-
der to be application-independent, at the expense of increased training complexity.
Figure 6.2 presents the typical feature weights learned by the logistic regression al-
gorithm from equation 3.10 when trained using (a) standard ground truth, (b) using
eroded ground truth. We have omitted the weights for the first thirty features, which
were zero in both cases, indicating that the high resolution features are essentially
considered irrelevant for this classification task. The fact that the high resolution
features are not used in classification, implicitly indicates that using raw pixel val-
ues as input features for classification will result in poor performance, and further
motivates the need for feature extraction.

87

6.1.2 Experimental Procedure
In order to compare CDWS against the state-of-the-art methods and variants of
CDWS, a granulometry expert manually segmented nine images containing oil sand
ore (see Figure 3.1 for an example). Each image was 236 × 637 pixels. For all
experiments, a leave-one-out (LOOCV) testing strategy was employed, whereby
the system was trained on eight of the nine images and the remaining image was
used for testing. The procedure was repeated with every image being the test image
once.

In order to train the necessary classifiers, for each image 30 feature maps were
extracted, shown in Figure 6.1, at five resolutions for a total of 150 feature maps.
In other words, for each pixel a feature vector with 150 components was created.
Both hregion and hmarker, i.e., the classifiers that respectively produce Pregion and
Pmarker, were trained as follows. To reduce computational and memory require-
ments one classifier was trained on one of the nine images in the database using
logistic regression1 [45]. For the LOOCV testing strategy, the probability maps
(Pregion and Pmarker) were created by averaging out probability maps produced by
the eight classifiers that did not “see” the current test image. Formally, for input
image I i:

Ptype =
1

n− 1

n∑
j 6=i

htype,ωj
(I i)

where type ∈ {marker, region}. In essence, htype = {htype,j} is an ensemble of
classifiers. The outputs of the ensemble members are averaged together to produce
the probability map. The procedure is identical for creating both types of classifiers.
To produce object markers and boundaries for CDWS, the probability maps are
always thresholded at τ1 = τ2 = 0.5 (see Figure 2.6). The metrics used for
evaluation are presented in Appendix C on p. 138.

6.1.3 Experiment 1
To establish whether the proposed modifications to the watershed algorithm indeed
have merit, several variants of the CDWS algorithm were constructed. In order to
ascertain if eroding the ground-truth to train a specialized maker identification clas-
sifier is indeed beneficial, the first variant of CDWS extracted markers from Pregion
using several threshold values. For comparison, the proposed CDWS algorithm, as
presented in Figure 2.6, was evaluated using various sizes of erosion kernels applied
to the ground truth.

1Other classifiers, such neural networks, decision trees, naive Bayes (tested on smaller sets)
performed similarly. However, logistic regression was much faster in both training and testing. All
experiments were conducted using PrTools [29] Matlab toolbox.

88

In addition, to ascertain the benefits of using 1 − Pregion as the topological
function utilized by the watershed algorithm, several alternative methods were im-
plemented which used (a) the gradient of the raw image, (b) gradient of Pmarker, (c)
gradient of Pregion, (d) the negative of the raw image, (e) 1 − Pmarker, and (f) the
CDWS algorithm utilizing 1− Pregion.

Experimental results for the CDWS variants are presented in Figure 6.3. By
comparing the top graph of Figure 6.3 to the middle graph, it is clear that using
markers extracted from Pmarker significantly improves the label score. Furthermore,
CDWS appears less sensitive to the size of the erosion kernel, than to the value
of the threshold used for extracting markers from Pregion. Also note that simply
thresholding Pregion, i.e., not utilizing the watershed algorithm, to produce the final
object labeling results in a label score of approximately 0.3. In addition, flooding
the inverted object-boundary probability results in superior performance than the
other approaches as shown by the bottom graph of Figure 6.3.

6.1.4 Experiment 2
To compare the proposed CDWS algorithm against standard granulometry based
algorithms the WipFrag and OSA systems were procured (see Appendix A for their
description). Table 6.2 presents the experimental results. In addition, for each sys-
tem, performance was examined using several (mutually exclusive) post-processing
techniques. Since noisy segmentation and labeling is inevitable, the final output
was filtered using size filters that remove particles smaller than a predefined size.
By producing results using several filter sizes (applied to both the output images
and the ground truth images) the object size that is most problematic for each sys-
tem can be quantitatively determined. An alternative post processing step, carried
out instead of the first, used morphological opening (also applied to both the out-
put images and the ground truth images) with the aim of removing bridge pixels
connecting two objects. The aim of this experiment was to determine if the pro-
posed CDWS system can indeed do more than just remove bridge pixels, which
can be easily accomplished by the simplest of the post processing techniques. As
results in Table 6.3 indicate, regardless of the postprocessing method, the CDWS
algorithm still outperforms both WipFrag and OSA. Furthermore, the worst output
of CDWS (no post processing) is better than the best output of either WipFrag or
OSA as indicated by all evaluation criteria2.

2In terms of computational cost, a direct comparison at present time is difficult. Both OSA and
WipFrag are industrial systems implemented in C, and have been extensively optimized to allow for
real-time image processing. On the other hand, CDWS is implemented in Matlab without any opti-
mization and takes about 5 min to process an image. The main cost in CDWS is feature extraction.
However, by examining Figure 6.2 we can see that very few features receive high weights and in
turn, are actually relevant to the task at hand. Hence, by adding a feature selection stage, to select
only the relevant features rather than using all 150 features, the runtime performance of the system

89

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.9 0.85 0.8 0.75 0.7

Threshold

La
be

l S
co

re

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

3 5 7 9 11 13
Erosion Kernel Size

La
be

l S
co

re

0.2

0.3

0.4

0.5

0.6

0.7

Gr
ad
(im
ag
e)

Gr
ad
(P
_m
ark
er)

Gr
ad
(P
_re
gio
n)

-im
ag
e

1-P
_m
ark
er

1-P
_re
gio
n

Topographic Function

La
be

l S
co

re

Figure 6.3: Top: Effectiveness of markers extracted by thresholding Pregion at
various values of τ (cf. equation 2.4). Middle: Effectiveness of markers extracted
by thresholding Pmarker at τ = 0.5). Output of the marker classifier (hmarker) was
varied by applying erosion with different sizes of structuring element, B, to the
ground truth image L, during training (see equation 2.5 for details). Comparison
with the top table indicates that using a classifier for marker identification improves
performance. The latter approach appears less sensitive to the size of the erosion
kernel than the former approach with respect to threshold level. Bottom: Watershed
segmentation using different Topographic Functions. In each case the same set of
markers, extracted from Pmarker at τ = 0.5, was used. Using 1 − Pregion, i.e., the
inverted object-background probability map, clearly produces the best results.

can be significantly improved.
90

Table 6.1: Top: Effectiveness of markers extracted by thresholding the object-
boundary probability map produced by the region classifier. Middle: Markers
extracted by thresholding (at 0.5) the marker probability map. The output of the
marker classifier was varied by using erosion with kernels of different sizes to mod-
ify the ground truth at training time. Comparison between the top and bottom ta-
bles indicates that using a marker identification classifier improves performance.
The latter approach appears less sensitive to the size of the erosion kernel than the
former approach with respect to threshold level. Bottom: Watershed segmentation
using different flood images. Using 1−P region, i.e., the inverted object-background
probability map, produces the best results.

marker
threshold I/U

Pixel
accuracy Precision Recall

label
score

0.9 0.7446 0.8271 0.8594 0.8487 0.5435
0.85 0.7469 0.8286 0.86 0.8511 0.5722
0.8 0.7481 0.8295 0.8603 0.8524 0.5961
0.75 0.7483 0.8296 0.8601 0.8529 0.5834
0.7 0.7492 0.8301 0.8602 0.854 0.5749

gt erosion I/U
Pixel

accuracy Precision Recall
label
score

3 0.7602 0.8382 0.8657 0.8626 0.5525
5 0.7603 0.8385 0.8667 0.8618 0.6019
7 0.76 0.8384 0.8671 0.8609 0.6129
9 0.7602 0.8385 0.8669 0.8614 0.6189
11 0.7598 0.8383 0.8668 0.861 0.6117
13 0.7586 0.8373 0.8661 0.8601 0.5862

flood image I/U
Pixel

accuracy Precision Recall
label
score

Grad(image) 0.7326 0.8213 0.87 0.8232 0.496
Grad(pmap_marker) 0.6968 0.7972 0.8631 0.7841 0.3034
Grad(pmap_standard) 0.7435 0.8299 0.8786 0.8292 0.5806

image 0.6972 0.7971 0.8614 0.786 0.2564
1-pmap_marker 0.7557 0.8357 0.8677 0.855 0.5773
1-pmap_standard 0.7602 0.8385 0.8669 0.8614 0.6189

Table 6.2: Performance of OSA, WipFrag and CDWS systems.

System I/U
Pixel

accuracy Precision Recall
label
score

OSA 0.6838 0.7825 0.8357 0.7907 0.5522
WipFrag 0.5913 0.6493 0.6587 0.8529 0.3574
CDWS 0.7602 0.8385 0.8669 0.8614 0.6189

91

Table 6.3: Results for OSA (top), WipFrag (middle) and CDWS(bottom), compar-
ing two different post processing approaches. First approach filtered out particles
smaller than (SF). Second approach used morphological opening with a square ker-
nel of size (OF). Regardless of the postprocessing type used CDWS outperforms
both OSA and WipFrag.

OSA
Post

Processing I/U
Pixel

accuracy Precision Recall
label
score

none 0.6838 0.7825 0.8357 0.7907 0.5522
SF = 100 0.6921 0.7925 0.8548 0.7849 0.5692
SF = 200 0.6979 0.7997 0.8678 0.7813 0.5802
SF = 400 0.6829 0.7973 0.861 0.7678 0.5871
SF = 800 0.6481 0.7971 0.8331 0.7451 0.5866
OF = 3 0.6839 0.7871 0.8553 0.774 0.5647
OF = 5 0.6834 0.7921 0.8814 0.753 0.578
OF = 7 0.6709 0.7893 0.9083 0.7199 0.5853
OF = 9 0.6326 0.7689 0.9254 0.6667 0.5572

WipFrag
Post

Processing I/U
Pixel

accuracy Precision Recall
label
score

none 0.5913 0.6493 0.6587 0.8529 0.3574
SF = 100 0.5857 0.6475 0.6599 0.8392 0.3635
SF = 200 0.5831 0.6545 0.6706 0.8175 0.3779
SF = 400 0.5674 0.6662 0.6819 0.7728 0.4016
SF = 800 0.5399 0.6903 0.6756 0.7276 0.4223
OF = 3 0.5897 0.6546 0.668 0.8345 0.371
OF = 5 0.5848 0.6576 0.6773 0.8113 0.3791
OF = 7 0.5759 0.6626 0.6952 0.7714 0.3974
OF = 9 0.566 0.6718 0.7261 0.7206 0.4163

CDWS
Post

Processing I/U
Pixel

accuracy Precision Recall
label
score

none 0.7602 0.8385 0.8669 0.8614 0.6189
SF = 100 0.762 0.841 0.8725 0.8583 0.6246
SF = 200 0.7624 0.8426 0.8775 0.854 0.628
SF = 400 0.7524 0.8414 0.8702 0.8484 0.6325
SF = 800 0.7344 0.8483 0.8572 0.8378 0.6359
OF = 3 0.7599 0.8402 0.8774 0.8509 0.6383
OF = 5 0.7555 0.8392 0.8886 0.8352 0.6444
OF = 7 0.7433 0.8336 0.9004 0.8105 0.6419
OF = 9 0.721 0.8215 0.9113 0.776 0.6349

6.1.5 Experiment 3 - Color Image Segmentation
To demonstrate the general applicability of the algorithm, the CDWS system was
applied on aerial images of forest plantations depicted in Figure 6.4 (see Appendix

92

Test Image Ground Truth CDWS Output

Figure 6.4: An aerial image taken over a mixed vegetation plot along with the de-
sired interpretation of spruce canopies labeled in white and the output of CDWS
shown on the left. Notice the non-uniform lighting conditions as well as the vari-
ability in shape and size of the target objects. Furthermore, the ground-truth image
at times only labels the ’sun-crown’ (i.e., the portion of the crown lit up by the sun)
as opposed to the full tree canopy. These are some of the challenges faced by an
image interpretation system within the forestry domain.

Table 6.4: CDWS performance on aerial forest images
 I/U acc prec recall label score

mean 0.70 0.92 0.83 0.84 0.47
stdev 0.12 0.04 0.15 0.10 0.12

B for an overview of the domain). First, the 18 (512 × 512 pixel) RGB images
were converted to HSV color space. Next, for each HSV image the previously
described feature extraction scheme was applied to each of the H, S, V channels
separately (producing 450 features). The same LOOCV experimental procedure
as described in section 6.1.2 was used to evaluate the performance. Results are
shown in Table 6.4. Unfortunately previous results for this domain have reported
only the intersection-over-union (I/U) scores and are therefore difficult to compare
with results in Table 6.4. Using Adaptive Object Recognition system (ADORE) in
[72], an LOOCV strategy over 34 (256× 256 pixel) images, achieved an I/U score
of 0.54. In [73], using ADORE coupled with Hierarchical Markov Random Fields
from [17], the LOOCV procedure achieved an I/U score of 0.61 over 3 (1536×1024
pixel) images. On their own, hierarchical MRF produced an I/U score of 0.48 using
the same 3 (1536 × 1024 pixel) images. In contrast, the proposed CDWS system
achieved an I/U score of 0.70 over 18 (512 × 512 pixel) images, a considerable
improvement over the much more sophisticated Reinforcement Learning and Multi-
Resolution MRF based systems.

93

6.2 Heterogeneous Stacking and ICA for Classifica-
tion Driven Watershed Segmentation, [76]

Section 3.4.3 proposed heterogeneous stacking for building an automated object
segmentation system, whereby the general system is succinctly described by a set
of mappings presented in Figure 3.5. The following experiments evaluated sev-
eral variants of the aforementioned heterogeneous stacking framework. In con-
trast to CDWS, which utilized manual feature design coupled, this system experi-
mented with Independent Components Analysis (ICA) to automatically extract fea-
tures from raw image patches [51] as in Equations 4.11 on p. 47 and 4.12 on p. 49.
First, the feature extraction matrix A† was learned using an unlabeled set of im-
ages. Next, given a training image/label pair, the algorithm: (i) extracts features,
f {0}, using A†, and (ii) produces Leroded,Ldilated,Le′ ,Ld′ by applying morpho-
logical operations on the ground truth image L. Subsequently, five L0 classifiers
are trained using ICA features as input and label images as targets. The classifiers
output probability maps P {0}type, type ∈ {region, eroded, dilated, e′, d′}. A second
round of feature extraction is then carried out on the newly extracted probability
maps, producing second order features, f {1}, that serve as the input to train two
L1 classifiers. In turn, the second order classifiers produce two probability maps,
P
{1}
region and P {1}eroded, used for creating the topological landscape and markers. The

last step employs the standard watershed algorithm for producing the final output
of the system, L{ws}.

6.2.1 Experimental Procedure
To test HS-CDWS, we used the same nine, 236 × 637 pixel, images containing oil
sand ore (see Figure 3.1). Using a different set of unlabeled oil sand ore images,
we learned a generative ICA model using the FastICA algorithm [58]. This ICA
model was estimated using 100, 000 randomly selected patches, each 16×16 pixels
in order to learn 49 Gabor-like filters. To provide multi-resolution information, two
gaussian filters were applied to each ICA filter response, thereby producing 150
features for each pixel (147 multi-resolution ICA features + 3 multi-resolution raw
pixel values from the original image). This constituted f {0}, the input to the L0

classifiers. The target outputs, L{0}, included the original ground truth as well as
the derived targets depicted in Figure 3.6. For all experiments a leave-one-out cross
validation (LOOCV) testing strategy was used, whereby each system was trained on
eight of the nine images with the remaining image used for testing. The procedure
was repeated with every image being a test image once.

To reduce computational complexity, for each target output we trained a set of
classifiers, one for each training image. Hence for each cross-validation fold we
trained 8× 5 = 40 classifiers corresponding to eight training images and five target

94

outputs. This strategy effectively reduces the memory overhead needed for training,
since the number of training examples is reduced by a factor of eight. Formally, for
test image Ii :

P
{0}
type =

1

n− 1

n∑
j 6=i

h
{0}
type,j

where type ∈ {region, eroded, dilated, e′, d′}. To take advantage of the rich in-
formation contained in the probability maps P {0}, a second round of feature ex-
traction was carried out, where a bank of gaussian filters was used to extract multi-
resolution features f {1}, which is subsequently referred to as the ”extended feature
set” in the following subsections. To fuse the information into L1 probability maps,
we trained a set of L1 classifiers to produce the mapping: f {1} 7→ P

{1}
type, with

type ∈ {region, eroded}. As in [95], we used an internal procedure analogous to
LOOCV in order to maximize generalization accuracy. Both L0 level and L1 level
classification was done using logistic regression as implemented by the PrTools [29]
Matlab toolbox.

6.2.2 Experiment 1
To examine the efficacy of the proposed algorithm, three sets of systems were tested.
First, a standard CDWS system (no stacking) was created using ICA features called
ICA-CDWS. Next, the second system, named ICA-HS-CDWS system, trained L1

level classifiers directly on the output of the five L0 probability maps produced by
classifiers trained on standard ground truth as well as new targets derived from the
ground truth. Note that this version of the system did not perform the second round
of feature extraction, i.e., f {1} = P {0}. Finally, the third system, MR-ICA-HS-
CDWS, had the same set-up as the second system, but used the extended set of
multi-resolution features extracted from P {0}. Results, presented in Table 6.5 and
Figure 6.6, clearly demonstrate the improvement gained by using heterogeneous
stacking together with features extracted fromP {0}. Notice that heterogeneous cas-
cades, with interleaved feature extraction, produce the best results on average and
improve upon the scores for essentially every performance metric in every image.
The only exception being image 5, where the recall score was slightly degraded
by the proposed system. In all other cases the MR-ICA-HS-CDWS system was
able to improve performance in comparison to the base (ICA-CDWS) classifica-
tion. Interestingly, the recall score for image five is one of only two images where
the stacking without feature extraction outperformed stacking with interleaved fea-
ture extraction. We believe better features can fix this anomaly and further improve
performance. The probability that there are no statistically significant differences in
performance as calculated by the paired student’s t-test for each performance metric
is respectively: 0.00004, 0.00001, 0.00000, 0.01942, 0.00049, (for I/U, Accuracy,

95

Table 6.5: Performance comparison of base classification (L0) to heteroge-
neous stacking (L1). For each experimental condition the tables represent
leave-one-out cross validation results. Based on the 2-sided paired stu-
dent’s t-test, the probability that there are no statistically significant differences
in performance of MR-ICA-HS-CDWS vs ICA-CDWS systems is respectively:
0.00004, 0.00001, 0.00000, 0.01942, 0.00049, for I/U, Accuracy, Precision, Recall and
Label scores.

ICA-CDWS
Image jacq acc prec recall label score
1 0.68 0.77 0.79 0.83 0.51
2 0.74 0.83 0.80 0.91 0.62
3 0.73 0.81 0.84 0.84 0.56
4 0.72 0.79 0.86 0.81 0.51
5 0.69 0.78 0.79 0.84 0.52
6 0.76 0.83 0.87 0.86 0.62
7 0.73 0.80 0.84 0.84 0.51
8 0.66 0.76 0.75 0.85 0.54
9 0.73 0.80 0.83 0.85 0.54

mean 0.71 0.80 0.82 0.85 0.55
stdev 0.03 0.02 0.04 0.03 0.04

MR-ICA-HS-CDWS
Image jacq acc prec recall label score
1 0.71 0.80 0.82 0.84 0.59
2 0.77 0.85 0.83 0.91 0.63
3 0.76 0.84 0.87 0.86 0.62
4 0.74 0.81 0.88 0.82 0.54
5 0.71 0.80 0.83 0.83 0.57
6 0.81 0.86 0.89 0.89 0.69
7 0.77 0.84 0.88 0.86 0.53
8 0.71 0.80 0.79 0.87 0.57
9 0.74 0.81 0.85 0.85 0.61

mean 0.75 0.83 0.85 0.86 0.60
stdev 0.03 0.02 0.04 0.03 0.05

ICA-HS-CDWS
Image jacq acc prec recall label score
1 0.70 0.79 0.81 0.83 0.56
2 0.77 0.86 0.83 0.91 0.61
3 0.75 0.83 0.86 0.85 0.61
4 0.74 0.81 0.88 0.82 0.54
5 0.70 0.79 0.81 0.84 0.55
6 0.79 0.85 0.88 0.89 0.65
7 0.75 0.82 0.86 0.86 0.55
8 0.68 0.79 0.77 0.86 0.56
9 0.73 0.81 0.84 0.86 0.56

mean 0.74 0.82 0.84 0.86 0.58
stdev 0.03 0.03 0.04 0.03 0.04

96

Precision, Recall and Label scores) indicating that the performance of MR-ICA-
HS-CDWS is superior to that of the ICA-CDWS system. In addition, to compare
the three aforementioned systems against previous results, Table 6.6 displays data
from the original CDWS research ([75]). Several points are immediately apparent.
First the ICA features are weaker than the original hand-crafted features used by
CDWS. To some extent this is not surprising, as ICA extracted 49 linear features at
three resolutions. In contrast, CDWS utilized 30 hand-crafted non-linear extraction
procedures (e.g., morphological operators) at four resolutions. We believe non-
linear feature extraction methods (e.g., non-linear PCA) can improve performance
and expect to pursue this line of research in the future. However, despite the short-
comings of ICA, the MR-ICA-HS-CDWS system, a fully automated algorithm was
able to achieve results very similar to those of CDWS utilizing hand-crafted fea-
tures.

Table 6.6: Performance of OSA, WipFrag, and original CDWS systems against
CDWS using ICA and Heterogeneous Stacking

System I/U
Pixel

accuracy Precision Recall
label
score

OSA 0.68 0.78 0.84 0.79 0.55
WipFrag 0.59 0.65 0.66 0.85 0.36

CDWS 0.76 0.84 0.87 0.86 0.62
ICA->CDWS 0.71 0.80 0.82 0.85 0.55

HS(ICA)->CDWS 0.74 0.82 0.84 0.86 0.58
MR-HS(ICA)->CDWS 0.75 0.83 0.85 0.86 0.60

6.2.3 Experiment 2
To further test and isolate the benefits of stacking, we applied the same experimental
procedure to aerial images of forest plantations as in the previous set of experiments
on CDWS (c.f., Section 6.1.5). For each HSV image the previously described man-
ual feature extraction scheme was applied to each of the H, S, V channels separately
(producing 450 features). These features were used to train the L0 classifiers. Sub-
sequently the outputs of L0 classifiers were filtered using the same gaussian filters
as described in the last section. To evaluate performance, the same LOOCV ex-
perimental procedure as described in section 6.1.2 was used. Results are shown
in Table 6.7. Comparing the top table to the bottom table demonstrates the im-
provement in generalization performance as a result of utilizing the heterogeneous
stacking procedure.

97

Ground Truth

ICA-CDWS

MR-ICA-HS-CDWS

Figure 6.5: Output for L0 and L1 layers. Notice the significant reduction in noise
as well as the improvement in object-object boundary delineation.

98

Table 6.7: Forestry Domain: Performance comparison of base classification (L0)
to heterogeneous stacking (L1). For each experimental condition the tables repre-
sent leave-one-out cross validation results. In this case the L0 features were the
same as in the original CDWS experiment #3. The associated 2-sided paired t-
test produced probabilities of 0.021, 0.060, 0.567, 0.0006, 0.0014 for I/U, Accuracy,
Precision, Recall and Label scores being statistically insignificant. Clearly for this
domain, heterogeneous staking is mainly improving the recall score while main-
taining precision at a relative constant.

Hand Crafted Features (HC)
HC-CDWS MR-HC-HS-CDWS

Image jacq acc prec recall label score
1 0.72 0.97 0.89 0.78 0.69
2 0.70 0.91 0.96 0.72 0.47
3 0.54 0.92 0.96 0.55 0.27
4 0.69 0.97 0.91 0.74 0.68
5 0.80 0.91 0.92 0.86 0.47
6 0.73 0.95 0.94 0.76 0.54
7 0.66 0.89 0.74 0.86 0.58
8 0.51 0.85 0.53 0.93 0.39
9 0.82 0.90 0.88 0.92 0.55
10 0.74 0.89 0.77 0.94 0.56
11 0.80 0.96 0.92 0.86 0.52
12 0.65 0.93 0.72 0.88 0.42
13 0.47 0.83 0.49 0.91 0.42
14 0.57 0.90 0.62 0.88 0.43
15 0.80 0.89 0.87 0.91 0.26
16 0.82 0.92 0.92 0.89 0.51
17 0.81 0.94 0.91 0.89 0.32
18 0.85 0.96 0.95 0.89 0.41

mean 0.70 0.92 0.83 0.84 0.47
stdev 0.12 0.04 0.15 0.10 0.12

Image jacq acc prec recall label score
1 0.77 0.97 0.91 0.83 0.76
2 0.74 0.92 0.97 0.76 0.55
3 0.59 0.93 0.97 0.60 0.35
4 0.66 0.96 0.82 0.77 0.67
5 0.81 0.92 0.91 0.88 0.54
6 0.74 0.95 0.94 0.77 0.58
7 0.67 0.89 0.74 0.87 0.60
8 0.49 0.84 0.50 0.94 0.38
9 0.83 0.91 0.88 0.93 0.49
10 0.71 0.87 0.74 0.95 0.58
11 0.81 0.96 0.92 0.87 0.55
12 0.65 0.93 0.71 0.88 0.42
13 0.50 0.85 0.53 0.91 0.46
14 0.66 0.93 0.71 0.90 0.52
15 0.82 0.91 0.89 0.92 0.35
16 0.84 0.93 0.95 0.89 0.53
17 0.84 0.95 0.94 0.90 0.44
18 0.87 0.97 0.96 0.90 0.53

mean 0.72 0.92 0.83 0.86 0.52
stdev 0.12 0.04 0.15 0.09 0.11

99

6.3 Output Decomposition Mixture of Experts
To test the Output Decomposition Mixture of Experts approach outlined in previ-
ous chapter, the same nine, 236 × 637 pixel images containing mineral ore were
used (see Figures 5.1 and 6.6 for examples). All algorithms, described below, were
trained on image 1 and evaluated3 on images 2-9. Feature extraction, for both the
input images and output labels, was performed using a bank of log-Gabor filters as
in [63], with 7 scales and 6 orientations for a total of 42 filters. Since the inverse
Fourier transform of filter responses contains both real and imaginary parts, we
further separated the feature maps into two components corresponding to the even
(real) and odd (imaginary) filter responses. As a result, both inputs and outputs were
decomposed into 84 feature maps. Each of the 84 experts was focused on a single
output feature map and was trained using either: (a) linear regression, or (b) regres-
sion trees [45]. The gating function was designed as in the previous section. To test
the efficacy of frequency domain filtering we run our system with α ∈ {0, 1}, cor-
responding respectively to Raw (i.e., non-filtered) and Filtered outputs in Equation
5.6. For further comparison we also implemented the standard contextual pixel
labeling approach, defined by Equation 5.2, that used the same input features to di-
rectly output labels (depicted by a dashed arrow in Figure 5.1). In addition, we also
tested several typical ensemble methods based on bagging. The first version was
based on the original bootstrap version of bagging from [15] whereby 60% of the
training samples were randomly selected for training each ensemble member. The
second version was loosely based on [16], whereby we randomly permuted 10% of
the labels within the training set for each member of the ensemble. Each version
was tested with 40 and 80 ensemble members. The metrics used for evaluation
are presented in Appendix C on p. 138.

6.3.1 Results
Experimental results are presented in Table 6.8 with examples of test output pre-
sented in Figure 6.6. All algorithms performed comparably, in terms of pixel based
measures. However, significant differences exist in terms of the label score, which
was designed specifically to evaluate object level information, namely the number
of objects, their location and boundaries. From this perspective, the proposed OD-
MoE algorithm is far more suitable to the object delineation task(s) as indicated by
a label score, of 0.43 for OD-MoE(Filtered) using regression trees, which is almost
three times better than the competition. As mentioned throughout this thesis, the
identification of object parts rather than simple pixel based labels, lies at the heart
of the output decomposition function. Each log-Gabor filter identifies various fre-
quency components comprising the target objects. In turn, these components are

3Similar results to those presented in this paper were obtained using different train test splits.

100

Test Image (I)

Linear Regression as base learner
Ensemble Output

Filtered Ensemble Output

Standard Linear Regression Output

Ground Truth (L)

Regression Trees as base learner
Ensemble Output

Filtered Ensemble Output

Standard Regression Tree Output

Figure 6.6: Top Row: Test input image and corresponding ground truth. Test output
using Linear Regression as base learner (Left) and Regression Tree as base learner
(Right).

easier to learn than the unstructured pixel labels. It is thus no surprise that the algo-
rithm improves the labeling at the object level rather than the pixel level. The dif-
ference in segmentation quality can be readily observed in Figure 6.6. With respect
to bagging, despite an increase in performance at the pixel level when compared
to using a single regression tree, the label score clearly remains unaffected. Visu-
ally the output looks very similar to the output of a single regression tree4 which
provides a stark contrast to the output of OD-MoE.

Examining the merit of frequency domain filtering, we can see mixed results.
When linear regression is used to construct the individual experts, the filtering step

4The output from Bag(40) and Bag(80) looked very similar to the output of standard regression
tree, while the output from RLP Bag(40) and RLP Bag(80) looked very similar to the output of
standard linear regression.

101

Table 6.8: Average performance on test images. Standard denotes regression per-
formed directly on the ground truth as is commonly done for pixel labeling. Raw
denotes OD-MoE without filtering. Filtered denotes OD-MoE with filtering prior
to output reconstruction. Bag denotes a standard bagging procedure with each
member of the ensemble using randomly selected 60% of the training samples.
RPL Bag denotes bagging where 10% of the labels were randomly permuted for
each ensemble member. Ensemble sizes are shown in brackets.

Linear Regression as base learner
Algorithm jacq acc prec recall label score
Standard 0.67 0.75 0.78 0.84 0.14

OD-MoE(Raw) 0.64 0.76 0.86 0.72 0.40
OD-MoE(Filtered) 0.59 0.73 0.87 0.64 0.38

Regression Tree as base learner
Algorithm jacq acc prec recall label score
Standard 0.52 0.62 0.68 0.69 0.04

OD-MoE(Raw) 0.61 0.74 0.85 0.69 0.41
OD-MoE(Filtered) 0.62 0.75 0.86 0.68 0.43

Bagged Regression Trees
jacq acc prec recall label score

Bag(40) 0.63 0.70 0.71 0.86 0.04
Bag(80) 0.63 0.71 0.71 0.85 0.04

RLP_Bag(40) 0.59 0.69 0.74 0.74 0.14
RPL_Bag(80) 0.59 0.69 0.74 0.75 0.14

is detrimental to performance. However, when regression trees are employed at
the base level, overall performance significantly improves. Our results consistently
demonstrate that regardless of the base regressor used, precision scores improve as
a result of the filtering step. In contrast the experimental results in the previous
section indicate that Heterogeneous Stacking primarily increases the recall scores.
Perhaps future studies can combine these these two promising techniques to im-
prove both precision and recall. Visually, Figure 6.6 shows a significant reduction
in noise when frequency domain filtering is used in conjunction with regression
trees.

This section presented the Output Decomposition Mixture-of-Experts (OD-MoE)
algorithm designed for object delineation task. By using an output decomposition
function to identify coherent parts of the objects, each function approximator, com-
prising the mixture of experts, can be focused on a specific object aspect. The
experimental results illustrate the utility of mapping to primitive object structures,
which appears to be an easier task than attempting to identify individual pixel la-
bels. This enables OD-MoE to produce results superior to those of standard pixel
labeling algorithms. More specifically, OD-MoE is able to separate individual ob-
jects, while the basic pixel labeling algorithms, devoid of higher level knowledge
of objects, consistently fused several objects together.

102

Figure 6.7: Distance Transform of a binary image.

6.4 Stacked Convolutional Regression (SCR)
In order to evaluate the efficacy of stacked convolutional regression networks within
the context of data driven region growing framework, the same nine images of ore
fragments were used. To allow comparison to previous experimental results with
CDWS and Heterogenous Stacking systems the same LOOCV approach was uti-
lized as in Section 6.1.2. For all experiments using SCR the target labels Lregion,
Lboundary, Lmarker were modified using the distance transform and re-scaled to the
range [−1, 1]. The distance transform, bwdist(Ltype), was applied to all pixel be-
longing to target objects and measured the Euclidean distance of a given pixel to
the object border as depicted in Figure 6.7. The preprocessing is then defined as:

Ltype =
ln(bwdist(Ltype))

max(i,j)∈S (ln(bwdist(Ltype)))

where type ∈ {region, boundary,marker}. All experiments utilized trained con-

ventional neural networks to learn mappings in the form NIr (i, j) 7→ N
Ltype
r (i, j)

using stochastic gradient descent with mini-batches of 100 samples. The learning
parameters, e.g., initial learning rate and the annealing schedule were optimized
based on a tenth ground-truthed image not used during the learning and evaluation
stages of the following experiments. It should be noted that all cites (i, j) ∈ S were
used in training. When applied to test images, the conventional networks were
converted into convolutional networks to avoid utilizing the less efficient sliding
window approach.

6.4.1 Experiment 1
To test the benefits of producing label patches Nr(i, j) rather than individual pixels,
three main network configurations created with r ∈ {0, 5, 10}, resulting in output
patch sizes of: 1×1, 11×11, 21×21. For all configurations, the neural network was
grown from 1 hidden layer to 7 hidden layers, with all layers containing 100 hidden

103

Train/Test Performance

h = 1

h = 3

h = 5

h = 7

Figure 6.8: Output of the trained stacked convolutional regression neural network.
Left: Training output as a function of the number of hidden layers, h, in a 21×21 7→
{100}h 7→ 21× 21 network. Right: Test Image output.

nodes as defined in Equation 5.22. To prevent overfitting, `1 and `2 regularization
was used as in Equations 3.18 and 3.21 with λ = 0.1 in both cases. The change from
non-regularized to regularized networks can be observed in Figure 6.9. Visually,
regularization appears to produce sharper filters.

Quantitative results are presented in Tables 6.9 and 6.10. In addition, Figure
6.8 presents the test/train output of a single Stacked Convolutional Network. In
addition to testing the different output patch sizes, we examined if narrow networks
with only 10 hidden units per layer were as effective as the networks utilizing 100
hidden units per layer. Finally we also looked at the effects of preprocessing the
images with histogram equalization [39].

Several points are immediately clear. First and foremost, as conjectured in pre-
vious chapters, mapping to output patches rather than individual labels produces
significantly better segmentation results as evidenced by the results in Table 6.9. At
the pixel level, the single site output labeling networks attained a significantly lower
precision. Furthermore regardless of output topology, networks with a larger num-
ber of hidden layers produce more accurate object segmentation. Even for networks
labeling single cites, L(i, j), deeper networks perform much better. However, the
effect of labeling neighborhoods larger than one pixel has a profound effect. Ob-

104

No Regularization `2 Regularization

Regularization
No Regularization Regularized

Figure 6.9: Effects of Regularization.

serve that a network with a single hidden layer mapping to N5(i, j) or N10(i, j)
significantly outperforms the system utilizing networks with N0(i, j) output and
seven hidden layers.

In terms of hidden layer size, clearly the narrow networks under-perform. Given
21×21 input patch, ten components simply do not adequately describe such a large
patch. As a result recall appears to be significantly lower for the narrow networks.
Comparing effectiveness of `1 and `2 regularization, there seems to be little dif-
ference in terms of performance. In light of minimal performance differences, the
pruning capabilities of `1 regularization would be preferable to `2 regularization. To
test the current limits for using patch-based networks, we attempted to train large
31 × 31 7→ {300}7 7→ 31 × 31 (containing 1,026,600 free parameters) networks
using `1 regularization. The performance gain was minimal (label score of 0.6587,
which is once again not a surprise given that only 236 × 637 = 150, 332 training
patches were used for training.

Regarding histogram equalization as a preprocessing step we observe mixed
results in Table 6.10. For networks with one hidden layer histogram equalization
significantly improves performance. On the other hand, these performance gains
disappear once the networks are ‘grown’ to seven hidden layers. In turn, this yields
further insights as to the role the additional hidden layers play. In light of the
aforementioned results, one is led to believe that the hidden layers learn illumination
invariance. Changes in illumination and reflectance however, can be viewed as
forms of noise, thereby corroborating the view put forth in previous chapters that
the internal pixel-wise layers act as denoising elements.

105

Table 6.9: Experiments using `2 Regularization. These experiments looked at per-
formance with respect to the size of output patches. NLr (i, j) was varied from
r = {0, 5, 10} resulting in output patch sizes of: 1 × 1, 11 × 11, 21 × 21. In all
cases, results are presented using h = {1, 3, 5, 7} hidden layers, with each layer
having a constant 100 nodes.

21x21-{100}xh-1x1 I/U
Pixel

accuracy Precision Recall
label
score

h=1 0.6456 0.7581 0.8463 0.7383 0.3826
h=3 0.682 0.7674 0.793 0.8341 0.4564
h=5 0.6869 0.7744 0.8044 0.8287 0.495
h=7 0.6901 0.7849 0.8325 0.8036 0.5114

21x21-{100}xh-11x11 I/U
Pixel

accuracy Precision Recall
label
score

h=1 0.667 0.7842 0.8962 0.7255 0.5548
h=3 0.7234 0.8214 0.9049 0.7835 0.6301
h=5 0.7222 0.8222 0.915 0.7747 0.6475
h=7 0.724 0.8231 0.9133 0.778 0.6454

21x21-{100}xh-21x21 I/U
Pixel

accuracy Precision Recall
label
score

h=1 0.699 0.8002 0.8737 0.7787 0.547
h=3 0.7306 0.8251 0.8998 0.7962 0.6334
h=5 0.733 0.8266 0.9001 0.7988 0.6472
h=7 0.7344 0.8276 0.9005 0.8001 0.6487

106

Table 6.10: Experiments with `1 Regularization. The experiments examined per-
formance with respect to the size of hidden layer, preprocessing and regularization.
The input and output patch sizes were 21 × 21 pixels. Results are presented using
h = {1, 3, 5, 7} hidden layers.

with Histeq and L1=0.01

21x21-{100}xh-21x21 I/U
Pixel

accuracy Precision Recall
label
score

h=1 0.7052 0.8078 0.8929 0.7712 0.5958
h=3 0.7231 0.8227 0.9137 0.7768 0.6393
h=5 0.7241 0.8236 0.9156 0.7763 0.6504
h=7 0.7252 0.8241 0.9143 0.7786 0.6522

with Histeq and L1=0.1

21x21-{100}xh-21x21 I/U
Pixel

accuracy Precision Recall
label
score

h=1 0.7088 0.8096 0.8904 0.7774 0.5988
h=3 0.7229 0.8226 0.9139 0.7762 0.6386
h=5 0.7243 0.8236 0.9149 0.7771 0.6472
h=7 0.7264 0.8247 0.9134 0.7807 0.6499

 L1reg 0.1

21x21-{100}xh-21x21 I/U
Pixel

accuracy Precision Recall
label
score

h=1 0.6939 0.7965 0.8721 0.7736 0.5587
h=3 0.7208 0.8206 0.91 0.7769 0.6364
h=5 0.7227 0.8223 0.9131 0.7766 0.6471
h=7 0.7239 0.8229 0.9123 0.7786 0.6433

 L1reg 0.1

21x21-{10}xh-21x21 I/U
Pixel

accuracy Precision Recall
label
score

h=1 0.5891 0.7359 0.8918 0.6348 0.4385
h=3 0.6625 0.7801 0.8878 0.7237 0.5459
h=5 0.6641 0.7824 0.8943 0.7213 0.5611
h=7 0.6681 0.7849 0.895 0.7253 0.5634

107

6.4.2 Experiment 2
To demonstrate the ability of SCR to operate at multiple resolutions and utilize more
than two convolutional layers, the second experiment created a set of progressively
deeper networks with alternating convolutional-conventional layers. Each convolu-
tional layer utilized three sets of 5× 5 filters, with each set operating at a different
resolution. During training we extracted 5 × 5, 9 × 9, 17 × 17 image patches and
resampled the larger patches into 5 × 5 patches. The three sets were then concate-
nated together to form training data for the convolutional layers. This procedure
was repeated for each convolutional layer during the training process. In addition,
we tested the utility of hybrid training, where the target output was concatenated
with the input to create a new output vector used during the training of the network.
Based on the discussion in [7] unsupervised and hybrid training performed better
than strictly supervised greedy layer-wise training we have adopted. Experimental
setup was as in the previous experiment.

The results, presented in Table 6.11, clearly demonstrate the efficacy of multi-
resolution, multi-convolutional architecture. Although hybrid training did improve
the results, the pair-wise t-test did not detect statistically significant differences.
However, both approaches produce statistically significant improvements with re-
spect to the networks trained in the previous experiment. Visually, the segmentation
results are presented in Figure 6.10 and indicate a high degree of correspondence
between the output of the SCR and ground truth.

108

Table 6.11: Multi-resolution, Multi-Convolution results. Top: Results using Super-
vised Greedy Layerwise Learning. Bottom: Results using Hybrid Greedy Layer-
wise where the target output is augmented with the input vector. Both training
regimes incrementally trained a set of alternating convolutional-conventional hid-
den layers. The convolutional layers utilized 5 × 5 filters analyzing the input at
3 spatial resolutions. All hidden layers contained 20 hidden nodes and utilized `2

regularization. Comparing the performance of the best 7 layer network from Table
6.10 to the best network (with 12 layers) in this table using the paired t-test results in
the following p-values: 0.0000, 0.000328, 0.439039, 0.000008, 0.013133. Except
for recall, the improvement is statistically significant.

5x5@3res-{20}xh-5x5 I/U
Pixel

accuracy Precision Recall
label
score

h=2 0.4945 0.597 0.6646 0.6637 0.3004
h=4 0.7431 0.8346 0.9094 0.8033 0.6508
h=6 0.7542 0.8412 0.9064 0.8188 0.6693
h=8 0.7523 0.8404 0.9091 0.8143 0.6676
h=10 0.7532 0.8408 0.9082 0.8161 0.6702
h=12 0.7521 0.8401 0.9081 0.8149 0.6686
h=14 0.7524 0.8402 0.9071 0.8162 0.6674

5x5@3res-{20}xh-5x5 I/U
Pixel

accuracy Precision Recall
label
score

h=2 0.456 0.5463 0.6165 0.6426 0.2182
h=4 0.7432 0.8331 0.8995 0.8113 0.6427
h=6 0.7508 0.8394 0.9094 0.8122 0.6658
h=8 0.753 0.841 0.9103 0.814 0.6676
h=10 0.7547 0.8421 0.9108 0.8157 0.672
h=12 0.7537 0.8416 0.912 0.8136 0.6779
h=14 0.7535 0.8414 0.9111 0.814 0.6773

109

Input Image Candidate Segmentation Ground Truth

Figure 6.10: Output of the DDRG Framework utilizing a Deep Convolutional Net-
work with 8 conventional and 7 convolutional layers. The first 7 convolutional
layers used 5 × 5 filters performing analysis at 3 spatial resolutions. All hidden
layers had 20 hidden nodes and were trained using the hybrid target function and
layer-wise learning. Each connected component in the Ground Truth and Candidate
Segmentation has been assigned a unique color for visualization. Corresponding
quantitative results are presented at the Bottom of Table 6.11.

110

Table 6.12: Experiments for evaluating the contributions of individual components
within the DDRG framework.

21x21-{100}xh-21x21 I/U
Pixel

accuracy Precision Recall
label
score

DDRG 0.7264 0.8247 0.9134 0.7807 0.6499
No Boundaries 0.6797 0.7975 0.9241 0.72 0.6127

No Markers and No Boundaries 0.7367 0.8297 0.904 0.7999 0.5794
No Watershed 0.7365 0.8296 0.9046 0.7991 0.579

Table 6.13: Comparison of Object Segmentation Systems against DDRG frame-
work utilizing SCR networks. CPL(LogReg)+ DDRG denotes the CDWS system
presented at the beginning of the chapter which produced Lmarker, and Lregion.

System I/U
Pixel

accuracy Precision Recall
label
score

OSA 0.6838 0.7825 0.8357 0.7907 0.5522
WipFrag 0.5913 0.6493 0.6587 0.8529 0.3574

CPL(LogReg)+DDRG 0.7602 0.8385 0.8669 0.8614 0.6189
7Layer SCR + DDRG 0.7264 0.8247 0.9134 0.7807 0.6499

12 layer Multi-Res SCR + DDRG 0.7537 0.8416 0.912 0.8136 0.6779

6.4.3 Experiment 3
To ascertain the contribution of each component, Lregion, Lboundary, Lmarker on the
overall performance of Data Driven Region Growing the system was re-applied to
the 9 Oil Ore Images in the now standard LOOCV manner, whereby each compo-
nent was removed. First we disabled the utilization of Lboundary, next we removed
Lregion (in addition to removing the Lboundary component). Finally we disabled the
watershed algorithm, leaving only Lregion. Experimental results are presented in
Table 6.12. Clearly each component significantly contributes to the DDRG frame-
work. Interestingly, note that watershed without markers is essentially useless. This
in turn implies that the distance transform is not effective at inducing a favorable
tolopogy for the watershed algorithm. In contrast, markers and boundary informa-
tion to indeed provide useful and complementary information for improving the
region growing process.

The component-by-component breakdown, allows for a fair comparison with
the CDWS system, which utilized only Lregion and Lmarker. In addition, the per-
formance of other systems specific to Oil Ore Segmentation is also compared to
DDRG in Table 6.13. While the full DDRG system outperforms all other systems,
it attains the high level of performance due to the inclusion of boundary informa-
tion extracted from Lboundary. When boundary constraints have been removed, the
system performance is comparable to Classification Based Watershed Segmentation

111

Results
Human Expert

Hand Crafted Features → CDWS

OSA - Classical Image Processing Output

Logistic Regression Classifier

7-layer MLP based → Region Growing

Figure 6.11: Output of DDRG and other algorithms. Top Left: Input Image. Top
Right: Ground Truth Middle Right: Output of Logistic Regression utilizing hand
crafted features from Figure 6.1. Middle Left: Output of CDWS system utiliz-
ing Logistic Regression and hand crafted features from Figure 6.1. Bottom Right:
Output of Ore Segmentation Analyst (OSA) composed of a sequential pipeline of
hand-designed image processing operators. Bottom Left: Output of DDRG utiliz-
ing 21× 21 7→ {100}7 7→ 21× 21 SCR networks.

(CDWS) system. However, the CDWS system utilized a large set of hand-crafted
features, while the DDRG system utilized stacked convolutional regression which
mapped raw image patches to labels in a fully automated fashion.

An example of object segmentation differences between the various systems is
presented in Figure 6.11. In contrast to other systems, Stacked Convolutional Re-
gression Networks produce much smoother object boundaries and, at least visually,
closely mimic the ground-truth object boundaries.

112

Table 6.14: Performance of DDRG utilizing seven layer SCR on datasets
DS1, DS2, DS3. For comparison, the label score for CDWS is presented.

DatSet I/U
Pixel

accuracy Precision Recall
label
score

CDWS
label
score

DS1 0.6833 0.8121 0.88 0.7534 0.6031 59.1
DS2 0.7264 0.8305 0.847 0.8371 0.6286 56.1
DS3 0.736 0.8172 0.8925 0.8089 0.6014 52.1

6.4.4 Large Scale Experiments
To further evaluate the DDRG framework and the SCR algorithm the system de-
scribed in the previous section was run on three large image datasets. Datasets,DS1
and DS2 each contained 99 images along with the ground truth, while DS3 con-
tained 50 labeled images. The image dimensions for each dataset were: 501× 161,
501 × 201, and 501 × 381 pixels. Example images from each data set are shown
in Figure 6.12. Observe the dramatic change in illumination, camera angle and
object size for DS3. We used the SCR models trained on the nine images de-
scribed in Section 6.1.2. The models utilized histogram equalization as preprocess-
ing and were trained with `1 regularization set to 0.1. The model topology was
21 × 21 7→ {100}7 7→ 21 × 21. Previous performance of these models, using the
LOOCV procedure, was presented in Table 6.10. Model averaging was performed
analogous to previous experimental setups, the output of the nine models was av-
eraged together to produce the final probability maps, P region,Pmarker,P boundary

and subsequently re-scaled to the range [0, 1]. Once again only default thresholds
were used, τ1 = τ2 = τ3 = 0.5. The results are presented in Table 6.14.

Compared with the LOOCV results (label score of 0.6499) in previous section,
performance dropped slightly but is never-the-less still superior to that of CDWS
system. In fact performance of all other systems (WipFrag and OSA) also drops
(results not shown). Subsequent examination of the datasets revealed a large num-
ber of inconsistencies within the ground truth images, which were produced by
first running the OSA system and then manually modifying the output to correct
gross errors. In contrast, the training set had relatively higher quality of ground
truth, which was manually and somewhat meticulously created from scratch. In
addition, the aforementioned changes in illumination, camera angle and object size
have also negatively impacted the quality of the final object segmentation. Despite
these challenges, the DDRG system demonstrated robust performance, with mini-
mal performance degradation.

113

Image from DS 1

Image from DS 2

Image from DS 3

Figure 6.12: Example images from the three large data sets.

114

Table 6.15: Performance of DDRG utilizing SCR on aerial forest images. Top
Row: Mean Bottom Row: Standard Deviation. Compare with performance of
CDWS in Table 6.4.

SCR with 5 hidden layers SCR with 7 hidden layers

I/U
Pixel

accuracy Precision Recall
label
score

0.5581 0.8731 0.6487 0.8367 0.4833
0.1738 0.0724 0.2062 0.1417 0.1493

I/U
Pixel

accuracy Precision Recall
label
score

0.6115 0.9117 0.774 0.7718 0.5616
0.1558 0.0446 0.1884 0.1511 0.1237

6.4.5 Aerial Forest Images Revisited
To evaluate how suitable the DDRG framework and SCR is for other domains, we
once again turned to the aerial forest imagery dataset. The experimental setup used
was the same as described in section 6.1.5 with one exception. Due to computa-
tional constraints, we down-sampled the images from 512 × 512 to 256 × 256. In
order to properly evaluate the results we up-sampled the output back to its orig-
inal size. The change in resolutions did not appear to change the performance
measures. For each of the 18 HSV images, three SCR networks were trained to
produce P region,Pmarker,P boundary. The networks had the following topology -
21 × 21 × 3 7→ {100}h 7→ 21 × 21 × 3, with h ∈ {5, 7}. Since histogram equal-
ization is not appropriate in HSV space, we used histogram matching instead. For
each test image, the histogram of each (H,S,V) channel was transformed to match
the histogram of the corresponding histogram of the training image. As in previ-
ous experiments model averaging was used within the LOOCV evaluation scheme.
Experimental results are presented in Table 6.15 and Figure 6.13. Examining the
output of SCR to that of CDWS, in Figure 6.13, reveals that SCR significantly
smooths out object boundaries. This is most likely due to running the algorithm in
lower data resolution. This is also further evidenced by the lower pixel based statis-
tics in comparison to CDWS (in Table 6.4. Note the CDWS system was trained
using features extracted at three resolutions (equivalent to 512 × 512, 256 × 256,
and 128 × 128 image sizes). Hence it includes, (at least partially) the data used
to train CDWS. On the positive side, we can see a very significant increase in the
labeling score in comparison to CDWS. The CDWS system produced a label score
of 0.47, while the SCR networks produced a score of 0.56. In addition, a very large
change in label score can be seen between the networks with 5 hidden layers and 7
hidden layers. Comparing the final output of DDRG using 5 and 7 layer SRC re-
veals an interesting phenomenon. Output of 7 hidden layer system is very similar to
the output of the 5 hidden layer system modified by morphological erosion. Perhaps
the smoothed object boundaries are a function of more than just input resolution!
The aforementioned observation seems to indicate that the upper hidden layers of
the 7-layer hregion network learned a function similar to morphological erosion.

115

Test Image Ground Truth

CDWS DDRG with 7 layer SCR

DDRG with 5 layer SCR

Figure 6.13: Same input image as in Figure 6.4.

116

Table 6.16: Performance of DDRG utilizing seven layer SCR in conjunction with
post processing techniques. Top row show performance using non-default thresh-
olding parameters of: τ1 = 0.45, τ1 = 0.2, τ1 = 0.3. Using this result as the
starting point, filtering procedures based on object Size (SF) and Morphological
Open (OF) were applied in a manner analogous to those of Table 6.3.

Post Processing I/U
Pixel

accuracy Precision Recall
label
score

tau1=0.5,
 tau2=0.5,
tau3=0.5 0.7264 0.8247 0.9134 0.7807 0.6499

tau1=0.45,
 tau2=0.2,
tau3=0.3

0.7527 0.8369 0.886 0.8343 0.6813

SF = 100 0.7548 0.8392 0.8901 0.8333 0.686
SF = 200 0.7531 0.8395 0.8944 0.8274 0.6923
SF = 400 0.7422 0.8397 0.8969 0.8126 0.6952
SF = 800 0.7278 0.8502 0.8914 0.7991 0.6966
OF = 3 0.7519 0.8371 0.8902 0.8297 0.6849
OF = 5 0.7526 0.8388 0.8978 0.824 0.6927
OF = 7 0.7388 0.8323 0.9122 0.7961 0.6919
OF = 9 0.7144 0.8194 0.926 0.7582 0.6744

6.4.6 Post Processing Revisited
Similar to experiments in Table 6.2 we examined performance with respect to
several post processing techniques as well as to different threshold settings for
τ1, τ2, τ3. Results are presented in Table 6.16. The most significant performance
boost is produced as a result of changing the threshold parameters. In turn, this
result motivates the use of an on-line decision module(s) to adaptively determine
threshold parameters for a given image or even for a given connected component.
To push the idea further we experimented with filtering out objects based on solid-
ity. Solidity is defined as ψ = |Gk|

|G′k|
, where |Gk| is the number of pixels in object

k and |G′k| is the number of pixels in the convex hull of object k. Thus ψ = 1
would imply the object is perfectly convex (see Figure 6.14 for more details). In
[87] we discovered that this was one of the most critical shape descriptors, for Ore
Fragments. Figure 6.14 presents a histogram of object solidity for ground truth im-
ages used in the previous experiments. Clearly most of the objects have a solidity
greater that 0.8. Using this insight, we can filter out object that have solidity lower
than a predefined threshold τψ. Results of this filtering operation are presented in
Figure 6.15 and demonstrate that solidity based filtering can indeed select objects
that more closely match the ground truth. One drawback of this basic technique is
that a large number of objects are excluded from further analysis. As mentioned
previously, rather than discard objects a potential future research direction would

117

Figure 6.14: Solidity Object Filtering. Top: Object (white pixels), and its convex
hull (red pixels). Solidity is the proportion of the object pixels to those in the convex
hull. In this case solidity is 0.78. Bottom: Histogram of solidity for objects within
the Ground Truth.

be to create an adaptive module that can maximize solidity by adaptively choosing
a threshold value for a given connected component.

6.5 Discussion
Previous sections presented extensive experimental results evaluating (a) Data Driven
Region Growing (DDRG) and its predecessor CDWS, (b) Heterogeneous Stacking
and ICA, (c) Output Decomposition Mixture of Experts, and (d) Stacked Convolu-
tional Regression (SCR).

We have demonstrated that each component of the DDRG framework signifi-
cantly contributes to the overall performance of the system. Evaluation of the Out-
put Decomposition Mixture of Experts (OD-MoE) system demonstrated that ex-
tracting features from both input and output can improve performance at the object
level. Since both the DDRG framework and Output Decomposition, put additional
pressure on the domain experts by requiring additional feature extraction routines
to be coded we turned our attention to automated feature extraction methods. To
further automate the system, we examined the performance of ICA to SCR. Exper-

118

Figure 6.15: Solidity Object Filtering. Top: Label Score as a function of Solidity.
Objects are filtered if their solidity is less then threshold (x-axis). The remaining
objects are scored against ground truth objects that they overlap. Bottom: Propor-
tion of objects within DDRG segmentation with solidity grater than threshold value
(x-axis).

imental results indicate that ICA, even at three resolutions, performs considerably
worse than the proposed SCR algorithm. Furthermore, the SCR algorithms can be
viewed as an extension of the (OD-MoE) system by simultaneously extracting fea-
tures from input and output. Empirical evidence further corroborated the improved
performance as a result of analyzing output patches. In addition, we demonstrated
that superior performance can be achieved by ‘growing’ deep networks. Used in
conjunction with input/output patch analysis, state-of-the-art results were achieved
for the domain of oil ore fragments and aerial forestry.

119

Chapter 7

Conclusion

120

7.1 Summary
This dissertation proposed the Data Driven Region Growing Framework (DDRG)
as a solution to the object segmentation problem. In order to separate target objects
from the background and each other, the DDRG framework utilizes three machine
learned mappings as input into the watershed algorithm. Respectively, the map-
pings identify foreground-background regions, object markers, and object contours,
that are combined together into a topology used by the watershed algorithm to pro-
duce the final output. In order to produce the three mappings, hregion, hmarker, and
hboundary, relevant image feature are needed.

On a different line of research, the concept of output decomposition proposed
explicitly extracting features from the ground truth and learning a mixture-of-specialists
that map to individual output features. The output features are subsequently fused
to produce the final output. The argument, corroborated by experimental results
and not unlike the philosophy underlying random field methods, is that the analysis
of label interactions can lead to improved object segmentation.

The use of output decomposition within the data driven region growing frame-
work would potentially require six unique feature extraction functions to be de-
fined, two for each of the three mappings, hregion, hmarker, hboundary. This further
exacerbates the problems with manually defining feature extraction functions and
motivates the use of automated feature extraction methods. As a result, we fo-
cused our attention on neural network based feature extraction techniques which
encompass PCA, ICA, Autoencoders and their numerous variants. When viewed as
patch based neural networks, it can be shown that all the aforementioned techniques
correspond to a sub type of convolutional neural networks that can simultaneously
extract relevant features and regress on them. In fact, Output Decomposition Mix-
ture of Experts itself can be viewed as a convolutional neural network where the
filters are manually selected rather than learned from data.

The approach, adopted by this research, is to learn a specific set of features us-
ing automated feature extraction techniques. Neural networks in general, and con-
volutional neural networks specifically, are able to simultaneously create features
and use them for producing the desired output. Motivated by promising results of
Heterogeneous Stacking, Output Decomposition Mixtures of Experts and greedy
layer-wise learning research, the Stacked Convolutional Regression (SCR) algo-
rithm was proposed. This approach aims to directly map image patches,NIr (i, j) to
label patches NLr (i, j) and utilizes incremental layer-wise training strategy, which
enables the creation of progressively deeper networks, that in turn are able to ex-
tract progressively more useful features for the task at hand. Experimental results
indicate that state-of-the-art performance can be achieved by employing Stacked
Convolutional Regression Networks to produce the probability maps utilized within
the Data Driven Region Growing Framework. Furthermore, due to the automated

121

feature extraction ability of SCR the mappings can be produced in a highly auto-
mated manner, with very little input need from the user. In turn, the high degree
of automation enables the proposed system to be easily ported from domain to do-
main as demonstrated by re-training the system for the domain of forestry, where
state-of-the-art results have also been demonstrated.

7.2 Contributions
This dissertation presented several contributions, namely: (i) Data Driven Region
Growing, (ii) Heterogeneous Stacking, (iii) Output Decomposition Mixture of Ex-
perts, and (iv) Stacked Convolutional Regression, all aimed at improving object seg-
mentation. Empirical evidence presented in the previous chapter suggests that each
of the algorithms has the potential of improving the object segmentation output.
The unifying theme of this research is the investigation of output decomposition
and manipulation techniques. To the best of our knowledge, no one has explic-
itly focused on extracting features from ground truth images. Hence, the presented
research direction(s) are unique.

7.3 Related and Future Research Directions
Over the past two decades, machine learning has slowly but surely proliferated into
image processing research and many other areas of science. However, the research
into improving region growing methods has largely ignored this invaluable source
of ideas and paradigms. The basic idea of using the output of a machine learned
module as input into a region growing algorithm has received relatively little at-
tention. Within the levelsets research, Cobzas et al. [19] have recently used the
output of logistic regression as input to a level set function for improving the seg-
mentation of tumors within 3D MRI volumes. In [21] the researchers implemented
a semi-automated system that used user defined seeds (a.k.a. markers) to initialize a
probabilistic level set method that employed an on-line trained naive bays classifier
to form the input to the level set function. The automation of marker construc-
tion has received even less attention, save for the previously mentioned work of
Lezoray and Cardot in [77, 78]. To the best of our knowledge, there has not been
any work on incorporating machine learned boundary constraints into the region
growing methods.

Although the proposal to explicitly extract features from the ground truth im-
ages is unique, there are several algorithms that can be viewed as being similar.
Markov Networks [34], (Hierarchical) Markov Random Fields [18], and Condi-
tional Random Fields [65] to a limited extent attempt to address the problem of
output correlations. In [34] researchers used PCA to decompose the input (low

122

resolution image patches) and output (high resolution patches) and used a random
field to map from one to the other. Similar idea was reimplemented using con-
volutional networks in [60]. Hierarchical Markov Random Fields [18] create a
multi-resolution pyramid of the ground truth during the learning phase and prop-
agate information from layer to layer (both up and down the resolution hierarchy)
to attain a consistent pixel labeling at all resolutions. Conditional Random Fields
[65] explicitly calculate the probability of a given output configuration given input
features and attempt to maximize the configuration likelihood over the whole im-
age. In addition, joint kernel maps [124] (also called kernel dependency estimation
[123]) attempt to link hand crafted input kernels to hand crafted output kernels using
SVM’s. To some extent their work is related to the Output Decomposition Mixture
of Experts approach. In [89] an energy based model [71] was used in a manner
analogous to heterogeneous stacking and was shown to be effective at ‘cleaning up’
label noise.

7.3.1 Convolutional Networks
Clearly, the results from Chapters 4 and 5 indicate a profound connection between
patch-based conventional networks and convolutional networks. The fact that con-
ventional networks mapping:

NIr (i, j) 7→ NLr (i, j) (7.1)

can be converted into convolutional networks presents a number of new research
questions. For example:

• Can deep convolutional networks be pre-trained by first training a conven-
tional ANN network (on a subset of the image patches for instance) as in
Equation 7.1, then after converting the ANN to a CNN with two convolu-
tional layers further training or even growing the network?

• Is it possible to grow filters? Suppose after creating an ANN as in Equation
7.1, the output patch is expanded to NLr+r′(i, j) and the inner portion of the
filter is seeded with previously learned parameters.

• The last chapter remarked that Output Decomposition using multi-resolution
Gabor filters at multiple resolutions can be implemented as Convolutional
Network operating at multiple resolutions using a fixed set of (Gabor) filters.
Similar to the previous point, one could envision replacing the pre-training
procedure with seeding the initial weights with ’hand-selected’ filters as a
starting point, and then letting backpropagation modify them. In fact there

123

is no reason to think that applying autoencoders to first learn input represen-
tation and separately an output representation cannot produce good starting
points for learning a discriminative convolutional neural network.

7.3.2 Adaptive Processing
Experimental results on adaptive processing suggest the use of adaptive on-line de-
cision making. In turn, previous research on Adaptive Object Recognition (ADORE)
[26, 74, 72] has demonstrated some success in this area. Unfortunately, progress
has essentially stalled due to the need for automated feature extraction algorithms.
To give a concrete example, the previously mentioned Solidity based thresholding
can be used to implement an adaptive system that iteratively searches over thresh-
olds τ to find one that maximizes solidity. Thus solidity is an example of a fea-
ture describing object properties, which is needed for adaptive decision making.
Recently, in [66], a deep neural network was trained to recognize convex vs non-
convex shapes. This indicates that the defining shape characteristics of objects may
be automatically learned. In light of these new developments and the experimental
results presented in the previous chapter demonstrating the efficacy of automated
feature extraction methods, perhaps it is time to revive research focusing on further
automating ADORE and other online decision making systems.

7.4 Final Thoughts
Automated object segmentation is a difficult task. This dissertation took a step to-
wards solving this problem by employing machine learning methods in conjunction
with region growing in order to separate and delineate objects of interest from the
background and each other. More specifically, we presented algorithms that modify
and decompose the ground truth in order to take advantage on the structural regular-
ities embedded within it. Overall the algorithms presented in this research further
automate the system creation process and have the potential to one day produce
fully automated object segmentation systems.

124

Bibliography

[1] web.cecs.pdx.edu/ mperkows/CAPSTONES/2005/L005.Neura Networks.ppt, 2005.

[2] R. Adams and L. Bischof. Seeded region growing. PAMI, 16(6):641–647, 1994.

[3] W. Au and B. Roberts. Adaptive configuration and control in an ATR system. In
Proceedings of the DARPA Image Understanding Workshop, pages 667–676, Palm
Springs, CA, 1996.

[4] Shumeet Baluja and S. Fahlman. Reducing network depth in the cascade-correlation
learning architecture. Technical Report CMU-CS-94-209, Computer Science De-
partment, Carnegie Mellon University, Pittsburgh, PA, October 1994.

[5] D. Barash and D. Comaniciu. A common framework for nonlinear diffusion, adap-
tive smoothing, bilateral filtering and mean shift. 22(1):73–81, January 2004.

[6] Yoshua Bengio. On the challenge of learning complex functions. In Paul Cisek,
John Kalaska, and Trevor Drew, editors, Computational Neuroscience: Theoretical
Insights into Brain Function, Progress in Brain Research. Elsevier, 2007.

[7] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks.

[8] J. Besag. Spatial interaction and the statistical analysis of lattice systems. B-
36(2):192–236, 1974.

[9] J. Besag. On the statistical analysis of dirty pictures. B-48(3):259–302, 1986.

[10] S. Beucher and F. Meyer. The morphological approach to segmentation: the water-
shed transformation. In E. Dougherty, editor, Mathematical Morphology in Image
Processing. Marcel Dekker, New York, 1992.

[11] J. Bins and B. Draper. Feature selection from huge feature sets. In Proceedings of
International Conference on Computer Vision, volume 2, pages 159–165, 2001.

[12] A. Bleau and L. J. Leon. Watershed-based segmentation and region merging. CVIU,
77(3):317–370, March 2000.

[13] Jeremy S. De Bonet and Paul A. Viola. A non-parametric multi-scale statistical
model for natural images. In Michael I. Jordan, Michael J. Kearns, and Sara A.
Solla, editors, Advances in Neural Information Processing Systems, volume 10. The
MIT Press, 1998.

[14] Charles A. Bouman and Michael Shapiro. A multiscale random field model for
bayesian image segmentation. IEEE Transactions on Image Processing, 3:162–177,
1994.

125

[15] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[16] Leo Breiman. Randomizing outputs to increase prediction accuracy. Machine Learn-
ing, 40(3):229–242, 2000.

[17] H. Cheng and C. A. Bouman. Multiscale bayesian segmentation using a trainable
context model. IEEE Transactions on Image Processing, 10(4):511–525, 2001.

[18] Li Cheng, Terry Caelli, and Victor Ochoa. A trainable hierarchical hidden markov
tree model for color image segmentation and labeling. In ICPR 2002, Quebec city,
Canada, 2002.

[19] D. Cobzas, N. Birkbeck, M. Schmidt, M. Jagersand, and A. Murtha. A 3d variational
brain tumor segmentation using a high dimensional feature set. In Mathematical
Methods in Biomedical Image Analysis (MMBIA 2007) n conjunction with ICCV,
2007.

[20] F. S. Cohen, Z. Fan, and M. A. Patel. Classification of rotated and scaled textured
images using gaussian markov random field models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(2):192–202, 1991.

[21] D. Cremers, O. Fluck, M. Rousson, and S. Aharon. A probabilistic level set formu-
lation for interactive organ segmentation. In Proc. of the SPIE Medical Imaging, San
Diego, USA, February 2007.

[22] D.S. Culvenor. Tida: an algorithm for the delineation of tree crowns in high spatial
resolution remotely sensed imagery. Computers & Geosciences, 28(1):33–44, 2002.

[23] F. Dornaika and H. Zhang. Granulometry using mathematical morphology and mo-
tion. In Proceedings of IAPR Workshop on Machine Vision Applications, pages 51–
54, Tokyo, Japan, November 2000.

[24] B. Draper. Modelling object recognition as a markov decision process. International
Conference on Pattern Recognition, pages D95–99, 1996.

[25] B. Draper, U. Ahlrichs, and D. Paulus. Adapting object recognition across domains:
A demonstration. In Proceedings of International Conference on Vision Systems,
pages 256–267, Vancouver, B.C., 2001.

[26] B. Draper, J. Bins, and K. Baek. ADORE: adaptive object recognition. Videre,
1(4):86–99, 2000.

[27] B. Draper, R. Collins, J. Brolio, A. Hanson, and E. Riseman. Issues in the develop-
ment of a blackboard-based schema system for image understanding. In R. Engle-
more and T. Morgan, editors, Blackboard Systems, pages 189–218. Addison-Wesley,
London, 1988.

[28] B. Draper, R. Collins, J. Brolio, A. Hanson, and E. Riseman. The schema system.
International Journal of Computer Vision, 2:209–250, 1989.

[29] R.P.W. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, and D.M.J. Tax.
PRTools4, A Matlab Toolbox for Pattern Recognition. Delft University of Technol-
ogy, 2004.

[30] M. Egmont-Petersen, D. de Ridder, and H. Handels. Image processing with neural
networks- a review. Pattern Recognition, 35:2–8, 2002.

[31] J. Fan, G. Zeng, M. Body, and M.S. Hacid. Seeded region growing: an extensive and
comparative study. PRL, 26(8):1139–1156, 2005.

126

[32] Beat Fasel. Multiscale facial expression recognition using convolutional neural net-
works. In ICVGIP, 2002.

[33] C. Fox and G. Nicholls. Exact map states and expectations from perfect sam-
pling: Greig, porteous and seheult revisited. In Twentieth International Workshop
on Baysian Inference and Maximum Entropy Methods in Science and Engineering,
2000.

[34] William T. Freeman, Egon C. Pasztor, and Owen T. Carmichael. Learning low-level
vision. International Journal of Computer Vision, 40(1):25–47, 2000.

[35] Y. Freund and R. Schapire. A decision-theoretical generalization of on-line learning
and an application to boosting. Computer System Science, 55:119–139, 1997.

[36] K. Fukushima, S. Miyake, and T. Ito. Neocognitron: A neural model for a mecha-
nism of visual pattern recognition. T-SMC, 13:826–834, 1983.

[37] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H.
Freeman, January 1979.

[38] Karen Glocer, Damian Eads, and James Theiler. Online feature selection for pixel
classification. In ICML, pages 249–256, 2005.

[39] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall,
2 edition, 2002.

[40] F.A. Gougeon and D.G. Leckie. Forest information extraction from high spatial
resolution images using an individual tree crown approach. Technical report, Pacific
Forestry Centre, 2003.

[41] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal
of Machine Learning, 3:1157–1182, 2003.

[42] A.R. Hanson and E.M. Riseman. Visions: A computer system for interpreting
scenes. In CVS78, pages 303–333, 1978.

[43] R. M. Haralick. Statistical and Structural Approaches to Texture. Proceedings of the
IEEE, 67:786–804, 1979.

[44] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural Features for Image Clas-
sification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6):610–621,
November 1973.

[45] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer Verlag, New York, 2001.

[46] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillian College
Pub. Co., 1994.

[47] Michael T. Heath. Scientific Computing. McGraw-Hill Higher Education, 2001.

[48] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, July 2006.

[49] G.E. Hinton. Training products of experts by minimizing contrastive divergence.
14(8):1771–1800, 2002.

[50] Georey E. Hinton. Products of experts. In Ninth International Conference on Artifi-
cial Neural Networks, pages 1–6, 1999.

127

[51] P. Hoyer and A. Hyvärinen. Independent component analysis applied to feature
extraction from colour and stereo images. Network: Computation in Neural Systems,
11(3):191–210, 2000.

[52] Peter J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475, 1985.

[53] A. Hyvärinen. Regression using independent component analysis. In Proc. Int. Conf.
on Articial Neural Networks, pages 491–496, Edinburgh, UK, 1999.

[54] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applica-
tions. Neural Netw., 13(4-5):411–430, 2000.

[55] Aapo Hyvärinen. Sparse code shrinkage: denoising of nongaussian data by maxi-
mum likelihood estimation. Neural Comput., 11(7):1739–1768, 1999.

[56] Aapo Hyvärinen and Ella Bingham. Connection between multilayer perceptrons and
regression using independent component analysis. Neurocomputing, 50:211–222,
2003.

[57] Aapo Hyvarinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis.
Wiley-Interscience, May 2001.

[58] A. Hyvrinen. Fast and robust fixed-point algorithms for independent component
analysis. IEEE Transactions on Neural Networks, 10(3):626–634, 1999.

[59] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of
local experts. Neural Computing, 3:79–87, 1991.

[60] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. L. Briggman, M. N. Helm-
staedter, W. Denk, and H. S. Seung. Supervised learning of image restoration with
convolutional networks. In Computer Vision, 2007. ICCV 2007. IEEE 11th Interna-
tional Conference on, pages 1–8, 2007.

[61] J. Kemeny, A. Devgan, R. Hagaman, and X. Wu. Analysis of rock fragmentation
using digital image processing. Geotechnical Engineering, 119(7):1144–1160, 1993.

[62] Michael Kirby. Geometric Data Analysis: An Empirical Approach to Dimensionality
Reduction and the Study of Patterns. John Wiley & Sons, New York, 2001.

[63] Peter Kovesi. Image features from phase congruency. Videre: A Journal of Computer
Vision Research, 1(2), 1999.

[64] Sanjiv Kumar and Martial Hebert. Discriminative fields for modeling spatial de-
pendencies in natural images. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), December 2003.

[65] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proc. 18th In-
ternational Conf. on Machine Learning, pages 282–289. Morgan Kaufmann, San
Francisco, CA, 2001.

[66] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. An empirical evaluation of deep architectures on problems with many fac-
tors of variation. In ICML ’07: Proceedings of the 24th international conference on
Machine learning, pages 473–480, New York, NY, USA, 2007. ACM.

[67] M. Larsen and M. Rudemo. Estimation of tree positions from aerial photos. In
Proceedings of the 1997 Swedish Symposium on Image Analysis, 1997.

128

[68] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and Muller
K., editors, Neural Networks: Tricks of the trade. Springer, 1998.

[69] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Gradient-based learning for object
detection, segmentation and recognition. Technical report, AT&T Labs, 1999.

[70] Yann LeCun, Sumit Chopra, Raia Hadsell, Ranzato Marc’Aurelio, and Fu-Jie Huang.
A tutorial on energy-based learning. In G. Bakir, T. Hofman, B. Schölkopf, A. Smola,
and B. Taskar, editors, Predicting Structured Data. MIT Press, 2006.

[71] Yann LeCun and Fu Jie Huang. Loss functions for discriminative training of energy-
based models. In Proc. of the 10-th International Workshop on Artificial Intelligence
and Statistics (AIStats’05), 2005.

[72] I. Levner and V. Bulitko. Machine learning for adaptive image interpretation. In Pro-
ceedings of the 16th Annual Innovative Applications of Artificial Intelligence Con-
ference, San Diego, CA, 2004.

[73] I. Levner and V. Bulitko. Comparison of machine learned image interpretation sys-
tems in the domain of forestry. In WACV05, pages I: 421–426, 2005.

[74] I. Levner, V. Bulitko, G. Lee, L. Li, and R. Greiner. Automated feature extraction for
object recognition. In Proceedings of the Image and Vision Computing New Zealand
conference, Palmerson North, NZ, 2003.

[75] I. Levner and H. Zhang. Classification-driven watershed segmentation. IEEE Trans-
actions on Image Processing, 16(5):1437–1445, May 2007.

[76] Ilya Levner, Hong Zhang, and Russ Greiner. Heterogeneous stacking for classifi-
cation driven watershed segmentation. EURASIP Journal on Advances in Signal
Processing, 2008(Article ID 485821 (9 pages)), 2008.

[77] O. Lezoray and H. Cardot. Bayesian marker extraction for color watershed in seg-
menting microscopic images. In Proceedings of the 16th International Conference
on Pattern Recognition, pages 739–742, 2002.

[78] O. Lezoray and H. Cardot. Cooperation of color pixel classification schemes and
color watershed: a study for microscopic images. IEEE Transactions on Image Pro-
cessing, pages 783–789, July 2002.

[79] N. H. Maerz, T. C. Palangio, and J. A. Franklin. Wipfrag image based granulometry
system. In Measurement of Blast Fragmentation, pages 91–99. Franklin Katsabanis
(eds), 1996.

[80] M.A. Maloof, P. Langley, S. Sage, and T.O. Binford. Learning to detect rooftops in
aerial images. In Proceedings of the Image Understanding Workshop, pages 835–
845, San Francisco, CA, 1997. Morgan Kaufmann.

[81] W. Mann and T. Binford. Successor: Interpretation overview and constraint system.
IUW, pages 1505–1518, 1996.

[82] David R. Martin, Charless C. Fowlkes, and Jitendra Malik. Learning to detect natural
image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern
Anal. Mach. Intell., 26(5):530–549, 2004.

[83] Gonzalo Martı́nez-Muñoz and Alberto Suárez. Switching class labels to generate
classification ensembles. Pattern Recognition, 38(10):1483–1494, 2005.

129

[84] A. R. McIntosh, F. L. Bookstein, J. V. Haxby, and C. L. Grady. Spatial pattern
analysis of functional brain images using partial least squares. Neuroimage, 3(3 Pt
1):143–157, June 1996.

[85] D. McKeown, W. Harvey, and J. McDermott. Rule-based interpretation of aerial
imagery. PAMI, 7(5):570–585, 1985.

[86] Fernand Meyer. Topographic distance and watershed lines. Signal Process.,
38(1):113–125, 1994.

[87] D. Mukherjee, Y. Potapovich, I. Levner, and H. Zhang. Oil sand ore size analysis
through learning image and shape features. Submitted to Pattern Recognition, 2008.

[88] D. Murgu. Individual tree detection and localization in aerial imagery. Master’s
thesis, Department of Computer Science, University of British Columbia, 1996.

[89] F. Ning, D. Delhomme, Yann LeCun, F. Piano, Léon Bottou, and Paolo Emilio Bar-
bano. Toward automatic phenotyping of developing embryos from videos. IEEE
Transactions on Image Processing, 14(9):1360–1371, 2005.

[90] P. P. Ohanian and R. C. Dubes. Performance Evaluation for Four Classes of Textural
Features. Pattern Recognition, 25:819–833, 1992.

[91] T. Ojala and M. Pietikinen. Unsupervised texture segmentation using feature distri-
butions. Pattern Recognition, 32(3):477–486, 1999.

[92] Bruno A. Olshausen and David J. Field. Natural image statistics and efficient coding.
Network, (7):333–339, 1996.

[93] Pekka Orponen. Computational complexity of neural networks: a survey. Nordic J.
of Computing, 1(1):94–110, 1994.

[94] Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent
speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys.,
79(1):12–49, 1988.

[95] P. Paclik, T.C.W. Landgrebe, D.M.J. Tax, and R.P.W. Duin. On deriving the second-
stage training set for trainable combiners. In Multiple Classifier Systems Conference
(MCS), 2005.

[96] J. Peng and B. Bhanu. Closed-loop object recognition using reinforcement learning.
PAMI, 20(2):139–154, 1998.

[97] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular eigenspaces
for face recognition. In Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR’94), Seattle, WA, June 1994.

[98] D. S. Phatak and I. Koren. Connectivity and performance tradeoffs in the cascade
correlation learning architecture. IEEE Transactions on Neural Networks, 5:930–
935, 1994.

[99] A.J. Pinz. A computer vision system for the recognition of trees in aerial pho-
tographs. In J.C.Tilton (ed.), Multisource Data Integration in Remote Sensing, pages
111–124, Maryland: NASA, 1991.

[100] M. Polak, H. Zhang, and M. Pi. An evaluation metric for image segmentation of
multiple objects. submitted to Image and Vision Computing.

130

[101] R.J. Pollock. A model-based approach to automatically locating tree crowns in high
spatial resolution images. In J. Desachy, editor, Image and Signal Processing for
Remote Sensing, 1994.

[102] Trygve Randen and John Hakon Husoy. Filtering for texture classification: A com-
parative study. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(4):291–310, 1999.

[103] M. Ranzato, C.S. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse
overcomplete representations with an energy-based model. In Scholkopf et al., edi-
tor, Advances in Neural Information Processing Systems 19, Cambridge, MA, 2006.
MIT Press.

[104] Y. Raviv and N. Intrator. Bootstrapping with noise: An effective regularization tech-
nique. Connection Science, Special issue on Combining Estimators, 8:356–372,
1996.

[105] R. Reed, R. Marks II, and S. Oh. Similarities of error regularization, sigmoid gain
scaling, target smoothing and training with jitter. IEEE Transactions on Neural Net-
works, 6(3):529–538, 1995.

[106] R. Rimey and C. Brown. Control of selective perception using bayes nets and deci-
sion theory. International Journal of Computer Vision, 12:173–207, 1994.

[107] J.L. Rodgers, Nicewander W.A, and L. Toothaker. Linearly independent, orthogonal,
and uncorrelated variables. The American Statistician, 38(2):133–134, 1984.

[108] Stefan Roth. High-Order Markov Random Fields for Low-Level Vision. PhD thesis,
Brown University, 2007.

[109] Stefan Roth and Michael J. Black. Fields of experts: A framework for learning image
priors. In CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) - Volume 2, pages 860–867,
Washington, DC, USA, 2005. IEEE Computer Society.

[110] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general framework for
parallel distributed processing. In D. E. Rumelhart, J. L. McClelland, et al., editors,
Parallel Distributed Processing: Volume 1: Foundations, pages 45–76. MIT Press,
Cambridge, 1987.

[111] J. Schleifer and B. Tessier. FRAGSCAN: A tool to measure fragmentation of blasted
rock. In Measurement of Blast Fragmentation, pages 73–78. Franklin & Katsabanis
(eds), 1996.

[112] Matthias Scholz, Fatma Kaplan, Charles L. Guy, Joachim Kopka, and Joachim Sel-
big. Non-linear pca: a missing data approach. Bioinformatics, 21(20):3887–3895,
2005.

[113] Holger Schwenk. The diabolo classifier. Neural Comput., 10(8):2175–2200, 1998.

[114] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 22(8):888–905, 2000.

[115] E P Simoncelli and E H Adelson. Noise removal via Bayesian wavelet coring. In
Third Int’l Conf on Image Proc, volume I, pages 379–382, Lausanne, 1996. IEEE
Sig Proc Society.

[116] L. Sirovich and M. Kirby. Low dimensional procedure for the characterization of
human faces. Journal of Optical Society of America, 4(3):519–524, 1987.

131

[117] Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E. Hinton. Energy-
based models for sparse overcomplete representations. J. Mach. Learn. Res., 4(7-
8):1235–1260, 2004.

[118] K. Tieu and P. Viola. Boosting image retrieval. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 228–235, 2000.

[119] Kai Ming Ting and Ian H. Witten. Issues in stacked generalization. Journal of
Artificial Intelligence Research, 10:271–289, 1999.

[120] van der Schaaff A van Hateren JH. Independent component filters of natural images
compared with simple cells in primary visual cortex, 1997.

[121] Xiaoli Wang, Mark Polak, Vadim Bulitko, and Hong Zhang. Machine learning for
adaptive parameter selection in ore image segmentation. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI), Workshop on Learning in Com-
puter Vision, Pittsburgh, Pennsylvania, 2005.

[122] A. Webb. Statistical Pattern Recognition. John Wiley & Sons, 2002.

[123] J. Weston, O. Chapelle, A. Elisseeff, B. Schlkopf, and V. Vapnik. Kernel dependency
estimation. In S. Thrun Becker, S. and K. Obermayer, editors, Advances in Neural
Information Processing Systems, volume 15, pages 873–880, Cambridge, MA, USA,
2003. MIT Press.

[124] J. Weston, B. Schlkopf, and O. Bousquet. Joint kernel maps. In A. Prieto F. San-
doval Cabestany, J., editor, Proceedings of the 8th International Work-Conference
on Artificial Neural Networks (Computational Intelligence and Bioinspired System),
volume LNCS 3512, pages 176–191, Berlin Heidelberg, Germany, 2005. Springer-
Verlag.

[125] Peter M Williams. Bayesian regularisation and pruning using a laplace prior. Neural
Computation, 7:117–143, 1995.

[126] D. H. Wolpert. Stacked generalisation. Neural Networks, 5:241–259, 1992.

[127] M. Wulder, K.O. Niemann, and D. Goodenough. Error reduction methods for local
maximum filtering. In The Proceedings of the 22nd Symposium of the Canadian
Remote Sensing Society, Victoria, British Columbia, 2000.

[128] F.X. Yan, H. Zhang, and C.R. Kube. A multistage adaptive thresholding method.
26(8):1183–1191, June 2005.

[129] T.S. Yu and K.S. Fu. Recursive contextual classification using a spatial stochastic
model. Pattern Recognition, 16(1):89–108, 1983.

132

Appendix A

Oil Sand Ore Granulometry

The field of granulometry aims to determine particle sizes of a given granular sub-
stance. For mining applications, it has been carried out using tedious and labo-
rious procedures such as sieving, centrifugation, and sedimentation. The advent
of inexpensive fast computing power, along with the availability of inexpensive
portable video cameras, enables image-based granulometry to become feasible.
The image-based approach offers numerous advantages including the fact that it
is: non-evasive allowing measurements on weak rock and ore which tend to break
up when screened; non-disruptive to production; relatively fast and therefore high
throughput; physically unaffected by size or volume of rock.

One key reason we are interested in this domain, is that the many difficulties
present within the domain on image-based granulometry are also present within
numerous other image interpretation domains. Consider the input image shown at
the top of Figure 1.1. Each fragment, while belonging to the same class, varies in
size, shape, texture and reflectance. In addition, separate fragments (i.e., objects)
can touch one another, requiring the use of pixel grouping techniques in order to
properly measure the size of individual fragments. To complicate things further,
some fragments are covered by fine particles and hence have a similar appearance
to the background. Such difficulties are found in many other domains as well,
although usually not all at once. Hence, we expect an algorithm performing well on
this image-based granularity domain, in principle, to be useful for numerous other
applications.

Unfortunately, to date, no algorithm is capable of performing adequately in this
domain. In the last 20 years, many special purpose systems have been developed
(see [23] and references within) with the aim of automating the image-based gran-
ulometry task. The Wipfrag system, developed by Wipware, Inc [79], attempts to
build an edge net in the image, using an edge detector. Based on this edge net,
the particles are delineated. Similarly, the Split system [61], uses a combination
of edge detection and edge-following algorithms. Shadowed areas, such as those

133

between particles, are thresholded as a step toward producing binary images in-
dicating particle and non-particle areas. The particles are delineated by searching
for large gradient paths ahead of sharp shadow convexities to separate clusters of
touching particles. A watershed algorithm further divides the touching particles.
The Fragscan system [111], appears to be the only commercial system not using
edge detection. Instead a series of opening operations are used to simulate siev-
ing. A threshold is obtained by successive filters, as well as automatic threshold
selection, and the image is converted to binary, before a series of opening opera-
tions is completed. A more recent system, called the Ore Size Analyst (OSA) [23],
uses a sequence of processes to delineate particles. In order, the processing steps
are: noise removal, contrast enhancement via local histogram equalization, adap-
tive thresholding, and postprocessing consisting of hole filling and morphological
opening operations. One drawback of the aforementioned systems is that the hand-
tuned parameters are sensitive to changes in illumination, particle size, non-uniform
texture and a host of other variabilities typically present within images. As a result,
finding globally optimal paraments is difficult. To overcome this problem an im-
proved version of OSA uses the Adaptive Object Recognition framework (ADORE)
[26, 73, 121], which learns to select parameter settings that optimize performance
on an image by image basis (i.e., ADORE performs adaptive parameter selection).

134

Appendix B

Forest Inventory Building (from [73])

Forest maps and inventories have become a critical tool for wood resource manage-
ment (planting and cutting), ecosystem management and wildlife research. Unfor-
tunately, forest mapping at the level of individual trees is a continuous and costly
undertaking. Canada alone has an estimated 344 million hectares of forests to in-
ventory on a 10-20 year cycle [101].

At these scales, ground-based surveys and inventories are not feasible. Re-
searchers have therefore turned to developing automated systems to produce forest
maps from airborne images, LIDAR and other 2D/3D data sources. The final goal
is to measure the type (species), position, height, crown diameter, wood volume and
age class for every tree in the survey area.

The task of large-scale forest mapping from aerial images presents formidable
challenges, including: (i) massive amounts of high-resolution data, in order to rec-
ognize and measure individual tree crowns, (ii) construction and maintenance of
(and providing access to) very large databases; Canada alone has an estimated 1011

trees, (iii) geo-referencing of airborne images for validation purposes, (iv) orthorec-
tification of aerial images, particularly given that elevation maps are often unavail-
able at the required accuracy . Of a particular interest are the challenges created by
the image content, including variations in sun and camera angles and the resulting
overlap between shadows and tree crowns. These challenges are known to have an
adverse effect on special purpose algorithms for individual tree identification [22].
In fact, the task is substantially challenging even to expert human interpreters re-
sulting in up to 40% error in comparison to ground-based surveys [40].

B.1 Special Purpose Forestry Systems
A number of approaches have been proposed for creating forest inventories from
aerial images. Image-based (model-free) approaches use simplifying assumptions
about forest images. For example, [40, 99] use a token-based recognition approach

135

which assumes a high level of contrast between the tree crown and the surround-
ing area. They deal with canopy feature extraction almost exclusively in terms of
finding image features which evidence different types of tree canopies. A current
example of this approach is the ITC system [40] where tree canopies are detected
and classified by a mixture of “valley-finding” (low intensity iso-contours), peak
intensity detection [127] as well as texture, structure and contextual image fea-
tures. This falls within traditional image segmentation and region labeling strategies
where there is no explicit need to model features in terms of known tree attributes
or specific 3D geometric models. Consequently, the approach is designed to apply
where there is sufficient spatial separation between trees. Unfortunately, the perfor-
mance can degrade significantly as such methods are applied to naturally occurring
dense forests with overlapping tree crowns.

Another approach uses example-based image models. The underlying idea is to
compare pre-specified tree crown image(s) with the image at hand. Typically such
methods, e.g., [88], have a collection of example tree crowns (i.e., templates) which
they match to the image. Drawbacks of such approaches include the need to collect
a very large database of templates to account for differences in tree species, size,
the slant of the terrain and illumination.

Model-based approaches take advantage of explicit tree crown models that are
matched to image regions. While minimizing the amount of image feature process-
ing, elementary image features are used to hypothesize large numbers of regions
for matching with 3D CAD tree models via computer graphics methods. For exam-
ple, the STCI system [101] uses a template matching approach, however, unlike the
example-based approaches discussed above, the crown templates are synthesized
from a tree crown model. The upper part of a tree crown (known as “sun crown”)
is modelled as a generalized ellipsoid of revolution and ray-tracing techniques are
used to generate templates [67]. Model-based approaches typically rely on detect-
ing image features such as crown peaks and normally use pre-generated templates
to match projected models with image data. The latter technique can require gen-
eration of many templates for different slant angles, tree types, etc. Additionally,
model-based methods use simple shadow models and simplified 3D CAD models
typically representing only the canopy envelope. As a result, the model-based ap-
proaches are often unable to deal with natural variations in foliage, branches, and
the resulting irregular canopy boundaries.

B.2 Machine Learning Approaches
All of the approaches reviewed in the previous section are promising, at least in a
laboratory setting, but share some common drawbacks. First, they were carefully
crafted in a development process that required both time and expertise. More im-

136

portantly, this development process exploited domain properties, such as whether
the tree canopies are separated or overlapping, whether the ground is flat or moun-
tainous, or whether the forest has a homogeneous or heterogeneous species compo-
sition. Similarly, assumptions about the properties and position of the sensor(s) are
integrated in the system design. As a result, these systems work within a narrow set
of operating conditions, and cannot be applied under different conditions without
re-engineering.

To put the control of object recognition on a stronger theoretical foundation,
researchers have attempted using Bayes nets (e.g., TEA1 [106] and SUCCESSOR
[81]). Unfortunately, the design of Bayes nets can itself become an ad hoc knowl-
edge engineering process. Other researchers tried to eliminate the knowledge acqui-
sition bottleneck by machine-learning control policies from expert annotated exam-
ples. For instance, in [3] researchers used genetic algorithms to learn target recog-
nition strategies, while reinforcement learning has been used in [24] to learn control
strategies or in [96] to find parameters for vision procedures. Maloof et al. trained
classifiers to accept or reject data instances between steps of a static sequence of
procedures [80]. More recently, Baysian approaches have regained popularity and
evolved into sophisticated systems. One such system, is based on the Hierarchical
Hidden Markov Random Field (HHMRF) model presented in [18]. The system,
based on ideas from [17], first labels individual image pixels at multiple resolutions
using an MDL based K-means algorithm, which uses a mixture of Gaussians to
model the multi-spectral pixel distributions seen during training. Then the HHRMF
algorithm merges the results produced independently at each resolution into a final
hypothesis which is consistent with all layers of the multi-resolution hierarchy. The
HHMRF system, in combination with ADORE, presented in the previous appendix,
is currently one of the best segmentation systems for forest image annotation.

137

Appendix C

Evaluation Criteria

To evaluate the performance of the algorithm(s) several criteria are used. Respec-
tively, TP , TN , FP , FN , stand for the number of samples (i.e., pixels) being
labeled as true positive, true negative, false positive, false negative.

Intersection-over-union, |A∩B|
|A∪B| abbreviated as (I/U) for binary labeling A and B,

and defined as TP
TP+FP+FN

and is also known as the Jaccard measure.

Pixel Accuracy defined as TP+TN
TP+TN+FP+FN

.

Precision defined as TP
TP+FP

and is also known as positive predictive value.

Recall defined as TP
TP+FN

and is also known as sensitivity.

Labeling score defined as L = min(S(A,B),S(B,A)), with

S(A,B) =
m∑
j

 n∑
i

 |Aj ∩Bi|
|Aj ∪Bi|

Bi⋃
Bi

|Aj∩Bi|
6=0

 Aj⋃
Aj

j

 (C.1)

where Aj is a connected component in image A and Bi is a connected com-
ponent in image B. This labeling score, described in [100], is a form of local
intersection-over-union (I/U) whereby both errors at the pixel level and object
level are penalized.

As an example, consider the segmentation in Figure C.1 on p. 139. At the pixel
level it is nearly perfect. However, since the objective is delineate individual ob-
jects a high pixel level accuracy does not necessarily imply a good object level
segmentation.

138

Input Image (I)

Ground Truth (L)

Candidate Object Segmentation (Lregion)

I/U 0.9213
Precision 0.9350

Recall 1
Pixel Accuracy 0.9592
Labeling Score 0.0598

Figure C.1: An example of a poor object segmentation. While the foreground-
background separation is nearly perfect, the single connected blob corresponds to
many underlying objects. Hence while the pixel level scores are high the object
level score is extremely low.

139

	1 Introduction
	1.1 Problem Formulation
	1.2 Manually Coded Systems
	1.3 Machine Learned Systems
	1.3.1 Feature Extraction

	1.4 Data Driven Region Growing
	1.5 Thesis Statement
	1.6 Thesis Outline

	2 Data Driven Region Growing
	2.1 Digital Image Representation
	2.1.1 Graph Theory
	2.1.2 Regular/Digital Lattices

	2.2 Image Segmentation
	2.2.1 Edge Based Methods
	2.2.2 Thresholding and Histogram Based Methods
	2.2.3 Region Based Methods
	2.2.4 General Region Growing

	2.3 Object Segmentation
	2.3.1 Data Driven Region Growing

	3 Learning to Label
	3.1 Pixel Classification
	3.2 Learning Classifiers
	3.3 Neural Networks
	3.3.1 Regularization Techniques
	3.3.2 Cascade Correlation

	3.4 Model Fusion
	3.4.1 Generalized Pixel Labeling
	3.4.2 Stacked Generalization
	3.4.3 Heterogeneous Stacking

	3.5 Random Field Methods

	4 Automated Feature Extraction and Relevant Applications
	4.1 Neighborhood Analysis
	4.2 Linear Algebra, SVD and Eigenvalue Decomposition
	4.3 Principal Component Analysis (PCA)
	4.3.1 Linear Autoencoders

	4.4 Independent Component Analysis (ICA)
	4.4.1 Convolutional Encoding/Decoding of Images
	4.4.2 ICA based Neural Networks
	4.4.3 Sparse Code Shrinkage for (Image) Denoising
	4.4.4 ICA for Feature Extraction from Color and Stereo Images
	4.4.5 ICA for Regression

	4.5 Autoencoders and Non-Linear PCA
	4.5.1 Diabolo Networks - Discriminative Autoencoders
	4.5.2 Deep Greedy Layer-wise Learning

	4.6 Convolutional Networks
	4.6.1 Neocognitron
	4.6.2 LeNet

	4.7 High Order Random Fields for image analysis and denoising

	5 From Pixels To Patches To Structures
	5.1 Output Decomposition
	5.1.1 From pixel labeling to structure labeling
	5.1.2 Output Decomposition based Mixture-of-Experts

	5.2 A Unifying Perspective for Generative Learning
	5.3 A Unified View for Discriminative Learning
	5.4 Stacked Convolutional Regression Networks
	5.4.1 Network Growth and Training
	5.4.2 Online Inference

	6 Experimental Results
	6.1 Classification Driven Watershed Segmentation
	6.1.1 Feature Extraction
	6.1.2 Experimental Procedure
	6.1.3 Experiment 1
	6.1.4 Experiment 2
	6.1.5 Experiment 3 - Color Image Segmentation

	6.2 Heterogeneous Stacking and ICA for Classification Driven Watershed Segmentation, levner08
	6.2.1 Experimental Procedure
	6.2.2 Experiment 1
	6.2.3 Experiment 2

	6.3 Output Decomposition Mixture of Experts
	6.3.1 Results

	6.4 Stacked Convolutional Regression (SCR)
	6.4.1 Experiment 1
	6.4.2 Experiment 2
	6.4.3 Experiment 3
	6.4.4 Large Scale Experiments
	6.4.5 Aerial Forest Images Revisited
	6.4.6 Post Processing Revisited

	6.5 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Contributions
	7.3 Related and Future Research Directions
	7.3.1 Convolutional Networks
	7.3.2 Adaptive Processing

	7.4 Final Thoughts

	A Oil Sand Ore Granulometry
	B Forest Inventory Building (from levner05a)
	B.1 Special Purpose Forestry Systems
	B.2 Machine Learning Approaches

	C Evaluation Criteria

