
Learning When to Stop Thinking and Do Something!
Barnabás Póczos, Yasin Abbasi-Yadkori, Csaba Szepesvári, Russell Greiner, Nathan Sturtevant

Department of Computing Science, University of Alberta

Framework

•{Xt}t is an IID sequence

•For Xt, we start a “thinking process”

•Ytk ∈ Yk : information about Xt at stage k of thinking

• τtk : the time used in thinking at stage k

•Ytk is independent of Yt,1, . . . , Yt,k−2 given Yt,k−1 and Xt

• qk determines whether we terminate the thinking process at stage k

•At stage k, we continue thinking at Xt with probability qk(0|Ytk), or quit

with probability qk(1|Ytk) = 1 − qk(0|Ytk)

•Lt ∈ {1, . . . ,K} denotes when we quit and Tt =
∑Lt

k=1 τk

•At = µLt
(Yt,Lt

) is the action taken on instance Xt

•The performance criterion:

ρq =
�


lim inf

t→∞

∑t
s=1 r(Xs, As)

∑t
s=1 Ts




Learning Stopping Policies

•Policy-gradient-based algorithms

•By the law of large numbers ρq =
�

[r(X1,A1)]�
[T1]

• ∂
∂θρ

q = ∂
∂θ

�
[r1]�
[T1]

=
�

[T1]∆
�

[r1]−
�

[r1]∆
�

[T1]�
[T1]2

Direct Gradient Ascent

•
�

[T1] ≈ 1
n

∑n
t=1

∑Lt
k=1 τk,

�
[r(X1, A1)] ≈ 1

n

∑n
t=1 Rt

•
�

[r(X1, A1)] is just the reward obtained in an episodic problem

•Use likelihood ratios (aka REINFORCE) to calculate the derivative

•Unbiased estimate:

∂

∂θ

�
[r(X1, A1)] ≈

1

n

n∑

t=1

r(Ỹt)




Lt−1∑

k=1

∂

∂θ
ln qθ(0|Ytk) +

∂

∂θ
ln qθ(1|YtLt

)




•Similar result for ∂
∂θ

�
[T1]

•Putting the pieces together...

Ĝn =
1

n

n∑

t=1



r(Ỹt)

T̂
−

r̂Tt

T̂ 2







Lt−1∑

k=1

∂

∂θ
ln qθ(0|Ytk) +

∂

∂θ
ln qθ(1|YtLt

)




The Quality of the Estimated Gradient

Proposition 1.Assume that n ≥ 2 log(1/δ)/τ 2
0 , where τ0 is an almost

sure lower bound on T1. Then with probability 1 − δ,

‖G − Ĝn‖ ≤ c1

√√√√log(4/δ)

n
+ c2

log(4/δ)

n
= c(δ, n),

where c1, c2 are constants that depend only on the range of the rewards,

thinking times and their gradients.

A Stopping Rule for Preventing Slow Convergence

Near Optima

Theorem 1.Fix 0 < δ < 1 and let n = n(δ) be the first (random) time

when

c(δ, n) ≤
1

2
max(0, ‖Ĝn‖ − c(δ, n)).

Then ĜT
n G > 0 with probability ≥ 1 − δ.

Experiments

A Toy Problem

•Sort envelopes based on their zipcodes

•For envelope Xt apply subroutines 〈A1, . . . , AK〉

•pk: the probability that yt,k is the correct zip code (p0 ∼ Beta(1, 1) and

improves as pk+1 = min{pk + 0.1, 1})

•Generate 1,000,000 random parameter vectors (policies)

•The highest, lowest and average performances: 6.85, 0.34 and 1.60

•The performance histogram of 1000 parameters before (BG) and after (AG)

applying the DGA method. DGA improves the policies considerably:

0 2 4 6 8
0

50

100

150

200

Performance

F
re

qu
en

cy

BG
AG

Face Detection
Samples from Essex face recognition data

•Face database: 4916 pieces of facial and 7872 pieces of non-facial gray scale

images of size 24 × 24 from the VJ database

•A 22-stage hierarchical face classifier of Lienhart et al. (2003)

•While the higher level classifiers perform better, they have higher complex-

ity

•Containes 22 parameters αk ∈ � , k = 1, . . . , 22 (chosen such that

TPR = 99.5%)

•Not able to classify an image before reaching stage 22

•TPR = 99.5 seems ad-hoc

•Optimize these parameters

•Combine the gradient descent with the Cross-Entropy method (CE-DGA)

•CE-DGA achieves higher expected reward, higher TPR, and smaller FPR

than the VJ parameters, while using many fewer classification stages:

VJ Random CE-DGA�
[R] 96.95 76.80 97.70�
[stage] 13.17 1.25 6.1

TPR 96.70% 99.20% 97.00%

FPR 2.80% 45.60% 1.60%

0 0.2 0.4 0.6 0.8
0.95

0.96

0.97

0.98

0.99

1

False positive

T
ru

e
po

si
tiv

e

random
VJ
CE−DGA 0 5 10 15

0.9

0.92

0.94

0.96

CE iterations

E
[R

]

CE−DGA
CE

References

R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analysis of detection

cascades of boosted classifiers for rapid object detection. In DAGM’03,

25th Pattern Recognition Symposium, pages 297–304, 2003.

