Learning When to Stop Thinking and Do Something!

Barnabás Póczos, Yasin Abbasi-Yadkori, Csaba Szepesvári, Russell Greiner, Nathan Sturtevant Department of Computing Science, University of Alberta

Framework

- $\{X_t\}_t$ is an IID sequence
- For X_t , we start a "thinking process"
- $Y_{tk} \in \mathcal{Y}_k$: information about X_t at stage k of thinking
- au_{tk} : the time used in thinking at stage k
- Y_{tk} is independent of $Y_{t,1}, \ldots, Y_{t,k-2}$ given $Y_{t,k-1}$ and X_t
- q_k determines whether we terminate the thinking process at stage k
- with probability $q_k(1|Y_{tk}) = 1 q_k(0|Y_{tk})$
- $L_t \in \{1, \ldots, K\}$ denotes when we quit and $T_t = \sum_{k=1}^{L_t} \tau_k$
- $A_t = \mu_{L_t}(Y_{t,L_t})$ is the action taken on instance X_t
- The performance criterion:

$$\rho^{q} = \mathbb{E}\left[\liminf_{t \to \infty} \frac{\sum_{s=1}^{t} r(X_{s}, A_{s})}{\sum_{s=1}^{t} T_{s}}\right]$$

Learning Stopping Policies

- Policy-gradient-based algorithms
- By the law of large numbers $\rho^q = \frac{\mathbb{E}[r(X_1, A_1)]}{\mathbb{E}[T_1]}$ $\bullet \frac{\partial}{\partial \theta} \rho^{q} = \frac{\partial}{\partial \theta} \frac{\mathbb{E}[r_{1}]}{\mathbb{E}[T_{1}]} = \frac{\mathbb{E}[T_{1}] \Delta \mathbb{E}[r_{1}] - \mathbb{E}[r_{1}] \Delta \mathbb{E}[T_{1}]}{\mathbb{E}[T_{1}]^{2}}$

Direct Gradient Ascent

- $\mathbb{E}[T_1] \approx \frac{1}{n} \sum_{t=1}^n \sum_{k=1}^{L_t} \tau_k, \ \mathbb{E}[r(X_1, A_1)] \approx \frac{1}{n} \sum_{t=1}^n R_t$
- $\mathbb{E}[r(X_1, A_1)]$ is just the reward obtained in an episodic problem
- Use likelihood ratios (aka REINFORCE) to calculate the derivative
- Unbiased estimate:

$$\frac{\partial}{\partial \theta} \mathbb{E}[r(X_1, A_1)] \approx \frac{1}{n} \sum_{t=1}^n r(\widetilde{Y}_t) \left(\sum_{k=1}^{L_t - 1} \frac{\partial}{\partial \theta} \ln q^{\theta}(0|Y_{tk}) + \frac{\partial}{\partial \theta} \right)$$

- Similar result for $\frac{\partial}{\partial \theta} \mathbb{E}[T_1]$
- Putting the pieces together...

$$\hat{G}_n = \frac{1}{n} \sum_{t=1}^n \left(\frac{r(\widetilde{Y}_t)}{\widehat{T}} - \frac{\widehat{r}T_t}{\widehat{T}^2} \right) \left(\sum_{k=1}^{L_t - 1} \frac{\partial}{\partial \theta} \ln q^{\theta}(0|Y_{tk}) + \frac{\partial}{\partial \theta} \ln q^{\theta}(1|Y_{tL_t}) \right)$$

The Quality of the Estimated Gradient

Proposition 1. Assume that $n \geq 2\log(1/\delta)/\tau_0^2$, where τ_0 is an almost sure lower bound on T_1 . Then with probability $1 - \delta$, $c_{2}\frac{\log(4/\delta)}{\delta} = c(\delta, n),$

$$\|G - \hat{G}_n\| \leq c_1 \sqrt{\frac{\log(4/\delta)}{n}} + c_2$$

where c_1 , c_2 are constants that depend only on the range of the rewards, thinking times and their gradients.

• At stage k, we continue thinking at X_t with probability $q_k(0|Y_{tk})$, or quit A Stopping Rule for Preventing Slow Convergence • While the higher level classifiers perform better, they have higher complex-Near Optima

Theorem 1. Fix $0 < \delta < 1$ and let $n = n(\delta)$ be the first (random) time when

 $c(\delta, n) \leq \frac{1}{2} \max(0, \|\hat{G}_n\| - c(\delta, n)).$ Then $\hat{G}_n^T G > 0$ with probability $\geq 1 - \delta$.

Experiments

A Toy Problem

- Sort envelopes based on their zipcodes
- For envelope X_t apply subroutines $\langle A_1, \ldots \rangle$
- p_k : the probability that $y_{t,k}$ is the correct improves as $p_{k+1} = \min\{p_k + 0.1, 1\}$
- Generate 1,000,000 random parameter vectors (policies)
- The highest, lowest and average performances: 6.85, 0.34 and 1.60
- The performance histogram of 1000 parameters before (BG) and after (AG) applying the DGA method. DGA improves the policies considerably:

- images of size 24×24 from the VJ database
- A 22-stage hierarchical face classifier of Lienhart et al. (2003)
- 1ty
- TPR = 99.5%)
- Not able to classify an image before reaching stage 22
- TPR = 99.5 seems ad-hoc
- Optimize these parameters

$,A_{K} angle$				
zip code	$(p_0$	\sim	Beta(1,1)	and

R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analysis of detection cascades of boosted classifiers for rapid object detection. In DAGM'03, 25th Pattern Recognition Symposium, pages 297–304, 2003.

Face Detection

• Face database: 4916 pieces of facial and 7872 pieces of non-facial gray scale

• Containes 22 parameters $\alpha_k \in \mathbb{R}, \ k = 1, \ldots, 22$ (chosen such that

• Combine the gradient descent with the Cross-Entropy method (CE-DGA) • CE-DGA achieves higher expected reward, higher TPR, and smaller FPR than the VJ parameters, while using many fewer classification stages:

VJ	Random	CE-DGA
06.95	76.80	97.70
3.17	1.25	6.1
5.70%	99.20%	97.00%
.80%	45.60%	1.60%

References