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Framework

•{Xt}t is an IID sequence

•For Xt, we start a “thinking process”

•Ytk ∈ Yk : information about Xt at stage k of thinking

• τtk : the time used in thinking at stage k

•Ytk is independent of Yt,1, . . . , Yt,k−2 given Yt,k−1 and Xt

• qk determines whether we terminate the thinking process at stage k

•At stage k, we continue thinking at Xt with probability qk(0|Ytk), or quit

with probability qk(1|Ytk) = 1 − qk(0|Ytk)

•Lt ∈ {1, . . . ,K} denotes when we quit and Tt =
∑Lt

k=1 τk

•At = µLt
(Yt,Lt

) is the action taken on instance Xt

•The performance criterion:
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Learning Stopping Policies

•Policy-gradient-based algorithms

•By the law of large numbers ρq =
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Direct Gradient Ascent
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•
�

[r(X1, A1)] is just the reward obtained in an episodic problem

•Use likelihood ratios (aka REINFORCE) to calculate the derivative

•Unbiased estimate:
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•Similar result for ∂
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�
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•Putting the pieces together...

Ĝn =
1

n

n∑

t=1



r(Ỹt)
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The Quality of the Estimated Gradient

Proposition 1.Assume that n ≥ 2 log(1/δ)/τ 2
0 , where τ0 is an almost

sure lower bound on T1. Then with probability 1 − δ,

‖G − Ĝn‖ ≤ c1

√√√√log(4/δ)

n
+ c2

log(4/δ)

n
= c(δ, n),

where c1, c2 are constants that depend only on the range of the rewards,

thinking times and their gradients.

A Stopping Rule for Preventing Slow Convergence

Near Optima

Theorem 1.Fix 0 < δ < 1 and let n = n(δ) be the first (random) time

when

c(δ, n) ≤
1

2
max(0, ‖Ĝn‖ − c(δ, n)).

Then ĜT
n G > 0 with probability ≥ 1 − δ.

Experiments

A Toy Problem

•Sort envelopes based on their zipcodes

•For envelope Xt apply subroutines 〈A1, . . . , AK〉

•pk: the probability that yt,k is the correct zip code (p0 ∼ Beta(1, 1) and

improves as pk+1 = min{pk + 0.1, 1})

•Generate 1,000,000 random parameter vectors (policies)

•The highest, lowest and average performances: 6.85, 0.34 and 1.60

•The performance histogram of 1000 parameters before (BG) and after (AG)

applying the DGA method. DGA improves the policies considerably:
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Face Detection
Samples from Essex face recognition data

•Face database: 4916 pieces of facial and 7872 pieces of non-facial gray scale

images of size 24 × 24 from the VJ database

•A 22-stage hierarchical face classifier of Lienhart et al. (2003)

•While the higher level classifiers perform better, they have higher complex-

ity

•Containes 22 parameters αk ∈ � , k = 1, . . . , 22 (chosen such that

TPR = 99.5%)

•Not able to classify an image before reaching stage 22

•TPR = 99.5 seems ad-hoc

•Optimize these parameters

•Combine the gradient descent with the Cross-Entropy method (CE-DGA)

•CE-DGA achieves higher expected reward, higher TPR, and smaller FPR

than the VJ parameters, while using many fewer classification stages:

VJ Random CE-DGA�
[R] 96.95 76.80 97.70�
[stage] 13.17 1.25 6.1

TPR 96.70% 99.20% 97.00%

FPR 2.80% 45.60% 1.60%
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