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Abstract. Lung cancer represents the most deadly type of malignancy.
In this work we propose a machine learning approach to segmenting lung
tumours in Positron Emission Tomography (PET) scans in order to pro-
vide a radiation therapist with a “second reader” opinion about the tu-
mour location. For each PET slice, our system extracts a set of attributes,
passes them to a trained Support Vector Machine (SVM), and returns
the optimal threshold value for distinguishing tumour from healthy vox-
els in that particular slice. We use this technique to analyse four different
PET/CT 3D studies. The system produced fairly accurate segmentation,
with Jaccard and Dice’s similarity coefficients between 0.82 and 0.98 (the
areas outlined by the returned thresholds vs. the ones outlined by the
reference thresholds). Besides the high level of geometric similarity, a
significant correlation between the returned and the reference thresholds
also indicates that during the training phase, the learning algorithm ef-
fectively acquired the dependency between the extracted attributes and
optimal thresholds.

Key words: Support Vector Machine (SVM), Positron Emission To-
mography (PET), Radiation Treatment, Lung Cancer, Gross Tumour
Volume (GTV).

1 Introduction

According to the Canadian Cancer Society reports [1, 2], lung cancer represents
the second most common type of cancer (approximately 166,400 new cases were



expected in 2008 in Canada alone), and the one most fatal to both men and
women (it is responsible for more than 1/4 of all cancer-associated deaths). Even
for younger adults (aged 20-44), it is ranked first (men) and second (women) with
respect to the potential number of years of life lost.

Radiation therapy involves applying beams of ionizing radiation to irradiate
the tumour volume. Present-day equipment allows these beams to be directed
very accurately. However, this is only effective if one can define (segment) a
tumour with a similar accuracy. Unfortunately, this is not currently the case.

The conventional way to define lung tumours is based on the analysis of com-
puted tomography (CT) images. The sensitivity and specificity of this imaging
modality is not always high enough, which leads to significant levels of the intra-
and inter-observer variability. Introduction of the positron emission tomography
(PET) imaging modality to the process of lung tumour definition has already
been shown to alter the results and decrease the variability above. However, due
to some challenges related to the analysis of PET scans, the role of this modality
in radiation treatment planning has not yet been well established.

This paper uses a machine learning approach to address some of these chal-
lenges. For each PET slice, our system extracts a set of attributes, passes them to
a trained Support Vector Machine (SVM), returns the optimal threshold value,
and applies it for distinguishing tumour from healthy voxels in that particular
slice. This automatically provides a radiation therapist with a “second reader”
opinion about the tumour location.

The remaining sections of this paper are organised as follows. The next sec-
tion reviews the state-of-the-art for tumour segmentation in PET scans. Section 3
describes the proposed approach and provides a brief introduction into SVM for
regression estimation. The experimental part and results are described in Sect. 4,
followed by Sect. 5, dedicated to the discussion and conclusion.

2 PET in Radiation Therapy: Background

Unlike CT imaging, which provides an anatomical description of a scanned body,
PET imaging visualises the functionality of the body cells. Prior to a PET imag-
ing study, the patient is injected with a radioactively marked substance, which is
absorbed and metabolised differently by different types of cells. The radioactivity
emitted from each region of the body is then registered, and the reconstructed
images visualise quantities of the substance uptake, measured in counts of ra-
dioactive decays or some other uptake values. As cancerous cells are known to
absorb more sugar than surrounding healthy tissue for many organs, most PET
studies use a radioactively labelled analogue of sugar called fluorodeoxyglucose to
visualise tumours. Today PET is primarily used in diagnostics as an indispens-
able technique for characterizing neoplasms and detecting distant metastases.

Besides diagnostics applications, adding PET to radiation treatment plan-
ning is also considered beneficial, as compared to using CT alone. As these two
modalities are built on completely different underlying phenomena, they supply
a radiation oncologist with two different and complementary perspectives on the



problem of tumour segmentation. In a recent review on lung cancer, authors of
all 18 different studies (involving 661 patients) agreed that PET adds essential
information, affecting the results of tumour segmentation [3].

However, the role of PET in radiation treatment planning is not well es-
tablished, mainly due to the following challenges. First, PET images lack the
sharpness and clearness of CT scans (Fig. 1). Second, sizes of objects in PET
images strongly depend on the visualisation setup (contrast and brightness value,
known as window/level setup in medical imaging; see Fig. 1, three rightmost im-
ages), and the optimal setup can vary across patients, and even across slices
within a patient. Finally, using both PET and CT scans for tumour definition
implies that the two scans must be co-registered, which is challenging due to
PET’s blurriness.

CT PET

Fig. 1. Corresponding CT and PET slices of a human thorax. While PET image is
much more blurred than CT, the tumor area is much more evident in PET than in
CT. Right: a slice of a mouse PET scan displayed using three different visualisation
setups, which lead to different sizes of objects.

In the most basic case, an experienced nuclear medicine physician and/or
radiation oncologist will visually interpret both PET and CT images to deter-
mine the tumour borders. Several automatic segmentation techniques have been
proposed to make the interpretation of PET scans observer-independent and to
cope with the challenge of choosing the right visualisation setup. They can be
broadly divided into two groups. The first broad group aims to segment the tu-
mour by searching for some inhomogeneity throughout the PET scan. Although
there are some interesting examples from this group, such as gradient-based (wa-
tershed) methods [4, 5] and a multimodal generalisation of level set method [6],
they are not as well established nor as frequently cited in current reviews as
the methods from the second group, which aim to define the optimal threshold
value of the uptake in order to segment a tumour. This second group includes
approaches that define the optimal threshold as some fixed uptake value, or a
fixed percentage of the maximum uptake value; other more sophisticated ap-
proaches determine the optimal threshold as the weighted sum of mean target
uptake and mean background uptake, among other tecniques [7–12]. Note that
methods from the second group define a single optimal threshold value for the
whole PET 3-D scan.



3 Proposed Approach

Our approach falls into the second group above: our system defines the optimal
threshold value of the uptake, and declares each voxel to be cancerous if its up-
take value is above that threshold. However, given the complexity of segmenting
lung tumours in PET scans, we consider the optimal threshold as a non-linear
function of more than just one or two attributes. We therefore extract a richer
set of attributes from PET scans, and use a machine learning algorithm, capable
of incorporating more complex dependencies based on these attributes, to find
the (potentially different) optimal threshold value for each slice in a PET scan.

3.1 PET Attributes

Several works that compared and reviewed different threshold-based lung tumour
delineation algorithms suggested the use of contrast-oriented algorithms [3, 8].
Nestle et al. [8] defines the optimal threshold value for the whole PET 3-D
scan as Ubg + 0.15 × U70, where the scalar Ubg is the mean uptake of a back-
ground (some homogeneous 3-D area near a tumour, e.g. mediastinum), and the
scalar U70 is the mean uptake inside the 3-D isocontour of 70% of the max-
imum uptake. However, other studies suggest that even within the same 3-D
scan, the optimal threshold value can vary from slice to slice with the tumour
volume/cross-sectional area [11]. Our own observations also support this claim
(Sect. 4.2 and Fig. 3). In line with the two considerations above, we aim to define
the optimal threshold value for each PET slice individually, based on Ubg and
the following 6 scalar attributes extracted from the given PET slice:
– the area and mean uptake inside the 0.10 × U70 contour
– the area and mean uptake inside the 0.15 × U70 contour
– the area and mean uptake inside the 0.20 × U70 contour.

3.2 SVM Regressor

Support Vector Machine (SVM) [13, 14] is a very successful machine learning
algorithm which has been used effectively for a wide variety of tasks, ranging from
optical character recognition and electricity load prediction to biomedicine and
face detection/recognition. In this work we use SVM for regression estimation.

During the training phase, a training set (available examples of the values of
the seven attributes above (vector x) and the corresponding optimal threshold
values (scalar y) is analysed by the SVM. As a result of this analysis, a subset of
the most important, characteristic examples (called support vectors) is identified
and used to build the regression function, which is then used to predict optimal
thresholds for new attribute vectors. In the most basic case, this is a linear func-
tion of the attributes. However, such a linear regressor is not always “expressive”
enough to reflect the complexity of real-world problems. This obstacle is over-
come using the so-called kernel trick [14], which consists in implicit mapping the
vector of attributes x onto a higher-dimensional space: Φ : x → Φ(x), where



the data is more likely to allow linear approximation. Thanks to kernels, all
calculations actually occur in the lower-dimensional space where vectors x live,
which is extremely beneficial from the computational point of view. Explicitly
this leads to the following form of the regression function:

y(x) =
Nsv∑

i=1

aiK(xi,x) + b , (1)

where Nsv is the number of support vectors xi, and K(u,v) = Φ(u) · Φ(v) is a
kernel function that implicitly calculates dot product in the higher-dimensional
space where vectors Φ(x) live. One of the most used and studied kernels is the so-
called Gaussian kernel: K(u,v) = e−γ‖u−v‖2

. For linear SVMs, the correspond-
ing kernel is simply a dot product in the space where samples live: K(u,v) = u·v.
For a brief introduction into SVM regression, the reader is referred to [15].

A comprehensive scheme of our system is shown in Fig. 2.
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Fig. 2. A comprehensive scheme of the proposed approach.

4 Experiments and Results

4.1 Initial Data

In this work we analyzed the data of two patients. Each patient underwent
two same-day studies (free-breathing one and gated one [16]); and each study



comprised three scans: a diagnostic CT and a fluorodeoxyglucose PET obtained
with a hybrid PET/CT scanner (Philips Gemini); and a separate treatment
planning CT scan. Using a hybrid scanner ensured that the corresponding PET
and CT scans were automatically and perfectly co-registered, eliminating the
PET-CT co-registration challenge described in Sect. 2. This is important since
it allows us to attribute the obtained results solely to the attributes extraction
and the algorithm used, rather than to unwanted artifacts of the PET-CT co-
registration.

For each study, a treatment planning CT scan was then manually co-registered
with a diagnostic CT scan (a CT-CT co-registration is not as challenging as a
PET-CT one), thus spatially linking all three scans. Two experienced radiation
oncologists then used this rich and high-quality information in order to manu-
ally draw a tumour volume for the radiation treatment planning. This volume
is referred to as a gross tumour volume (GTV). Using GTVs produced by the
consensus of two radiation oncologists based on co-registered PET and CT data
ensures that the obtained GTVs are of high quality.

4.2 Data Sets Generation

Each study of each patient was analysed separately and independently (i.e. we
used a study-specific scenario, where both training and test sets are obtained
from the same scan). Therefore, Ubg, which characterizes the whole scan rather
than a specific slice (see Sect. 3.1), vanished from the consideration as a constant.
Tumour-containing PET slices and 8 adjacent tumour-free slices were extracted.
For each of these PET slices our system computed the values for 6 attributes
described in Sect. 3.1. Also, for each of these slices a reference uptake threshold
was assigned by the consensus of two radiation oncologists as the threshold that
produced the segmentation most closely approximating the corresponding GTV
contour. For each tumour-free slice the maximum uptake of that slice was used
as the reference uptake threshold. The slice-to-slice variation of reference uptake
thresholds for patient 2 is shown in Fig. 3.
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Fig. 3. Slice-to-slice variation of reference uptake thresholds, as demonstrated by their
histograms for free-breathing (left) and gated (right) studies of patient 2.



PET slices were randomly split in two groups in order to form a training
set (75% of slices) and a test set (the remaining 25% of slices). This random
splitting was repeated 5 times (resampling), resulting in 5 different pairs of
training and test sets for the same study. The characteristics of data sets for
different patients/studies are summarized in Table 1.

Table 1. Summary of the data sets

Patient/study N N+ N− Ntrain Ntest

1/gated 32 24 8 24 8
1/fb 27 19 8 20 7
2/gated 41 33 8 30 11
2/fb 39 31 8 29 10

fb: free-breathing; N : total number of the slices extracted for the given patient/study;
N+: number of slices containing tumour; N−: number tumour-free slices; Ntrain: number
of slices used to form the training set (randomly selected from N slices); Ntest: number
of slices used to form the test set (remaining N − Ntrain slices)

4.3 SVM Training and Model Selection

We used μ-SVM regression estimation [15] with Gaussian kernel. This variety
of SVM algorithm has three parameters (γ, C and μ) that must be set during
the training phase. We approached the problem of finding their optimal values
(model selection) by performing a five-fold cross-validation [17] on a logarithmic
grid. The total training time per study was about 15 minutes (selection from 1764
different combinations of the parameters by means of 5-fold cross-validation for
five different training sets).

4.4 Results

The following three metrics were used to evaluate the results. First, the cor-
relation coefficient was calculated between the reference thresholds and those
predicted by the algorithm. The other two measures evaluate the quality of the
results in terms of geometric similarity of the regions contoured with the refer-
ence thresholds, and the regions outlined by the algorithm-predicted thresholds.
To this end, Jaccard and Dice’s similarity indices were calculated

J = |R ∩ A|/|R ∪ A| (2)
D = 2|R ∩ A|/(|R ∪ A| + |R ∩ A|) , (3)

where R and A stand for the regions contoured by the reference and algorithm-
predicted thresholds, respectively. Both Jaccard and Dice’s indices are equal to
zero when two regions have no common area, and are equal to unity when the
regions match perfectly.



The results are summarized in Table 2 (since no significant difference was
found between the results of the gated and free-breathing studies in the same
patient, we present their averages). Several segmentation examples are presented
in Fig. 4. Besides the high level of geometric similarity, a correlation between
the predicted and the reference uptake thresholds also indicates that during
the training phase, the learning algorithm effectively acquired the dependency
between the attributes and the reference uptake threshold.

Table 2. Summary of the results

Patient C J D

1 0.71 0.82 (0.61) 0.89 (0.74)
2 0.83 0.96 (0.77) 0.98 (0.87)

C: correlation coefficient between the reference and algorithm-predicted thresholds; J
and D: Jaccard and Dice’s similarity indices between the regions contoured by the
reference and algorithm-predicted thresholds (the values in parentheses represent the
results obtained with the contrast-oriented algorithm [8], see Sect. 3.1)

Fig. 4. Examples of GTV, reference, and predicted uptake thresholds. Grey contour
(green in colour version): GTV; solid black contour (blue in colour version): region
contoured by the reference uptake threshold; dashed black contour (dashed red in
colour version): region contoured by the algorithm-predicted uptake threshold.



Table 2 shows that we obtained better results for the second patient. We
think this is because the second patient had a bigger tumour, occupying about
30% more PET slices (see Table 1), which resulted in a bigger training set, and
hence better generalisation during training.

5 Discussion, Conclusion and Future Work

Our approach to PET-based lung tumour definition extends standard threshold-
based approaches in three important ways. First, we base the definition of the
optimal thresholds on a richer set of attributes extracted from the PET scans.
Second, we use an “adaptable” machine learning algorithm capable of approxi-
mating data in a complex nonlinear way. Finally, we estimate the optimal thresh-
old for each PET slice (instead of assigning a single threshold to all slices in the
study).

The two threshold contours (reference and predicted) shown in Fig. 4 look
very similar. However, this does not guarantee a high similarity between them
and the GTV, as in case of the upper leftmost image, where both predicted and
reference regions are composed of two contours, whereas the corresponding GTV
is a single contour including some additional area. This illustrates an inherent
limitation of any approach that is based on thresholding. This is simply because
the shape of GTV contour can be whatever a radiation oncologist draws. In
contrast, the shape of any particular threshold contour for a given image is
fixed; and therefore choosing from even infinite number of different thresholds
means choosing from an infinite number of different, but FIXED shapes.

This work was performed using a study-specific scenario, to cope with the
slice-to-slice variation of the optimal threshold values within a study, and 75%
of slices should have been defined manually in order to automatically define the
remaining 25%. In order to prove its fitness for the real clinical use, an inter-
study/inter-patient scenario with a sufficiently high number of patients is nec-
essary; and we are currently exploring the challenges of collecting the necessary
cases (i.e. checking and confronting both radiation treatment and diagnostic data
available at out institution). In addition, we are looking for another informative
PET attributes.

This work has demonstrated the potential advantages and applicability of
the machine learning methodology as a tool to help plan radiation treatment for
lung cancer.
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