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Abstract

A Quantitative Trait Locus (QTL) is a region of DNA that is associated with a

particular phenotypic trait. QTL mapping is the statistical study that relates the

alleles that occur in a locus to the associated phenotypes. If we know the QTLs that

affect the economically important traits in the breeding industry of dairy cattle, we

could greatly improve the estimation of breeding values, which would in turn lead

to more accurate selection of diary sires for breeding. With the advances in DNA

chip technology and the discovery of thousands of single nucleotide polymorphisms

(SNPs) in genome-sequencing projects, we can now identify the QTL associated

with traits of interest based on the SNP information.

In this study, we consider the challenge of learning the QTL mapping for pre-

dicting important traits that are then turned into breeding values using the SNPs

dataset. This is especially challenging due to the high dimensionality of the dataset.

We examine the use of two machine-learning kernel methods, Support Vector Ma-

chine (SVM) and Gaussian Process (GP), as well as several statistical methods —

including partial least square regression (PLS) and LASSO. We also explore several

feature selection techniques to identify the SNPs associated with the QTL affecting

the traits for prediction, including correlation-based feature selection, logic regres-

sion, M5 prime for linear regression and haplotype blocks.

We focus on a dataset from a diary-industry breeding program, where 1341

SNPs are genotyped of 462 dairy sires to predict 5 economically important traits.

Our empirical results indicate that the average correlation between prediction and

true value of these 5 traits is about 0.56 using GP, our best predictor. The results

also suggest that the performance of the two kernel methods is better than that

of the other statistical methods based on correlation and root-mean square error

performance criteria. However, the feature selection methods we tried failed to

identify the most relevant SNPs of the traits in this dataset.
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Chapter 1

Introduction

In 1858, Darwin published his famous On the Origin of Species, which introduced

one of the cornerstones of modern biology, Natural Selection. Natural selection is

the mechanism of evolution, the process in nature by which only the organisms that

are best adapted to their environment tend to survive and transmit their genetic

characteristics to the next generation. Individuals less well adapted to their en-

vironment tend to be eliminated, where the environment represents the combined

biological and physical influences.

In fact, Darwin thought of natural selection by analogy to how farmers select

crops or livestock for breeding, which he called Artificial Selection, where we, hu-

mans, act as the environmental pressure. Artificial selection is of great interest to

the breeding industry through its use in the improvement of the desired traits that

an animal breeder wishes to develop, like the number of eggs laid by hens, the meat

properties of bullocks, or the milk yield of cows.

Some traits can fall into a few distinct phenotypic classes, like eye color, while

many traits of biological and economical interest are continuous and are often given

a quantitative value. The improvement of these “quantitative traits” has been an

important goal for many animal-breeding programs. Although today’s “conven-

tional animal breeding methods” have evolved considerably since their emergence

in ancient times, they continue to revolve around three basic steps: (1) generation

of a population of animals having desirable traits, (2) evaluation and selection of

superior individuals, (3) recombination of the superior individuals to generate a new

population for subsequent cycles of selection and improvement [1].

This type of methods, however, requires a large amount of labor, land, time

and money. Therefore breeders are interested in identifying the most promising
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individuals as early as possible in the selection process. Recent studies [92,93,94]

have shown that quantitative traits are likely to be controlled by a fairly large, but

unknown, set of genes. Fortunately however, typically only a few of these genes

have a large effect. Such genes are called major genes, and their locations are called

the quantitative trait loci, or QTL. Furthermore, the process of finding the QTL for

a given trait is called QTL mapping. (Although the term QTL strictly applies to

any genes of an effect, in practice it refers only to major genes, as only these will be

large enough to be detected and mapped on the genome.) Because the QTL alleles

do not change over the life of an individual, they can be obtained when a potential

breeding animal is very young. Hence, if breeders could identify those QTL alleles

that contribute to a high value of an important trait, they could greatly accelerate

the selection process.

Figure 1.1 illustrates that QTL constitute only some of the many genes that

affect phenotype. The other relevant genes are termed polygenes. Variation at the

polygenes jointly with polymorphism at the QTL determines total genetic variation.

Although QTL effects explain only a part of genetic differences between animals,

knowledge of the genes located at QTL could greatly assist in estimating an ani-

mal’s true genotype. Information available at QTL therefore adds to accuracy of

estimation of breeding value.

Figure 1.1 suggests that the value or the allelic forms at individual QTL are

known. In practice, this is rarely the case, as the exact gene locations are often

unknown. That is, currently there are few examples where QTL effects can be

directly determined, but knowledge in this area is rapidly developing [15,16,17,18].

Most of the QTLs known today are known based on genetic markers.

Genetic markers are landmarks at the genome that are chosen for their proximity

to QTL. Given the pedigree information, we cannot actually observe inheritance at

the QTL itself, but we can observe inheritance at the marker, which is linked to

the QTL. Thus the selection is based on the marker linked to the QTL, instead of

the QTL itself, with the assumption that the linked allele is associated with QTL of

interest. Figure 1.2 shows the principle of inheritance of a marker and a linked QTL.

We can identify the marker genotype (M/m) but not the QTL genotype (Q/q). The

last is really what we want to know because of its effect on economically important

traits. The selection process described above is formally called Marker-Assisted

Selection, or MAS.
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Figure 1.1: Illustration of three bulls with different phenotypes. The top drawing
gives the true allelic values at the different genes affecting body weight units, which
we usually cannot observe in real cases; the bottom situation illustrates what would
be observed if QTL could be identified in addition to phenotype, adding significant
information about the true genotype. (Figure taken from [2].)
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Figure 1.2: Example of the inheritance of QTL and its linked genetic marker M.
Here locus Q is the location of a major genotype that affects a quantitative trait,
and locus M is the location of a genetic marker. The diagram shows a pair of
chromosomes for each bovine parent and its progeny. The sire is heterozygous for
either locus and the dam is homozygous. For this example, we can determine for each
progeny whether they received M or m allele from their sire. The recombination
rate (10%) determines how often Q alleles join M alleles. (Genetic recombination
refers to the process by which genetic material is broken and joined to other genetic
material.) Here the recombination rate is very low, so M alleles is closely linked
to Q alleles. Progeny that receive the M allele from the sire, have a high chance
of having also received the Q allele, and are therefore the preferred candidates in
selection. (Figure taken from [2].)
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Single nucleotide polymorphisms, also known as SNPs (pronounced “snips”),

are the most frequent genetic variations in the genome. A SNP is a single base

substitution of one nucleotide with another, where both versions are observed in the

general population at a frequency greater than 1%. With the increasing availability

of affordable high-throughput SNP assays, SNPs are becoming the marker of choice

in genetic analysis and are used routinely as markers in animal breeding programs

[3]. For more details about SNPs, please see Section 2.2.2.

This thesis explore the task of marker-assisted selection of dairy cattle using a

dense SNP map. Breeders usually take three steps to address the problem. First, the

prediction of quantitative values of economically important traits are made based on

the SNPs dataset. Secondly, for each cattle, the Estimated Breeding Value (EBV),

which is the genetic merit of an animal’s breeding value, is calculated based on the

prediction of the traits. Finally, the selection is made based on the EBVs. As we can

see, the last two steps are easy to follow if we could achieve a reasonable prediction

of the traits in the first step. In this study, we only focus on the first step, i.e. the

prediction problem. Besides, we are also interested in finding a subset of SNPs are

most significantly associated with the traits, because those SNPs can be used as

genetic markers to pinpoint the exact locations of the QTL. In short, the objective

of this study is two-fold. The first objective is to accurately learn to predict the

economically traits based on SNPs dataset. The second objective is to find a subset

of SNPs that are statistically associated with the traits for QTL mapping.

In our proposed approaches, the target problem is formulated as a supervised-

learning problem, where a learning algorithm takes as input a set of dairy cattle

whose trait information is known with genotyped SNPs as covariates, and attempts

to infer a function that will predict the traits for unseen cattle based on their SNPs;

see Figure 1.3. The major challenge of this learning problem is the high dimension-

ality of the SNP dataset, which is a typical “large p (number of SNPs), small n

(number of cattle)” problem [4]. Traditional statistical methods often lack the abil-

ity to handle such datasets with a very large p. On the other handle, the successful

applications of machine-learning methods, such as Support Vector Machine (SVM),

in cancer classification problems using microarray gene expression dataset (which is

also “a large p small n” problem) shows good potential of machine-learning meth-

ods to handle high dimensional data [40]. We would like to see if machine-learning

methods could achieve similar success when applied to the SNPs dataset.
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Figure 1.3: Illustration of formulating the QTL mapping problem as a supervised-
learning problem. In the top table, each row represents the genotype of a dairy
cattle; each column, except the last one, represents a SNP; and the last column
represents the target quantitative trait for prediction. In the supervised-learning
scheme, the top table represents the training set, where the values of the prediction
target, here a quantitative trait, are known. With the training set as input, the
learner attempts to generate a regressor that could make good predictions on quan-
titative traits of future cattle. The regressor is a function that maps the input vector
(here the SNPs vector) to a quantitative value. The regressor usually contains a set
of parameters, and the learner uses the training set to adjust the parameters to
optimize the derived regressor’s performance on the target problem. This process
is called training. After the training process, we then have the derived regressor,
which we can use to predict the value of quantitative trait for future cattle.
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The dataset used in this study comes from a diary-industry breeding program.

The dataset consists of 462 dairy sires (samples) with 1341 SNPs are genotyped for

each sire. Each SNP could only take 3 values, 1 (Homozygous Major), 2 (Heterozy-

gous), and 3 (Homozygous Minor) respectively. We consider 5 prediction tasks for

quantitative traits, FatEBV, FatPercentEBV, MilkEBV, ProteinEBV, and Protein-

PercentEBV. The values of the quantitative traits of 157 out of the total 462 sires

are withheld by the data provider as the final test set for evaluation of our methods.

Two different approaches are proposed to meet the two objectives of the study.

The first approach treats the underlying genetic model of each trait as a black box,

and uses all the 1341 SNPs to predict the traits without feature selection. In this

approach, we only focus on the first objective, i.e. predicting the traits accurately.

Two machine-learning kernel methods, Support Vector Machine (SVM) and Gaus-

sian Process (GP), along with five statistical regression methods, Principal Com-

ponent Analysis (PCA), Partial Least Square Regression (PLS), Ridge Regression,

LASSO, and Elastic Net, are applied for comparison purpose.

The second approach has two steps. The first step is feature selection, which

tries to find the subset of SNPs that are most significantly associated with the traits.

The resulting subset of features (SNPs) is used to predict the traits in the second

step. Thus the two objectives are both considered in the second approach. We

compare four feature selection methods: Correlation-based feature selection, Logic

Regression, M5 Prime for Linear Regression, and Haplotype Block, which makes use

of some biological information to help in selecting features.

The empirical results show that the first approach generally achieves better pre-

diction accuracies than the second approach, which means that the feature selection

methods failed to increase prediction accuracy in this problem. Of the 304 samples

with known traits information, the best average correlation of 5-fold cross validation

by the first approach is 0.53±0.01 (by Gaussian Process), while the best average cor-

relation by the second approach is only 0.47±0.01 (by Logic Regression + Gaussian

Process).

Gaussian Process is found to be the best method, and it had the highest predic-

tion accuracy, although the difference between GP and SVM is very small. Using

304 sires with known traits information as training data and the other 157 sires as

test data, GP’s average correlation of the 5 quantitative traits is 0.56±0.01. For the

FatPercentEBV trait, GP’s correlation reaches 0.60±0.01.
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We also compare the difference between original representation and binary rep-

resentation of the SNP dataset (see Section 6.3), and find that binary representation

is generally the better way to represent the data. Of the 304 samples with known

traits information, the average correlation of 5-fold cross validation by PLS regres-

sion using binary representation is 0.47±0.01, and the average correlation by PLS

regression using original representation is only around 0.43±0.01. But for several

other methods like GP, the difference is minimal.

We finally look into why feature selection methods fail in this problem. We find

that the features selected based on the training data could achieve nearly perfect

accuracies back on the training data, but they do not generalize well on the test

data. We also find that a different cut of training and test data will often lead

to a different subset of features that are selected based on the training data. We

proposed several possible reasons for this to happen. Firstly, the SNP dataset might

contain too much “noise”, i.e. quite a few SNPs might appear highly correlated with

the traits by chance due to the relatively small sample size as compared with the

number of SNPs, which makes the feature selection methods fail to discover the real

single in the SNPs data. Secondly, it might be that none of 1341 SNPs are actually

very closely associated with the traits. It is suggested that more than 30,000 SNPs

are needed to cover all the possible QTL locations on the whole bovine genome [6].

Thirdly, perhaps the feature selection methods we tried are not powerful enough to

detect the most relevant SNPs.

To our knowledge, this is the first time that such a high dimensional real SNP

dataset (1341 SNPs) is used for breeding value estimation and QTL mapping. Al-

though the best prediction accuracy of 0.60±0.01 is not a particularly good result,

it is a very encouraging starting point. To our knowledge, this is also the first time

that machine-learning methods are tried in the MAS and QTL mapping problem

domain. The fact that the machine-learning kernel methods, GP and SVM, achieves

higher prediction accuracy than the statistical methods fully shows the potential of

machine-learning methods in handling high dimensional data. However, the feature

selection methods we tried fail to identify the most relevant SNPs for this dataset.

Further studies are needed to verify the applicability of feature selection methods.

In short, this dissertation shows that the machine-learning kernel methods can

could achieve a fairly good prediction of quantitative traits based on a dense SNP

dataset, and also the prediction performance of the kernel methods is better than
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that of the statistical methods tried. However, we were unable to improve the

prediction accuracy with the feature selection methods we tried in this case.

The rest of the dissertation is organized as follows. In Chapter 2, we give a

brief introduction to the background information of breeding value estimation and

the QTL mapping problem. In Chapter 3, we provide a literature review of QTL

mapping methods, as well as machine learning and statistical methods for high

dimensional data. In Chapter 4 and Chapter 5, we describe seven regression methods

and four feature selection methods tried in this study respectively. In Chapter 6,

we present and discuss the empirical results. Chapter 7 is the conclusion of the

dissertation.
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Chapter 2

Backgrounds

In this section, we first give a brief introduction to the biology background knowledge

that is necessary to understand the rest of our study. We then discuss two kinds

of methods that are used for breeding value estimation, the Quantitative Genetic

Approach and the Marker Assisted Selection (MAS). The latter makes use of the

marker information of the breeding animals and is believed to be the best method

for estimating future breeding value. Applying MAS could be a very challenging

job because most complex traits are the result of complicated interactions among

a lot of genes. How to select the markers that are most associated with the trait

under selection out of hundreds, thousands, even hundreds of thousands candidate

markers with only a very limited number of sample breeding animals is still an

unsolved question. Finally, we introduce the machine-learning methods, which we

use as an attempt to meet the challenge of MAS and answer the question of how to

select the most informative markers.

2.1 Biology 101

Deoxyribonucleic acid (DNA) is the hereditary material in humans and almost all

other organisms. DNA consists of two long anti-parallel strands that are made up

of tiny building blocks called nucleotides. The four kinds of nucleotides that make

up DNA are adenine (abbreviated as the single letter A), guanine (G), cytosine

(C), and thymine (T). The DNA molecule has the shape of two intertwined spirals,

referred to as a double helix.

DNA is segmented into chromosomes that are located within the nucleus of all

cells. These chromosomes are the same in every cell of an organism and together

make up the organisms genetic information, its genome. Chromosomes contain
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stretches of DNA called genes that code for amino acids that make proteins. Pro-

teins are the foundation of life for all organisms, in that they are not only the major

components of cell tissue, but also participate in most physical activities. The inter-

action and structure of proteins determine the visible characteristics or phenotype

of an organism, while the genetic makeup of an organism is called its genotype.

The sequence of nucleotides that make up a gene can differ among individuals.

The different forms of a gene are called alleles. The alleles can be the result of

nucleotide differences in a gene that affect an amino acid sequence of a protein.

This can result in a change, addition, or deletion of a protein that can affect the

phenotype.

All organisms receive one copy of each gene from their mother and one from their

father. The DNA sequence of a gene inherited from each parent may be identical, in

which case the individual is said to be homozygous for that trait. Or the sequence

of the gene from one of the parents may be different, in which case the individual

is said to be heterozygous. Allele variations may differ in their DNA sequence by as

little as a single nucleotide.

Differences among alleles caused by a single nucleotide, are called single nu-

cleotide polymorphisms (SNPs). Formally, a SNP is a single base substitution of

one nucleotide with another, where both versions are observed in the general popu-

lation at a frequency greater than 1%. Figure 2.1 shows an example of a SNP.

SNPs can occur in both coding and non-coding regions of the genome, where

only the genetic information in the coding regions is transcribed to ribonucleic acid

(RNA) and then translated to proteins, thus genetic variations indirectly affect

the phenotypes. SNPs are the most abundant source of genetic variation. For

example, in the human genome, 99.9% of one individual DNA sequences will be

identical to that of another person. Of the 0.1% difference, over 80% will be the

SNPs, which makes SNPs of great value for biomedical research and for developing

pharmaceutical products or medical diagnostics. SNPs are also evolutionarily stable,

i.e. low mutation rate, making them easier to follow in population studies.

2.2 Breeding Value Estimation

Over the past 50 years, genetic improvement through artificial selection has con-

tributed to the enormous advances in productivity that have been achieved in plant

and animal species that are of agricultural importance. Selection for economically
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Figure 2.1: An example of a SNP. The eighth nucleotide in the DNA segment is
a polymorphism with two alleles A and G. In this case, the SNP is believed to be
associcated with the length of bull’s back leg. Individuals with A/G genotype of
this SNP are likely to have long back leg; individuals with A/A genotype are likely
to have short back leg. (Figure taken from [2].)
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important traits in animal and plants is traditionally on the basis of observable phe-

notypes, which are used to estimate the breeding values. The Estimated Breeding

Value (EBV) of an animal is the genetic merit of that animal’s genes to its progeny,

which is of great interest to the breeders, as it is the basis of ongoing genetic im-

provement.

There are basically two types of approaches for breeding value estimation, i.e.

Quantitative Genetic Approach [44] and Marker Assisted Selection (MAS) [7].

2.2.1 Quantitative Genetic Approach

Estimation of breeding value based on an animals phenotype alone can already

be quite accurate for highly heritable traits. However, when animals need to be

compared across herds, things get more complicated, as genetic and environmental

influences have to be disentangled. To achieve this, more sophisticated statistical

methods are used, leading to Best Linear Unbiased Prediction (BLUP) of breeding

values [48]. Besides allowing across herd comparisons, BLUP also uses all avail-

able information about an animal’s breeding value, including the animal’s pedigree

information. Selection accuracy is strongly dependent on the degree of data record-

ing, which requires a range of considerations related to cost and infrastructure. In

data recording, individual performances need to be related to animal identification.

If BLUP is used to generate EBVs, an animals pedigree also needs to be known

(in principle, for each animal only its sire and dam). If pedigree is not recorded,

breeding value can be assessed on its own performance only, and could be limited

to genders, e.g. milk production traits are only available for cows.

The phenotypic approach described above is formally called the “quantitative

genetic approach”. Because the phenotypic information represents a collective effect

of all genes and environment, the genetic architecture of the trait itself is treated

as a black box, with no knowledge of the number of genes that affect the trait, let

alone of the effects of each gene or their locations in the genome. More specifically,

it is based on Fishers infinitesimal genetic model, in which the trait is assumed to

be determined by an infinite number of genes, each with an infinitesimally small

effect [44].

The tremendous genetic improvements of the breeding animals that have been

achieved attest to the usefulness of the phenotypic approach. Nevertheless, quanti-

tative genetic selection has several limitations because the phenotype is not always
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a perfect predictor of the breeding value of an individual. For example, some traits

are of low heritability (yield in plants), some are expensive to record (meat quality

in animals), and some are only observable on one gender (milk production in dairy

cattle), etc. The ideal situation for quantitative genetic selection is that the trait

has high heritability and that the phenotype can be observed in all individuals be-

fore reproductive age with a relatively mild cost. This ideal is hardly ever achieved,

which limits the effectiveness of quantitative genetic selection.

2.2.2 Marker Assisted Selection (MAS)

Recently high-throughput genotyping techniques have been developed, which allows

the use of molecular markers as aids in genetic selection programs. This will help

breeders in shifting traditional breeding to Marker Assisted Selection (MAS). Be-

cause the molecule markers of the animals could be obtained on both genders and

at a young age, MAS could help to alleviate the limitations of quantitative genetic

approach.

The idea behind MAS is that there may be genes with significant effects that

can be targeted specifically in selection. Most traits of economic importance are

quantitative traits that most likely are controlled by a fairly large number of genes.

However, some of these genes might have a larger effect. Such genes can be called

major genes located at Quantitative Trait Locus (QTL), which is a region of DNA

that is associated with a particular phenotypic trait. As we have mentioned earlier,

in practice, we rarely know the genotypes of the QTL, as the exact gene locations

are often unknown. But we can use genetic markers, which are land-markers on the

genome, to track the QTL.

Single nucleotide polymorphisms (SNPs) are the most abundant resource of ge-

netic markers in the genome. For instance, Wong et al. [45] reported a genetic

variation map of the chicken genome containing 2.8 million SNPs and demonstrated

how the information can be used for targeting specific genomic regions. Likewise,

Hayes et al. [49] found 2507 putative SNPs in the salmon genome that could be

valuable for marker-assisted selection in this species. In this study, we also use SNPs

as the genetic markers to improve the selection for traits of interest.
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2.3 Challenges

Millions of SNPs across multiple species have been identified so far, but it is not

always clear how to best use this information. It is believed that most complex

traits are the result of complicated interactions among multiple genetic factors, in

addition to a collection of environmental influences [8]. An important challenge

that faces molecular association study in the post genomic era is to understand the

inter-connections from a network of genes and their products that are initiated and

mediated by a variety of environmental changes.

Traditional statistical methods often lack the ability to identify such kinds of

interactions because of the inflexibility of the models and the large sample sizes re-

quired for accurate parameter estimation. For example, in a two-locus model, where

we assume that there are only two loci on the genome that are closely correlated

with a disease, it is a simple matter to consider the effect on that disease of all

possible genotype combinations, but this quickly becomes a combinatorial challenge

as the number of loci (i.e. the dimensionality of the dataset) increases. Traditional

parametric statistical methods are limited in their ability to identify interacting

susceptibility genes in small sample sizes because of the sparseness of the data in

high dimensions. This phenomenon is referred to as the curse of dimensionality [50];

as the number of interacting genes increases, the number of genotype combinations

(i.e. the dimensionality) increases exponentially, leading to the need for commen-

surately larger sample sizes. Unfortunately, collecting genetic datasets with such a

large number of observations is prohibitively expensive. Thus, new analytical and

computational methods are needed to improve the power for characterizing genetic

variations that are non-redundant, through which, one can then identify the target

SNPs that are most likely to affect the phenotypes.

Another drawback of traditional statistical methods for identifying interactions

is the need to specify a model for the interaction. The problem is particularly acute

when, again, the dimensionality, and hence the number of possible interactions, is

large. Logistic regression [50], for example, models the probability of disease (p) as

a logit transformation of the linear function of the independent variables. The logit

transformation of p, ln( p
1−p), is used to prevent p from taking on values outside the

interval [0, 1]. The probability of having disease d given that two SNPs A, B are

independent, p(d|A,B), can be modeled as (Eq. 2.1):
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p(d|A,B) =
exp(α+ β1A+ β2B)

1 + exp(α+ β1A+ β2B)
(2.1)

where the independent variables are the polymorphisms A and B, which take on dis-

crete genotype values corresponding to the three genotypes; exp() is the exponential

function; and α ∈ R and β = {β1, β2} ∈ R2 are regression parameters. To model

an interaction between A and B, the form of the interaction must be specified. For

example, for some types of interactions between SNP A and SNP B, p(d|A,B), can

be modeled by inserting a product term of the form β3AB into Eq. 2.1 (see Eq. 2.2):

p(d|A,B) =
exp(α+ β1A+ β2B + β3AB)

1 + exp(α+ β1A+ β2B + β3AB)
(2.2)

A test of the null hypothesis of no interaction can be carried out by testing

whether β3 = 0. Rejection of this null hypothesis provides evidence for an interac-

tion on a multiplicative scale, but the inability to reject the null hypothesis could

mean that the form of the interaction requires operations more complex than simple

multiplication. Using logistic regression to detect interactions when main effects are

present has been investigated in [9].

One of the advantages of logistic regression is the simple physical interpretation

of the model and its parameters as they relate genotypes to probability of disease.

However, the advantage of interpretability is nullified if the method is unable to

determine which variables interact. A framework for understanding interactions is

necessary when analyzing genetic data, otherwise useful knowledge (e.g. gene-gene

interactions) will go undetected. Machine learning offers a powerful alternative to

traditional statistical methods, an alternative that generally does not require an

explicit model form and is able to detect nonlinear interactions in high-dimensional

datasets.

2.4 The Promises of Machine Learning Methods

Machine learning (ML) is the study and computer modeling of learning processes

including the acquisition of new declarative knowledge, organization of new knowl-

edge into general effective representations, and the discovery of new facts through

observation and experimentation [12].

In this study, we focus on supervised machine learning, where the output variable

guides the learning process. The goal of supervised learning is to build a classifier
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(or regressor) that can predict the output variable given some input variables. The

output variable can be a continuous value (called regression), or a discrete class label

(called classification). (As here we try to predict the quantitative traits, our problem

is a regression problem.) The supervised learning problem can be formulated as

follows. Given a training set,

D = {(x1, y1), · · · , (xn, yn)}

where xi is an observation with p covariates xi = {x1i, · · · , xpi}, and yi is the

prediction target, we want to build a mapping F ,

F : D→ FD

where

FD : X → Y

which can be used to predict output for new observation xnew,

FD(xnew)→ ynew

The performance measure of the machine learning algorithm F is defined by how

well the resulting classifier (or regressor) FD can predict outcomes from independent

test data, based on the rules it has learned from the training data.

Machine learning is based on traditional statistical models, but it is more focused

on learning from experience and results in a system that can continuously self-

improve, and thereby offer increased efficiency and effectiveness.

The prediction accuracy of different machine learning programs varies and de-

pends on the type of problem, dataset and the algorithm used. Examples of appli-

cation domains include protein classification [13], tissue classification for different

types of cancer [14], protein secondary structure prediction [15], text mining [16],

protein-protein interactions [17] and RNA binding proteins [18]. The most common

ML algorithms include decision trees, production rules, support vector machines,

nave Bayes, neural networks, and genetic algorithms. There are also several free

suites of machine learning software, including Weka [19], C4.5 [20], and GIST [21],

which makes machine learning methods available to the public.
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Chapter 3

Related Works

Since the pioneering statistical work by Lander and Botstein [22], much effort has

been devoted to improve the efficiency and accuracy of QTL mapping. However,

several characteristics of the genomic dataset complicate the application of classi-

cal statistical methodologies. First, large amounts of missing molecular markers,

due to failure in genotyping or selective genotyping, are quite common in practice.

When markers are sparse, the missing genotype information between markers must

be inferred. Second, the molecular markers on the same chromosome are highly cor-

related, which makes it difficult to identify the “major markers” that we are looking

for. Third, also the biggest challenge, the number of molecular markers is usually

relatively large compared to the sample size. This is called the “large p small n”

problem [4].. When SNP or gene expressions from microarray experiment are used

as molecular markers, the number of molecular markers (p) is even much larger than

the sample size (n), i.e., n� p.

In this section, we provide a brief literature review of the QTL mapping methods

that are designed to tackle the challenges mentioned above, as well as the machine

learning and statistical methods that have been successfully applied to the “large p,

small n” problems in general.

3.1 QTL Mapping Methods Review

3.1.1 Single-QTL Model

Conventional methods for the detection of QTL are based on a comparison of single-

QTL models, where we assume there is a single locus on the genome that is associ-

ated with a quantitative trait, versus a model assuming no QTL [51]. These methods

are designed to detect a single QTL at a time based on a statistical test that the
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values of a single candidate position for a QTL has significant effect or not. The

test was constructed to test each position in a genome and thus created a genome

scan for QTL analysis.

Lander and Botstein [22] presented a likelihood-based framework for interval

mapping (IM), where the putative QTL genotype was conditional upon a pair of

flanking markers’ genotypes as well as the phenotype. A least square equivalence

of IM [51] was also proposed where phenotypic values were regressed onto expected

genetic coefficients of a putative QTL. Motivated by the conditional independency

between marker genotypes, composite interval mapping [25] proposed to introduce

additional flanking markers as covariates into the likelihood function to reduce the

confounding effects from nearby QTL when scanning the current interval.

Though intuitive and widely used, these methods are still insufficient to study

the genetic architecture of complex quantitative traits that are affected by multi-

ple QTLs, i.e. genetic variations located elsewhere on the genome could have an

interfering effect. Even non-existing so-called “ghost QTL” may appear [51]. As

a consequence, the power of detection may be compromised, and the estimates of

locations and effects of QTLs may be biased [52]. Therefore, the multiple-QTL

model, where the effects of multiple QTLs are mapped simultaneously, is proposed.

3.1.2 Multiple-QTL Model

Multiple-QTL mapping has become the state-of-the-art gene mapping procedure

[26]. QTL mapping using multiple-QTL model has been viewed as a model selection

issue [53]. Rather than fitting pre-specified models to the observed data, model

selection approaches proceed by identifying the QTL models from a set of potential

QTL models that are best supported by the data. Various model selection methods

have been recently proposed for genome-wide multiple-QTL mapping from both

frequentist and Bayesian perspectives.

Frequentist approaches sequentially add or delete QTL using forward and back-

ward or stepwise selection procedures and apply criteria such as P-values or a

modified Bayesian information criterion (BIC) to identify the “best multiple-QTL

model”. Kao et al. [54] adopted a stepwise regression approach to adding and delet-

ing QTL progressively until the model is stabilized. Carlborg et al. [55] proposed

using Genetic Algorithm to search for QTL in the genome to improve computational

efficiency. The Bayesian information criterion (BIC) has been investigated by Ball
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[57], Piepho and Gauch [58], Broman and Speed [53], and Bogdan et al. [59]. Such

methods usually pick a single “good” model, ignoring the uncertainty about the

model itself in the final inference [60].

Bayesian approaches for multiple-QTL mapping build on the likelihood function

for the observed phenotypic and marker data, by assigning a prior probability to

each model and prior distributions to the unknowns of each model. Inference is then

based on the conditional distribution of the unknowns given the observed data, i.e

the posterior distribution. The Bayesian approach can simultaneously address both

model and parameter uncertainty [61].

In Bayesian analysis, Markov chain Monte Carlo (MCMC) [62] is broadly used

to evaluate complex integrals to summarize posterior distributions of all relevant

parameters by random sampling and simulation iteration algorithm. A recent de-

velopment in MCMC methodology is the reversible jump algorithm, an extension

of Gibbs sampler and Metropolis sampler, which permits posterior samples to be

collected from posterior distributions with varying dimensions [63]. The reversible

jump algorithm is able to generate the posterior sample of the number of QTL, the

crucial parameter in QTL mapping; thereby a Bayesian inference of QTL number

can be performed based on its posterior samples. Thus, the Bayesian method, incor-

porated with the reversible jump algorithm as well as Gibbs sampling and Metropolis

samplers [64, 65, 66, 67, 68], can yield posterior densities for not only the QTL lo-

cations and the corresponding effects of a specified number of QTL but also the

QTL number itself, which considerably broadens the scope of its application and is

playing a more and more important role in QTL mapping. However, the practical

implementation of Bayesian methods entails two major challenges: calculation of

the posterior distribution and specification of the prior distributions.

There is another class of methods for handling models with a large number of

model effects that require no variable selection. This class of approaches treats the

genetic model as a black box and estimates the effects of all markers simultaneously

without first subjecting to variable selection. The problem of high dimensionality

is handled by the so-called shrinkage estimates [69, 70], where all potential model

effects are included in the model but the estimated effects are forced to shrink toward

zero.

Whittakeret et al. [71] first applied ridge regression to marker-assisted selection

and showed that ridge regression can substantially improve the selection efficiency.
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In their analysis, markers included in the model were selected on the basis of QTL

mapping results and the number of markers was much smaller than the number

of observations. Xu [67] later showed that ridge regression is not a viable choice

for QTL mapping if the model includes too many markers on the genome. The

reason is that having “too many” markers in the regression model produces serious

colinearity, causing unstable least-squares estimates and a poor prediction of the

quantitative trait. Xu [67] found that in fact most markers had negligible effects,

and modified the ridge regression by allowing each marker effect to have its own

variance parameter, which serves as a coefficient of penalty so that a marker with a

negligible effect will have an extremely small variance that will cause its coefficient

to be close to zero. A similar approach was also developed by Gianola et al. [72]

from a marker-assisted selection perspective. The major difference between Xu [67]

and Gianola et al. [72] is that Xu’s method can estimate the QTL variance using

only a single regression coefficient whereas the method of Gianola et al. estimates

the QTL variance using a batch of regression coefficients.

Recently, several semi-parametric and non-parametric methods are also proposed

for QTL mapping. Gianola et al. [73] discussed semi-parametric procedures analyz-

ing complex phenotypic data involving massive genomic information. These authors

argued that application of the parametric additive genetic model in selective breed-

ing of livestock produced tangible dividends, as shown in Dekkers and Hospital [74],

and proposed combining a nonparametric treatment of effects of molecular SNPs

with features of the additive polygenic mode of inheritance. Gonzlez-Recio et al.

[75] proposed a non-parametric procedure, i.e. reproducing kernel Hilbert spaces re-

gression, for prediction of total genetic value for quantitative traits, which made use

of phenotypic and genomic data simultaneously. These methods use weaker assump-

tions than traditional fully parametric models and allow accounting for non-additive

effects without explicit modeling.

3.2 Machine learning and statistical methods for the
“large p small n” problems

In this section, we review work in machine learning and statistical methods for

handling the “large p small n” problems.

Like the SNP dataset, the analysis of DNA microarray data is a typical “large

p, small n” problem. Microarray chips technologies allow the monitoring of gene
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expression levels for thousands of genes simultaneously. It is believed that such tech-

nologies may lead to a better understanding of the molecular variations. Therefore

they have been increasingly applied to prediction and diagnosis of cancer. Similar

to the QTL mapping problem, the major challenge of the gene expression data is

the huge number of genes.

Since the advent of microarray chips, machine learning methods have been play-

ing a pivotal role in analyzing the generated data. Quite a few machine-learning

classification methods have been proposed in this problem domain, including k near-

est neighbor [26], random forest [35], boosting [42], support vector machine [40],

Bayesian network [41] and multi-layer perception [43]. Recently, Pirooznia et al.

[91] compared various microarray classification methods, including SVM, RBF Neu-

ral Nets, MLP Neural Nets, Bayesian, Decision Tree and Random Forrest methods,

and found that SVM had the highest classification accuracy. For other reviews

and comparisons of different machine learning methods applied on microarray data,

please refer to [36, 37, 38].

Some novel feature selection methods are specially designed to handle the high

dimensionality of microarray/SNP dataset from the machine learning paradigm.

Multifactor dimensionality reduction (MDR) has been proposed and implemented

for reducing SNPs dimension [10, 11, 32, 34]. Ritchie et al. [32] reported the op-

timization of the architecture using genetic programming neural networks (GPNN)

to detect and model gene-gene interactions in studies of human diseases. Recently,

Ruczinski et al. [76] demonstrated logic regression based identification of SNP in-

teractions for the disease status in case-control study. In comparison with some

well-known classification methods such as CART [103] and Random Forest [35],

logic regression showed a good classification performance when applied to SNP data.

Also, genetic algorithm with K-nearest neighbor classifier (GAKNN) has been pro-

posed to find the most relevant genes associated with tumor classification [39].

Several statistical methods have also been applied to the microarray/SNP dataset.

Principal component analysis (PCA) [28] and partial least square (PLS) [29] have

been proposed in an attempt to find the most significant component that explains

most of the variance in the dataset. Yuan and Lin [30] proposed the group-Lars

and group-Lasso methods. Zou and Hastie [79] proposed Elastic Net, which is a

regulation path regression method, for modeling gene-gene interactions.

The successful applications of these methods in handling the “large p small n”
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problem of microarray/SNP dataset inspires us to see how well they will work in

the QTL mapping problem, which has similar challenges except that the prediction

target is quantitative output instead of binary, and that the values of SNPs are

discrete instead of numeric.
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Chapter 4

Genome Breeding Value
Estimation Approaches

In this section, we will introduce seven methods that are known for their abilities

to process high dimensional data in practice, so we consider using them to predict

EBVs using the whole genome (all SNPs). Two kernel methods, Support Vector

Machine (SVM) and Gaussian Process (GP), from the machine-learning paradigm

along with five statistical methods are included for comparison. The five statisti-

cal methods can be further divided into two categories, dimension transformation

methods, which include Principal Component Analysis regression (PCA) and Par-

tial Least Square regression (PLS), and regularization methods, which include Ridge

Regression, LASSO, and Elastic Net.

4.1 Support Vector Machine (SVM)

The support vector machine (SVM) algorithm is originally proposed as a classifica-

tion algorithm [46, 47] that provides state-of-the-art performance in a wide variety of

application domains, from pattern recognition problems to computational biology,

including handwriting recognition, face detection, text categorization, microarray

gene expression analysis and prediction of protein-protein interactions.

4.1.1 Optimal Hyperplane for Linearly Separable Patterns

In the classification case, we try to find an optimal hyperplane that separates two

classes. We are given some training data, a set of points of the form.

D = {(xi, ci)|xi ∈ Rp, ci ∈ {−1, 1}}ni=1
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where the ci is either +1 or −1, indicating the class to which the point belongs,

and xi is a p-dimensional input vector. We assume that the class represented by

the subset {xi|ci = +1} and the class represented by the subset {xi|ci = −1} are

linearly separable. The decision surface equation in the form of a hyperplane that

separates the data is

wTx+ b = 0 (4.1)

where w ∈ Rp is an adjustable weight vector, and b ∈ R is a bias.

We can thus write:

{
wTx+ b ≥ 0 for ci = +1
wTx+ b < 0 for ci = −1

which can be written as:

ci(wTx+ b) ≥ 0 (4.2)

But we do not simply want the instances to be on the correct side of the hyper-

plane, but we also want them some distance away, for better generalization. For a

given weight vector w and bias b, the separation between the hyperplane and the

closest data point is called the margin of separation. The goal of a support vector

machine is to find the particular hyperplane for which the margin of separation is

maximized. Under this condition, the decision surface is referred to as the optimal

hyperplane; see Figure 4.1.

Rather than meeting the constraint of Eq. 4.2, we instead want to find w and b

such that

{
wTx+ b ≥ +1 for ci = +1
wTx+ b ≤ −1 for ci = −1

which can be written as:

ci(wTx+ b) ≥ +1 (4.3)

The particular data points (xi, ci) satisfying the equality sign,

{
wTxi + b = +1 for ci = +1
wTxi + b = −1 for ci = −1

are called support vectors.
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Figure 4.1: Operating mode of a Support Vector Machine in linearly separable
case. The SVM algorithm seeks to maximize the margin around a hyperplane that
separates members of the positive class (marked by white circles) from members of
the negative class (marked by black circles). Only support vectors (circles on the
dotted lines) are required to define the optimally defined hyperplane. The distance
between the support vectors and the hyperplane is called the margin. The optimal
hyperplane is found when the margin is maximized.
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Let w∗ and b∗ denote the optimum value of the weight vector and bias. Optimal

hyperplane is defined as

(w∗)Tx+ b∗ = 0

The discriminant function

g(x) = (w∗)Tx+ b∗

gives an Euclidean measure of the distance from x to the optimal hyperplane. In

order to see this, we express x as

x = xp + rw∗/||w∗||

where xp is the normal projection of x onto the optimal hyperplane, and r is the

desired Euclidean distance.

By definition g(xp) = 0, it follows that

g(x) = (w∗)Tx+ b∗ = r||w∗||

r = g(x)/||w∗||

For any support vector xs, the Euclidean distance from the support vector xs to

the optimal hyperplane is

{
r = 1/||w∗|| if cs = +1
r = −1/||w∗|| if cs = −1

The margin of separation between the two classes is

ρ = 2r =
2
||w∗||

Maximizing the margin of separation between classes is equivalent to minimizing

the Euclidean norm, i.e., ||w∗||, of the weight vector w.

Formally, the constrained optimization problem may be stated as: Given the

training sample D = {(xi, ci)|xi ∈ Rp, ci ∈ {−1, 1}}ni=1, find the optimum values of

the weight vector w and bias b such that they satisfy the constraints

ci(wTxi + b) ≥ 1 for i = 1, 2, ...., n

and the weight vector w minimizes the cost function

Φ(w) =
1
2
·wTw

The scaling factor 1/2 is included for convenience of presentation. This constrained

optimization problem is called the primal problem, and can be solved by using the

method of Lagrange multipliers. For more details on this, please refer to [93].
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4.1.2 Optimal Hyperplane for Non-separable Classes

Now we consider the more difficult case of non-separable classes. Given such a set

of training data, it is NOT possible to construct a separating hyperplane without

encountering classification errors. Nevertheless, we would like to find an optimal

hyperplane that minimizes the probability of classification error averaged over the

training set.

The margin of separation between classes is said to be soft if a data point violates

the following condition:

ci(wTxi + b) ≥ 1 for i = 1, 2, ...., n

We introduce a new set of nonnegative scalar variables {ξ}ni=1, called slack variables,

into the definition of the separating hyperplane (i.e., decision surface) as follows.

ci(wTxi + b) ≥ 1− ξi for i = 1, 2, ...., n

The {ξ}i=1 measure the deviation of a data point from the ideal condition of pattern

separability. For 0 ≤ ξi ≤ 1, the data point falls inside the region of separation but

on the right side of the decision surface. For ξi > 1, it falls on the wrong side of the

separating hyperplane, see Figure 4.2.

To make the optimization problem mathematically tractable, we approximate

the cost function as follows.

Φ(w, ξ) = 1/2 ·wTw + C

n∑
i=1

ξi

The second term
∑n

i=1 ξi is an upper bound on the number of test errors. The pa-

rameter C controls the tradeoff between complexity of the machine and the number

of non-separable points; it may therefore be viewed as a form of a “regularization”

parameter. The parameter C is typically selected by the user.

We therefore have the primal problem for the non-separable case: Given the

training sample D = {(xi, ci)|xi ∈ Rp, ci ∈ {−1, 1}}ni=1, find the optimum weight

vector w and bias b that satisfy the constraints

ci(wTxi + b) ≥ 1− ξi for i = 1, 2, ...., n

and that minimizes the cost function

Φ(w, ξ) = 1/2 ·wTw + C
n∑
i=1

ξi
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Figure 4.2: Illustration of soft-margin SVM with the introduction of slack variables
ξi, where some data points could be fall within the margin (0 ≤ ξi ≤ 1), even on
the other side of the separating hyperplane (ξi > 1).
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where C is a user-specified positive parameter.

Another way to deal with the non-separable classes is to transform the original

input space into a higher dimensional feature space, and then seek classes that can

be linearly separable in the new space. We then can try to find the maximum-margin

hyperplane in that space. This approach is called the kernel trick. The resulting

algorithm to fit the maximum-margin hyperplane in the transformed feature space

is similar, except that every dot product x · x′ used in solving the linear SVM is

replaced by a non-linear kernel function k(x,x′). Some common kernel functions

include,

• Polynomial (homogeneous): kpoly,d(x,x′) = (x · x′)d (d = 1 corresponds to

standard dot product.)

• Polynomial (inhomogeneous): kinpoly,d(x,x′) = (x · x′ + 1)d

• Radial Basis Function: krbf (x,x′) = exp(−γ||x− x′||2), for γ > 0

• Gaussian Radial basis function: kg(x,x′) = exp(− ||x−x′||2
2σ2 )

4.1.3 Support Vector Machine for Regression

The principle of support vector machine could be extended easily to the task of

regression problems by introducing an alternative loss function [82]. Given a training

set

D = {(xi, yi)|xi ∈ Rp, yi ∈ R}ni=1

where xi is a p-dimensional input vector, and yi is the response variable, we want

to estimate the following linear regression:

f(x) = (w · x+ b), w ∈ Rp, b ∈ R (4.4)

Here we consider SVR with Vapniks ε-insensitive loss function [47] defined as:

Lε(y, f(x)) =
{

0 |y − f(x)| ≤ ε
|y − f(x)| − ε |y − f(x)| > ε

(4.5)

Lε = |y − f(x)| − ε (4.6)
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Figure 4.3: Illustration of support vector regression (SVR) with ε-insensitive loss
function. All data points within ε distance from the regression line will have no
penalty.
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Lε = 0 (4.7)

With the ε-insensitive loss function, our goal is to find a function f(xi) that deviates

at most ε from the actually obtained targets yi; see Figure 4.3 In other words, we

do not care about the errors as long as they are less than ε. The best line is defined

to be that line that minimizes the following cost function:

R(w) =
1
2
‖w‖2 + C

l∑
i=1

Lε(f(yi,xi)) (4.8)

where C is again the user-specified positive parameter determining the tradeoff

between the training errors and the model complexity.

Figure 4.4: Illustration of introducing slack variables ξ+, ξ− to SVR only when
|f(xi)− y| > ε

Sometimes, however, we might not be able to find such a function f that can

place all pairs (x, y) within ε precision, i.e. |f(xi) − y| ≤ ε. Analogous to the
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non-separable classes, we can also introduce slack variables ξ+, ξ− to cope with this

problem. If the observed point is above the hyperplane, ξ+i is the positive difference

between the observed value and y + ε. Similar, if the observed point is below the

hyperplane, ξ−i is the negative difference between the observed value and y − ε; see

Figure 4.4. This corresponds to a constrained optimization problem, to minimize:

1
2
‖w‖2 + C

l∑
i=1

(ξ+i + ξ−i ) (4.9)

subject to:

yi − (w · xi)− b ≤ ε+ ξ+i
(w · xi) + b− yi ≤ ε+ ξ−i

ξ+i , ξ
−
i ≥ 0

We can also use the kernel trick in support vector regression (SVR), i.e. mapping

the input data x into a higher dimensional feature space F via a non-linear mapping

φ and then a linear regression problem is obtained and solved in this feature space.

To generalize to non-linear regression, one can again use the kernel trick to map

the input data x into a higher dimensional feature space F via a non-linear mapping

φ and then a linear regression problem is obtained and solved in this feature space.

4.2 Gaussian Process

Just like Gaussian distributions define the distributions over a vector of random

variables, Gaussian process defines the distributions over functions, which has a

formal definition as follows,

Definition 1: A Gaussian Process is a collection of random variables, any finite

subset of which have (consistent) joint Gaussian distributions.

A Gaussian process is fully specified by its mean function m(x) and covariance

function k(x,x′), which is also called the kernel function. This is a natural gener-

alization of the Gaussian distribution whose mean and covariance is a vector and

matrix, respectively. We will write

f(x) ∼ GP(m(x), k(x,x′)) (4.10)

to represent a function f that is distributed as a GP with mean function m(x and

covariance function k(x,x′), where x and x′ are two vectors.
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Although the generalization from distribution to process is straight forward,

there might be a little confusion with the indexing. In the Gaussian distribution, the

individual random variables in a vector are indexed by their positions in the vector.

For the Gaussian process, it is the argument x of the random function f(x) that

plays the role of indexing: for every input x there is an associated random variable

f(x), which is the value of the function f at that location. For notation convenience,

we will usually enumerate the x values of interest by the natural numbers, like xi,

f(xi). But they are not the index of the process.

Given the mean function m((x) and covariance function k(x,x′), we could define

distributions over functions using GPs. This GP will be used as prior for Bayesian

inference. We can update this prior in the light of the training data, which gives

us the posterior distribution over functions. Then we can use the posterior to make

predictions for unseen test cases. More specifically, let fT be the known function

values of the training cases, and let fP be the set of function values corresponding

to the test set inputs, x∗. The joint distribution of fT and fP is as follows,

[
fT
fP

]
∼ N

([
µ
µ∗

]
,

[
Σ Σ∗

ΣT
∗ Σ∗∗

])
(4.11)

where µ = m(xi), i = 1, · · · , n for the training means and analogously for the test

means µ∗; Σ is the training set covariances, Σ∗ is the training-test set covariances

and Σ∗∗ is the test set covariances. Since we know the values for the training set

fT , we are interested in the conditional distribution of fP , which is expressed as

fP |fT ∼ N (µ∗ + ΣT
∗ Σ−1(fT − µ),Σ∗∗ − Σ−1Σ∗) (4.12)

This is the posterior distribution for a specific set of test cases. It can be verified

that the corresponding posterior Gaussian process is:

f |D ∼ GP(mD, kD) (4.13)

where

mD(x) = m(x) + Σ(X, x)TΣ−1(f −m)
kD(x, x′) = k(x, x′)− Σ(X, x)TΣ−1Σ(X, x)

where Σ(X, x) is a vector of covariances between every training case in the training

set X and a test case x. These are the central equations for Gaussian process

predictions. Lets examine these equations for the posterior mean and covariance.
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Notice that the posterior variance kD(x, x′) = k(x, x′) is equal to the prior variance

k(x, x′) minus a positive term that depends on the training inputs; thus the posterior

variance is always smaller than the prior variance, since the data has given us some

additional information.

From the posterior process, we could sample function values for the test data

points. Then we could either use the mean values as our predictions, or express our

uncertainty of the predictions by confidence intervals.

One issue about GP is how to choose the prior mean and covariance functions.

If we have enough prior information about a dataset, we could choose the prior

functions to reflect the prior knowledge. But the availability of such detailed prior

information is not the typical case. In order for the GP techniques to be of value in

practice, we must be able to chose between different mean and covariance functions

making use of the training data. With typically vague prior information, we use a

hierarchical prior, where the mean and covariance functions are parameterized in

terms of hyper-parameters. For example, consider the Gaussian process given by:

f ∼ GP(m, k)
m(x) = ax2 + bx+ c, and k(x, x′) = σ2

1exp(−
(x−x′)2

2l2
) + σ2

2

(4.14)

where we have introduced the hyper-parameters θ = {a, b, c, σ1, σ2, l}. In order to

make inference on the hyper-parameters with the training data, we compute the log

likelihood of the data given the hyper-parameters p(y|x,θ), and find the values of the

hyper-parameters which maximize the log likelihood based on its partial derivatives.

For more details, please refer to Rasmussen et al. [81].

4.3 Regularization Methods

Regularization methods, are used to prevent overfitting in statistics and machine

learning problems. In statistics, overfitting is usually caused by fitting a statistical

model that has too many parameters w.r.t. the size of the training sample. It occurs

when the degrees of freedom in parameter selection exceed the information content

of the data. This leads to a false model that may fit perfectly to existing data, but

does not generalize well beyond the fitting data.

For example, multi-collinearity among the regressors, which means that there is

redundancy in representing information, often leads to overfitting models. Given a

training set D,
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D = {(xi, yi)|xi ∈ Rp, yi ∈ R}ni=1

where xi is a p-dimensional input vector, and yi is the associated target, we want to

estimate the following multivariate linear regression model (written in matrix form):

y = β ·X + ε (4.15)

where X is the n × (p + 1) matrix whose rows each representing an input vector

(with a 1 in the first position to include bias in the matrix), y is the column vector

of length n representing the regression target, and β is the row vector of length

(p+ 1) representing the coefficients we want to solve for in the linear model. We fit

the model by least-squares estimation to obtain solutions for β,

β̂ = (XTX)−1XTy (4.16)

By the Gauss-Markov theorem, the least-squares estimates of the coefficients

have the minimum variance among all linear unbiased estimates [50]. Unfortu-

nately, this does not necessarily mean that the least-squares estimates yield the

best fit to unseen test data. When some of the regressors are (near) multi-collinear,

– that is when there are linear combinations among them that show little varia-

tion –, the matrix XTX in Eq. 4.16 will be (nearly) singular. So the variance of

β∗, var(β∗) = E[(β∗ − β∗)2], will have very large elements. Correspondingly, the

components of β∗ may show unrealistically large values. Under exact collinearity,

β∗ is not even uniquely defined. In these situations, it pays substantially to use

regularization methods that trade bias for variance. By adding penalties on the

coefficients, estimates of β∗ are more realistic.

Next, we talk about three regularization methods, i.e. ridge regression, LASSO,

elastic net. The only difference between the three methods is the different penalties

added on the coefficients.

4.3.1 Ridge Regression

Ridge regression [50] shrinks the regression coefficients by imposing a penalty of the

sum of squares of coefficients, which is called the L2 penalty:

β̂
ridge

= argmin


n∑
i=1

(yi − β0 −
p∑
j=1

(Xijβj))2 + λ

p∑
j=1

β2
j

 (4.17)
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where xij is the ith row/jth column element of a n × p matrix whose rows each

represents an input vector, and yi is the associated target.

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage.

The larger the value of λ is, the greater the shrinkage is. When λ = 0, there is no

penalty; when λ is very large (e.g. λ� 10000), all coefficients shrinks to 0.

Bayesian interpretation of Ridge Regression

Consider a linear model

y = xTβ + ε

where ε ∼ N(0, σ2). Consider further a Bayesian approach to estimation of the p

dimensional parameter vector β where a prior Gaussian distribution

β ∼ N(0, τ2I)

where 0 is a p-dimensional vector containing zeros and I is the identity matrix of

dimension p× p. Assume we have observed D = {((x)i, yi)}Ni=1. By applying Bayes

theorem, we have the posterior distribution of β

p(β|D) ∝ exp

− 1
2σ2

(yi − xTi β)2 − 1
2τ2

p∑
j=1

β2
j

 (4.18)

By maximizing p(β|D), we have the Bayesian estimate of β, which turns out to

be just the ridge regression estimate, where the complexity parameter λ is given by

λ =
σ2

τ2

.

4.3.2 LASSO

LASSO [70] is another regularization method, differing slightly from ridge regression.

The LASSO estimate is defined by

β̂
LASSO

= argmin


n∑
i=1

(yi − β0 −
p∑
j=1

(xijβj))2 + λ

p∑
j=1

|βj |

 (4.19)

LASSO replaces ridge’s L2 penalty
∑p

j=1(xijβj)2 with the L1 penalty λ
∑p

j=1 |βj |.

Again, λ ≥ 0 is the complexity parameter controlling the shrinkage amount. From

Figure 4.5, it is easy to see when the value of λ becomes larger, some of the coef-

ficients will shrink to zero faster under the L1 penalty than the L2 penalty. Thus
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when regulating the coefficients, LASSO also performs variable selection as a side

effect.

Figure 4.5: Comparison between the lasso (left) and ridge regression (right) for
p = 2 case. The elliptical contours of the function

∑n
i=1(yi −

∑p
j xijβj)

is shown by the solid curves in both panels; the center of the contours is the ordinary
least square (OLS) solution; the constraint region of LASSO is the rotated square
in the left panel, and the constraint region of ridge regression is the circle in the
right panel. The LASSO (ridge) solution is the first place that the contours touch
the square (circle). For LASSO, this will sometimes occur at a corner of the square,
corresponding to a zero coefficient; for ridge regression, there is no corner for the
contours to hit and hence zero coefficients will rarely occur. (Figure taken from
[56].)

LASSO’s L1 penalty will make the solutions nonlinear in the yi, so usually one

has to use a quadratic programming (QP) algorithm to compute the solution. The

computation complexity of QP has prohibited LASSOs wide application in practice.

This issue is alleviated after Efron et al. [104] proposed Least Angle Regression

(LARS) and showed that for LASSO, the solution path in β space is piecewise

linear and gave efficient algorithms for tracking the path. Efron et al. [104] derived

the LARS algorithm which could be used to compute the LASSO solution while

reducing the computational burden by at least an order of magnitude.

Similar to ridge regression, LASSO also has a Bayesian interpretation, with the
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sole difference to be that the prior for LASSO is the Laplace distribution

β ∼ Laplace(0, b)

.

4.3.3 Elastic Net

Both ridge regression and LASSO are a special case of bridge regression [77],

β̂
bridge

= argmin


n∑
i=1

(yi − β0 −
p∑
j=1

(xijβj))2 + λ

p∑
j=1

|βj |q
 (4.20)

When q = 1, the bridge regression is the same as LASSO; when q = 2, it becomes

ridge regression.

Fan and Li [78] showed that a bridge regression penalty Lq with 1 < q < 2 is

strictly convex and has a grouping effect (qualitatively speaking, a regression method

exhibits the grouping effect if the regression coefficients of a group of highly corre-

lated variables tend to be equal (up to a change of sign if negatively correlated)[79].),

but does not produce a sparse solution. This motivates Zou and Hastie [79] to use

the elastic net penalty, which is a mixture of the L1 penalty from LASSO and the

L2 penalty from ridge regression,

β̂
elastic net

= argmin


n∑
i=1

(yi − β0 −
p∑
j=1

(xijβj)2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j

 (4.21)

The elastic net is strictly convex when λ2 > 0, which makes it have a grouping

effect. This useful in the analysis of microarray data, as it tends to bring related

genes into the model as a group. It also appears to give better predictions than

LASSO when predictors are correlated, and in high dimensional settings. Elastic

net can also produce sparse solutions due to the inclusion of L1 penalty.

A comparison of ridge regression, lasso, and elastic net is shown in Figure 4.6.

4.4 Dimension Transformation Methods

In this section, we present two dimension-reduction methods, principle component

analysis (PCA) [50] and partial least squares (PLS) [50], both of which are based on
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Figure 4.6: Comparison of ridge regression, LASSO, elastic net using two-
dimensional contour plots. The elastic net penalty is α = λ2

λ1+λ2
= 0.5; we see that

singularities at the vertices and the edges of elastic net contour is strictly convex;
the strength of convexity varies with α.
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orthogonal linear transformation that transforms the data to a new coordinate sys-

tem (dimension transformation). These two methods are very effective for dimension

reduction when the input variables used in a regression are highly correlated.

4.4.1 Principal Component Analysis (PCA)

Dimension reduction of the p-dimensional space by PCA is achieved by construct-

ing principal components (PCs), which are linear combinations of the original p

predictor/explanatory variables. More precisely, in PCA, orthogonal linear combi-

nations are constructed to maximize the variance of the linear combination of the

explanatory variables sequentially,

w1 = argmax||w||=1var(Xw) = argmax||w||=1w
′X′Xw

. With the first k − 1 components, the kth component can be computed by

wk = argmax||w||=1var((X−
k−1∑
i=1

wiw
T
i X)w)

The principal components sk = Xwk are subject to the orthogonality constraints

s′ksj = w′kX
′Xwj = 0, for all 1 ≤ j < k. Here X is the n × p input matrix. The

maximum number of nonzero components is the rank of X. The kth step of PCA

seeks the strongest mode of variation and the k − 1 orthogonality constraints are

imposed to ensure that the kth linear combination identifies a mode of variation

distinct from those previously identified (by the previous k − 1 components).

From geometrical perspective, PCA projects the data along the directions where

the data varies the most. These directions are determined by the PCs, i.e. the eigen-

vectors of the covariance matrix of X. The magnitude of the eigenvalues corresponds

to the variance of the data along the eigenvector directions.

Prediction using standard methods can be carried out in the reduced space by

using the constructed PCs. For instance, prediction of a continuous response vector,

y, based on the constructed PCs is the well-known principal component regression

(PCR) method [80]. A PCR model is the linear regression model based on the

subspace spanned by K PCs, {s1, · · · , sK}:

y = β0 +
K∑
i=1

βisi (4.22)

where y is the response variable, and {βi}Ki=0 are the coefficients of the new linear

model.
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In practice, cross-validation is used to determine the optimal number of dimen-

sion, K.

4.4.2 Partial Least Square (PLS)

PCA reduces dimension by constructing and using linear combinations that maxi-

mize the variance-based objective function, namely var(Xw). A parallel formulation

can be made for PLS, but with an objective function based on covariance. More

precisely, PLS components are linear combinations of the predictor variables, con-

structed to maximize an objective criterion based on the sample covariance between

y and Xw, namely cov(Xw,y)). Thus, the kth PLS component is obtained by

finding the weight vector, w, satisfying

wk = argmaxww′=1cov(Xw,y) = argmaxww′=1w
′X′y (4.23)

Similar to PCA, the PLS components tk = Xwk are subject to the orthogonality

constraints t′ktj = w′kX
′Xwj = 0, for all 1 ≤ j < k. The maximum number of PLS

components is at most the rank of X. Analogous to PCR, a PLS regression model

with K PLS components is based on the subspace spanned by the first K PLS

components, {t1, · · · , tK},

y = β0 +
k∑
i=1

βiti (4.24)

where y is the response variable, and βi is the coefficient of the new linear model.

In seeking dimension reduction useful for prediction, the objective criterion of

PLS may be more sensible than PCA since there is no a priori reason why com-

ponents with high predictor variation should be strongly related to the response

variable, while PLS incorporates both response and predictor information into the

dimension reduction process.
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Chapter 5

Feature Selection Approaches
for Estimating Breeding Value

In this section, we focus on the application of feature selection techniques in the

QTL mapping problem. In contrast to Principal Component Analysis (PCA) and

Partial Least Square (PLS), which perform dimension reduction based on projection,

feature selection techniques do not alter the original representation of the variables,

but merely select a subset of them. Thus, they preserve the original semantics of

the variables, hence, offering the advantage of interpretability.

High dimensional data in the field of bioinformatics, which could contain high

degree of irrelevant and redundant information, may cause serious problems to many

machine-learning algorithms with respect to scalability and learning performance.

Therefore, feature selection becomes very necessary for machine learning tasks when

facing high dimensional data nowadays.

There are many objectives of feature selection, with the most important ones

being: (a) to avoid overfitting and improve model performance; (b) to provide faster

and more cost-effective models for further study and (c) to gain a deeper insight

into the underlying processes that generated the data. However, the advantages of

feature selection techniques come at a certain price, as the search for a subset of

relevant features introduce an additional layer of complexity in the modeling task.

Instead of just optimizing the parameters of the model for the full feature subset,

we now need to find the optimal model parameters for the optimal feature subset.

We consider in-fold feature selection when applying the feature selection meth-

ods, i.e. feature selection will be based on only the training data instead of the

whole dataset. Whole-dataset feature selection is likely to find the features that will

only work well on the current dataset, but will not generalize well on future data.
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In-fold feature selection only uses the training data, and the performance of the

features found will be verified on the separate test data. In this way, in-fold feature

selection ensures that the features that work well on both training data will similar

good performance on the test data. Hence the “good” features selected by in-fold

feature selection will be more likely to generalize well on future dataset.

Next, we talk four feature selection methods that are tried in our problem:

Correlation-Based Feature Selection, Logic Regression, M5 Prime for linear regres-

sion and Haplotype Block.

5.1 Correlation-Based Feature Selection

The correlation-based method evaluates features individually by measuring their

correlation with the response variable. The correlation is measured by the linear

correlation coefficient. For a pair of vectors x,y, the linear correlation coefficient

rxy is given by

rxy =
Σi(xi − x)(yi − y)√

Σi(xi − x)2
√

Σi(yi − y)2
(5.1)

where x = 1
kΣk

i=1xi is the mean of x, and y = 1
kΣk

i=1yi is the mean of y. The value

of r is between -1 and 1, inclusive. If x and y are completely (anti) correlated, r

takes the value of 1 or -1; if x and y are totally independent, r is zero. So we usually

take the absolute value of r. An higher value of |r| means that the two vectors are

more correlated.

Using the correlation-based feature selection method, the correlation between

each feature and the response variable is evaluated one by one, and then all the

features are ranked by the value of correlation coefficient. The top N features

are selected for prediction purpose. The value of N is often determined by cross-

validation.

5.2 Logic Regression

Since the correlation-based feature selection looks at one feature at a time, it is

a uni-variate feature selection method. However, the uni-variate feature selection

for SNP dataset can be inadequate from both statistical and biological point of

view. First, the most discriminatory SNPs identified individually do not necessar-

ily constitute the best classifier when put together [83]. Second, it is biologically
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inappropriate to examine SNPs in separation, given that multiple genetic markers

usually function in a correlated network. A greedy searching algorithm ignoring the

SNP/SNP interaction, such as the uni-variate selection, tends to include elements

contributing highly redundant information. The extreme case is when two markers

are exact duplicates, in which case one marker can be eleminated.

Consider two input variables X1 and X2, and a class variable Y . Attributes

X1 and X2 are said to be only dependent to each other conditioned on Y . A

simple example illustrating this kind of interaction is an XOR (exclusive OR) model,

shown in Figure 5.1. Only considering one attribute at a time would result in

conclusion that neither of the input variables correlate with Y . Looking only at X1,

for example, would result in the conclusion that Y is independent of X1, because

p(Y = 1|X1 = 1) = p(Y = 1|X1 = 0) = p(Y = 1) = 1
2 . To accurately predict the

classifier variable in this interaction model, one must take both input variables into

account simultaneously.

Figure 5.1: An example of XOR model. Looking only at X1 will result in the
conclusion that X1 is independent of Y (similar for X2). However, taking both
variables into consideration will lead to the correct XOR relation between X1, X2

and Y .

Logic Regression [76, 84] is an adaptive regression methodology mainly developed

to explore high-order interactions in genomic data. Logic Regression is intended for

situations where all predictors are binary (0/1) and the goal is to find Boolean

combinations of these predictors that are associated with an outcome variable. As

SNP data are effectively binary (as we will see later), Logic Regression is potentially

useful for detecting interactions among SNPs. The objective of logic regression is

partly to reduce the prediction error, but more to explore models in a novel search
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space that might reveal important variables and interactions, which would otherwise

go unnoticed.

First, assume that all predictors Xi are binary, and use X 1
i for Xi = 1 and X 0

i

for Xi = 0. Let Y be a phenotype trait that can be either binary or quantitative.

The logic regression model is

G(E(Y |X)) = β0 +
k∑
i=1

βiLi(X) (5.2)

where G is an appropriate link function (such as the logic function), E(Y |X) is the

expectation of Y given X , X is a set of covariates, β0, · · · , βk are coefficients, and

L1, · · · , Lk are the so-called logic expressions, which are the boolean combinations

of the covariates, such as X 0
1 ∧ (X 1

2 ∨ X 1
3 ). The logic expressions can be easily

represented by the tree form, which is called the logic tree; see Figure 5.2.

Using the logic tree representation, it is possible to obtain any logic tree by a

finite number of operations, such as growing of branches, pruning of branches and

removing of leaves, etc; see Figure 5.2.

A score function could be defined for a particular configuration of the logic trees

used in the model (Eq. 5.2). For linear regression, the score function could be

the minus of the residue sum of squares; for classification problem, it could be the

classification accuracy rate. In regular logic regression, using a simulated annealing

algorithm, the logic trees in the model are selected adaptively to achieve higher

scores.

We start with L = 0 that contains zero boolean expressions. Then, at each

stage a new tree is selected at random among those that can be obtained by simple

operations on the current tree. This new tree always replaces the current tree if it

has a better score than the old tree, and otherwise is accepted with a probability

that depends on the difference between the scores of the old and the new tree,

and the stage of the algorithm. Early on, trees with considerably worse scores are

still accepted, while after many iterations and toward the end of the algorithm, the

probability of accepting a tree with a worse score becomes eventually almost zero.

In this simulated annealing algorithm, each covariate could end up in multiple trees.

Note that the dimensionality of the model (Eq. 5.2) is not the number of covariates,

which may be very large, but the number of parameters, which is the number of

logic trees Lk plus one, and is usually small.
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Possible Moves 

Figure 5.2: Logic tree representation of the logic expressions. The number in the
box indicates the index of the covariate. The box with white background represents
Xi = 0; and the box with black background represents Xi = 1. The expression
X 0

1 ∧ (X 1
2 ∨X 1

3 ) is represented by the “Initial Tree” at the center of the figure. The
figures around show the possible moves allowed to grow the logic tree. (Figures
taken from [76].)
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As the model that best fits the training data will often overfit, cross-validation

is often used to select the number of trees (Li(X)) in the model and the maximum

number of leaves allowed in each tree. Alternatively, a set of randomization tests

can also be used to reduce the chance of overfitting [76].

In a simulated GAW12 dataset [85], logic regression successfully identified an

interaction between QTL and the sequence of gene that influenced the phenotype.

Extensions to logic regression have been proposed to make it become a feature

selection method. Kooperberg et al. [86] incorporate Monte Carlo Markov Chain

(MCMC) model selection techniques to identify a group of SNPs that are potentially

associated with phenotypic traits. Unlike strategies that focus on identifying a

single best model that relates SNPs to the clinical outcome of interest, Monte Carlo

logic regression generates a subset of SNP interactions (that is a certain part of the

generated logic tree) that may be significantly associated with a trait and are selected

for further investigation. Although a large number of potential logic regression

models may not stand up to a rigorous 5% significance level individually, jointly they

may provide strong evidence of association, which may be indicative of a genetic

pathway. Monte Carlo logic regression has been applied to the study of heart disease

[87].

Schwender et al. [89] proposed a subset-based approach in which the default

search algorithm of logic regression, i.e. simulated annealing, is applied to differ-

ent subsets of the data. More specifically, first, a bootstrap sample of the same

sample size is drawn from the dataset of interest. Second, a logic regression model

is constructed based on the bootstrap sample, and the logic expressions in the fit-

ted model are converted into disjunctive normal forms (DNF) consisting of prime

implicants, i.e. minimal AND-combinations. The DNF of the logic expression

L = (X1
1 ∧X0

2 ) ∨ (X1
3 ∧ (X0

4 ∨X1
5 )) displayed in Figure 5.3 is, e.g., given by

L = (X1
1 ∧X0

2 ) ∨ (X1
3 ∧X0

4 ) ∨ (X1
3 ∧X1

5 )

The advantage of the DNF is that interactions are directly identifiable since they

are given by the AND-combinations. The above logic expression, e.g., consists of

the three prime implicants X1
1 ∧X0

2 , X1
3 ∧X0

4 , X1
3 ∧X1

5 and is true if at least one of

these conjunctions is true. Schwender [88] presents a fast algorithm based on matrix

algebra for generating such a DNF of a logic expression.

Finally, the process above is repeated for a given number of times, and the prime
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implicants that occur most frequently are selected for further analysis. In this study,

we adopt the bootstrap version of Logic Regression for feature selection in the SNP

dataset.

OR


AND
 AND


X1
 X3
 OR


X5


Figure 5.3: Logic tree representation of the logic expression L = (X1
1 ∧X0

2 )∨ (X1
3 ∧

(X0
4 ∨X1

5 )).

5.3 M5 Prime for linear regression

M5 Prime is a feature selection method for linear regression proposed in the Weka

machine-learning package [90]. The basic idea behind the M5 Prime is model selec-

tion using Akaike Information Criterion (AIC). For any model M w.r.t. df = D,

the AIC is given by

AIC(M,D) = 2|M | − 2 ln(P (D|M, θ̂)) (5.3)

where |M | is the number of parameters in the statistical model, P (D|M, θ̂) is the

maximized value of the likelihood function for the estimated model, and θ̂ is the

maximum likelihood estimate of the model parameters θ. Lower AIC values indicate

a better model. Hence AIC not only rewards goodness of fit, but also includes a

penalty that is an increasing function of the number of parameters in the model.

The AIC methodology attempts to find the model that best explains the data with

a minimum of free parameters.

In the case of multivariate linear model, AIC is then given by
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AIC(p, n,RSS) = 2(p+ 1) + n

[
ln(

RSS

n
) + 1

]
(5.4)

where p is the number of covariates, n is the number of observations, and RSS is

the residue sum of squares given by

RSS =
n∑
i=1

(yi − f(xi))2 (5.5)

where y is the target response variable, x is the predictor variable, and f(x) is the

regression function in a standard regression model.

M5 prime method adopts the greedy backward elimination for feature selection

by stepping through the covariates removing the one with the smallest standardized

coefficient until no improvement is observed in the score given by the AIC. Like logic

regression, M5 prime also consider the interactions between the covariates, but the

greedy nature makes it have a tendency towards local optima.

5.4 Haplotype Block

Unlike the three methods discussed above, the haplotype block method uses the

biological background knowledge to try to find the most relevant SNPs for predicting

quantitative traits.

The motivation of this method is that when an individual inherits a chromoso-

mal material from each of the parents, a recombination event can break the parental

chromosomes into non-random inheritable segment, causing set of SNPs within the

segment to be inherited together with high probability, and preventing random com-

binations of all possible SNP states within the segment. Since the recombination

sites are non-uniformly distributed across the genome, recombination events in chro-

mosomes in a population over generations lead to a block structure in SNPs on the

chromosome.

As illustrated in Figure 5.4, each chromosome is a mosaic of ancestor chromo-

somes. Since a chromosome segment carrying the true association SNP can be

inherited as a block, we can take advantage of this block structure to increase the

power of the study for detecting association by considering a block of linked SNPs

jointly rather than a single SNP at a time. Formally, those block structures are

called Haplotype Blocks. We apply the idea of haplotype blocks as a feature selec-
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Figure 5.4: Illustration of the block structure of chromosome. The segments of
SNPs of the same color have been inherited from the same ancestor chromosome.
The SNPs that are of the true association are indicated as circles. [105]

tion method by only considering the SNPs that belong to a haplotype block, ignoring

the rest.

Haploview [106] is comprehensive suite of tools for a wide variety of haplotype

analysis. We use Haploview to assign the SNPs to various haplotype blocks in our

study. Haploview implements three ways to generate haplotype blocks, “Confidence

Intervals” [107], “Four Gamete Rule” [108], and “Solid Spine of Linkage Disequilib-

rium (LD)” [106]. We try all three in our experiment.

We apply haplotype block to do feature selection as follows. We first generate

the haplotype blocks (using one of three ways) by Haploview. In each of the haplo-

type block, there is a number of SNPs, and we build a subset of the original SNP

dataset that contains only the SNP features in the block. We then apply Principle

Component Analysis (PCA) (see Section 4.4.1) to reduce the dimension of the sub-

set, and generate the top Principle Components (PCs) to use in the final regression

analysis; see Figure 5.5.
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SNP_1  SNP_2  …  SNP_10 

1. Generate Haplotype Blocks 

Haplotype Block 1 Haplotype Block 2 

SNP_1  SNP_2  …  SNP_7 

2. Apply PCA  2. Apply PCA 

PC_1  PC_2  PC_3 

PCs of Haplotype Block 1 

PC_1  PC_2 

PCs of Haplotype Block 2 

3. Combine all PCs 

Original SNP Dataset 

Final Dataset for Regression Analysis 

PC_1_1  PC_1_2  PC_1_3  PC_2_1  PC_2_2  Trait 

SNP_1  SNP_2  SNP_3  …  SNP_100 

Figure 5.5: Illustration of using haplotype block for feature selection. In this ex-
ample, we have an original SNP dataset that contains 100 SNPs. (Note this is just
an example. The real dataset used in the study contains 1341 SNPs.) Haploview
generate two haplotype blocks for this dataset, with one block containing 10 SNPs
and the other containing 7 SNPs (The other 83 SNPs do not belong to any of the
haplotype blocks.). We then apply PCA on each of the subset of the original dataset
defined by the haplotype blocks. In the example, we select top 3 PCs for the first
block and another top 2 PCs for the second block, then we combine the PCs and
get the final dataset that contains 5 PCs for regression analysis. As we can see from
the final dataset, we reduce the dimension from the original 100 SNPs to 5 PCs.
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Chapter 6

Experiments and Results

In this section, we first give a brief introduction to the Bovine dataset used in

this study. We then show the experiment results on the prediction accuracy of

quantitative traits of the seven regression methods described in Chapter 4, along

with the four feature selection methods described in Chapter 5. We finish this

chapter with a discussion of the empirical results and possible future works.

6.1 Bovine Dataset Overview

The dataset used in this study comes from a diary-industry breeding program. The

dataset consists of 462 dairy sires (observations). The data provider withheld 157

out of the 462 observations as the final test set for evaluation of our methods. We

trained on the remaining 304 observations. 1341 SNPs are genotyped for each sire.

Each SNP could only take 3 values: “1” (Homozygous Major), “2” (Heterozygous),

and “3” (Homozygous Minor). We consider 5 seperate studies based on predicting

5 phenotypic traits: FatEBV, FatPercentEBV, MilkEBV, ProteinPercentEBV, and

ProteinPercentEBV.

6.2 A First Look at the Bovine Dataset

As mentioned, a particular SNP is a categorical feature, which can only take value

from “1”, “2”, and “3”. Here, we explore how many “1”s, “2”s and “3”s are for

each bull. For each bull, we have a vector of length 1341, as we collect 1341 SNPs

for each bull. Then we count the numbers of “1”s, “2”s, and “3”s in the vectors

for all the 304 observations. This produces three vectors of length 304, which are

summerized as the three “boxplots” shown in the left diagram of Figure 6.1.
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Figure 6.1: SNP (feature) facts of the Bovine SNP data. (a) is the histogram of
SNP values, where the x-axis is the three possible values for each SNP: “1”, “2”,
and “3”; the y-axis is the distribution of SNPs in each tuple. (b) is the histogram
of the majority of SNP values, where the x-axis is the three possible values for each
SNP: “1”, “2”, and “3”; y-axis is the distributions of SNPs that has that specific
majority value.
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In each boxplot, the bold horizontal bar in the middle shows the median value

of the data. The top of the box above the median shows the 75th percentile, and

the bottom of the box below the median shows the 25th percentile. Inside the box

lies the middle 50% of the data. The whiskers show the maximum and minimum

values of the data.

For example, the first boxplot on the left shows the median number of “1”s of the

304 observations is around 160 out of 304, and the 75th percentile is around 248, etc.

From the left diagram, we can see that the occurrence of “1”s is far more frequent

then that of “3”s with “2”s in-between, which matches our expectation since “1”

represents “Homozygous major”, while “3” represents “Homozygous minor”.

In order to compare the occurrences of “1”s, “2”s, and “3”s more directly, we plot

the diagram on the right of Figure 6.1. Here, the x-axis represents the “majority

value” (“1”, “2”, and “3”), and the y-axis is number of SNPs which have that

“majority value”. We define the “majority value” for a particular SNP to be the

value (“1”, “2”, or “3”) that occurs most frequently. We find the majority value

of all the 1341 SNPs. From the diagram we can see that around 840 out of 1341

SNPs’ “majority values” are “1”, while around 500 SNPs’ “majority values” are

“2”. But to our surprise, there is one SNP whose “majority value” is “3”, which

should not happen. We took a close look at that SNP, and found that its values for

each observation are all “3”s, which was apparently a mistake from data collecting.

That SNP was removed from the dataset.

There are 5 response variables (FatEBV, FatPercentEBV, MilkEBV, Protein-

PercentEBV, and ProteinPercentEBV ), whose value we try to predict for each bull

(based on its SNP profile). Figure 6.2 plots the histograms for each of the response

variables. Most of these histograms appear like Gaussian distribution, in that the

values have a tendency to occur more often around its mean value.

6.3 Data Pre-processing

As we mentioned earlier, one of difficulties with the SNP datasets is that the number

of features (SNPs) far exceeds the number of observations. In our case, we have 1340

SNPs (after removing the all value-“3” SNP) and only 304 observations. So before

feeding the dataset to the machine learning methods, we first remove the features

(SNPs) that we think are not informative for prediction purpose.

The previous removed all value-“3” SNP reminds us that the SNPs whose values
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Figure 6.2: Histograms of 5 response variables of the Bovine SNP dataset, FatEBV,
FatPercentEBV, MilkEBV, ProteinPercentEBV, and ProteinPercentEBV. The x-
axis of each histogram is the range of values, while the y-axis is the frequency, i.e.
the proportion of cases that fall into the bin.

56



are all “1”s and all “2”s might not be very informative as well. So our first pre-

processing step is to remove all the SNPs, whose values are all the same. We found

165 such SNPs, which are more than 10% of the total 1341 SNPs. After removing

these SNPs, we still have 1175 SNPs remaining.

Genetic dataset frequently contain missing values, however, most down-stream

analyses require complete data. In the bovine SNP dataset, we found that almost

each observation contains a number of SNPs that are recorded as missing data. In

the literature many methods have been proposed to estimate missing values using

information of the correlation patterns within the dataset. Each method has its own

advantages, but the specific conditions for which each method is preferred remains

largely unclear. Troyanskaya et al. compared a variety of algorithms and concluded

that two methods, k-Nearest-Neighbors (KNN) and singular value decomposition

(SVD), performed well in their test data sets to impute missing data in the microar-

ray datasets [92]. Oba et al. [94] proposes another imputation method for missing

values, which is based on Bayesian principal component analysis. For a substan-

tial evaluation of various Missing Value (MV) imputation methods on microarray

dataset, please refer to [95, 96, 97].

We tried two MV imputation methods on the bovine SNP dataset. The Majority

MV method is to replace the missing value by the majority value of the correspond-

ing feature, i.e. the most frequent value for that feature. For example, if 300 values

out of 304 is “1” for that feature, we say the majority value of that feature is “1”.

Then the majority value “1” will replace each of the missing values.

The second method we tried is to use Naive Bayes classifier for MV imputation.

Naive Bayes is one of the most effective and efficient classification algorithms. As-

sume that A1, · · · , An are n attributes. An instance I is represented by a vector

(a1, · · · , an), where ai is the value of Ai. Let C represent the class variable and c

represent the value that C takes. In general, a Naive Bayes classifier is defined as

follows.

G(a1, · · · , an) = argmaxc{p(c|a1, · · · , an)} = argmaxc{p(c) ·p(a1, · · · , an|c)} (6.1)

where p(c) is the marginal probability of class c, and p(a1, · · · , an|c) is the conditional

probability of A1 = a1, · · · , An = an given C = c. In Naive Bayes, all attributes are

assumed independent given the class; that is
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p(a1, · · · , an|c) =
n∏
i=1

p(ai|c) (6.2)

Therefore, Eq. 6.1 can be written as,

G(a1, · · · , an) = argmaxc

{
p(c) ·

n∏
i=1

p(ai|c)

}
(6.3)

Figure 6.3 shows the structure of Naive Bayes classifier, where each attribute

node has the class node as its parent, but does not have any parent from attribute

nodes. Because the values of p(ai|c) can be easily estimated from training instances,

Naive Bayes is easy to construct.

Despite the fact that the unrealistic independence assumptions are often inac-

curate, the naive Bayes classifier has several properties that make it surprisingly

useful in practice [98]. In particular, the decoupling of the class conditional feature

distributions means that each distribution can be independently estimated as a one

dimensional distribution. This in turn helps to alleviate problems stemming from

the curse of dimensionality, such as the need for data sets that scale exponentially

with the number of features. Like all probabilistic classifiers under the MAP deci-

sion rule, it arrives at the correct classification as long as the correct class is more

probable than any other class; hence class probabilities do not have to be estimated

very well. In other words, the overall classifier is robust enough to ignore serious

deficiencies in its underlying naive probability model.

Figure 6.3: Naive Bayes classifier. The node denoted “C” is the class variable, and
all the other nodes represent the attributes.

The Naive Bayes classifier is used for MV imputation as follows. For each feature

(SNP) that contains missing values, we build a Naive Bayes classifier, with that

feature as the class variable and all other features as attributes. We can use the

observations of which that feature (the current class variable) is not missing as the

training data to build the classifier, and then use it to impute the values of that
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feature for the rest of the observations. For example, if 1000 out of 1341 features

contain missing values, we will build 1000 Naive Bayes classifiers for MV imputation.

The Majority MV method is actually a quite simple method, which motivates

us to try the second method to see if a more sophiscated method will have better

results. However, as we will see later, their experiment performances are quite

similar. We just use the replace-by-majority method for MV imputation in most of

our experiments.

After handling the missing data, we start removing uninformative features once

again. But this time we remove the features whose values are 95% or more the

same among the observations. We found 135 such features, and leaves us with

1175− 135 = 1040 features.

This dataset with the 1040 features is regarded as the “original dataset”. We

also consider the binary representation of the original dataset, where each feature in

the original dataset is represented by two binary features in the “binary dataset”.

This can be done easily as follows,

Original SNP Value Binary Representation
1 0, 0
2 1, 0
3 1, 1

Table 6.1: Transform the “original dataset” to “binary dataset”. Each feature in
the original dataset is represented by two binary features in the binary dataset.

Thus, in the binary dataset, we have 2080 binary features. Again, we remove

the features whose values are 95% or more the same among the observations. That

produces the 1330-feature binary dataset. Our empirical studies consider both the

1040-feature original dataset and the 1330-feature binary dataset.

6.4 Experiment Design

As we mentioned earlier, we tried two approaches for our problem, one with feature

selection, and the other without feature selection. In this section, we introduce the

experiment procedure for the two approaches.

Figure 6.4 shows the main experimental procedure. The first step is data pre-

processing, which was mentioned in the previous section. Secondly, we divide the 304

observations into 10 folds, where 9 folds are used as training data and the remaining
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Figure 6.4: Experimental procedure used to evaluate the performance of the meth-
ods.

1 fold as test data. The third step is the optional in-fold feature selection, i.e. feature

selection will be based only on the training data. Fourthly, a regression method will

be trained on the training data, which is then used to make predictions on the test

data. Finally, the experiment results of the test data are collected.

The experiment steps above are repeated 10 times with a different fold used as

the test data each time. The overall experiment procedure is repeated 5 times, where

the 304 observations are divided differently into 10 folds. The results recorded will

be the average of the 50 experiments for each combination of feature selection and

regression methods. Figure 6.5 shows the overall experiment procedure.

6.5 Performance Measures

We use two performance measures to compare different combination of feature selec-

tion and regression methods: Correlation Coefficient (CC) and Root Mean Square

Error (RMSE).

Correlation Coefficient (CC): CC is a measure of how well trends in the predicted

values follow trends in past actual values [105]; see Eq. 5.1. It measures how well

the predicted values from a forecast model “fit” with the held-out data. The range

of CC is [−1, 1]. Both CC equals -1 and CC equals 1 indicates strong correlation,

while that CC equals 0 means no correlation. We therefore redefined CC as the
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Figure 6.5: Overall experiment procedure, which shows that the experiment proce-
dure shown in Figure 6.4 is repeated for 5 times, each time with a different division
of 10 folds of observations.

absolute value of CC. A perfect fit gives a CC of 1.0. The closer CC is to 1, the

better our prediction is.

Root Mean Square Error (RMSE): RMSE is another frequently used measure of

the differences between values predicted by a forecast model f(x) and the values y

actually observed from the thing being modeled; see Eq. 6.4. One of the advantages

of RMSE is that it has the same units as the quantity being estimated, so you will

have a more direct feeling about how good the prediction is.

RMSE =

√∑n
i=1(f(xi)− yi)2

n
(6.4)

6.6 Methods Availability

As discussed previously, we considered various combination of seven regression meth-

ods along with four feature selection methods.

The seven regression methods are

• Support Vector Machine for Regression (SVR) (RBF kernel)

• Gaussian Process (GP) (RBF kernel)

• Ridge Regression
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• LASSO

• Elastic Net

• Principal Component Analysis Regression (PCA)

• Partial Least Square Regression (PLS)

Also, the four feature selection methods are

• Correlation-based feature selection

• Logic Regression

• M5 prime for linear regression

• Haplotype Block

All experiments are implemented in R by using the R packages of the regression

and feature selection methods, except M5 prime (implemented in Weka) and Hap-

lotype Block (using Haploview). The detail information of the R implementation

for each method is as follows; (see Table 6.2)

R Package Version R Method Parameter selected by CV
SVR (RBF kernel) kernlab 0.9-5 gausspr C
GP (RBF kernel) kernlab 0.9-5 kSVR
Ridge Regression MASS 7.2-40 lm.ridge λ

LASSO lars 0.9-7 lars λ

Elastic Net elasticnet 1.0-3 cv.enet λ2

PCA pls 2.1-0 pcr Number of principal components
PLS pls 2.1-0 plsr Number of PLS components
Logic Regression logicFS 1.9-5 logreg Number of trees, number of leaves

Table 6.2: R implementation details for each method, including the R package name,
the method name and also the parameters of the methods whose values need to be
selected by in-fold cross-validation based on the training data.

6.7 Experiment Results

First, we compare the regression methods in predicting the FatEBV trait based on

binary dataset without feature selection; see Table 6.3. For each regression method,

the results in the tables represent the statistical summary (mean and standard
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deviation) of the experiments. The methods tried are listed in the first column.

The number before “±” is the mean of 5 repetition of the 10-fold cross-validation

results, and the number after “±” is the standard deviation.

One general remark is that machine-learning kernel methods generally perform

better than the other statistical methods, with GP being the best method in this

experiment with an average correlation on the test data of about 0.53. But the

difference between GP and SVR is minimal. Overall, machine learning methods

achieve better results than the statistical methods, see Section 6.7.1 for significance

tests on comparing different methods.

Method Correlation Coefficient (CC) RMSE

SVR 0.52 ± 0.01 25.46 ± 0.11
Gaussian Process 0.53 ± 0.01 25.38 ± 0.11
Ridge Regression 0.46 ± 0.03 27.48 ± 0.32
Lasso 0.48 ± 0.02 29.24 ± 0.22
Elastic Net (λ1 = 0.2) 0.47 ± 0.02 29.04 ± 0.11
Elastic Net (λ1 = 0.4) 0.47 ± 0.02 29.29 ± 0.11
Elastic Net (λ1 = 0.6) 0.46 ± 0.02 29.28 ± 0.11
Elastic Net (λ1 = 0.8) 0.48 ± 0.02 29.24 ± 0.12
PCA 0.39 ± 0.01 27.46 ± 0.07
PLS 0.47 ± 0.01 26.75 ± 0.13

Table 6.3: Experiment results on FatEBV without applying feature selection meth-
ods using on original dataset.

In the second experiment, we apply the two machine learning methods, GP and

SVR, to predict all the 5 traits using binary dataset; see Table 6.4. The results

of two methods are still quite close. Specifically, GP performs best for predicting

FatEBV, FatPercentEBV, and ProteinEBV ; SVR performs the best for the other

two. By averaging the results of the 5 traits, GP performs slightly better than SVR.

SVR GP
FatEBV 0.51 ± 0.01 0.52 ± 0.01
FatPercentEBV 0.40 ± 0.01 0.41 ± 0.01
MilkEBV 0.52 ± 0.01 0.47 ± 0.01
ProteinEBV 0.48 ± 0.01 0.46 ± 0.01
ProteinPercentEBV 0.43 ± 0.01 0.46 ± 0.01

Table 6.4: SVR and GP results on all the 5 traits for prediction. (Results are
measured by Correlation Coefficient.)
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Next, we compare the difference between the results based on original dataset

and that based on binary dataset; see Table 6.5. The results suggest that the general

performance of the methods using binary data is better than that using the original

data, although for some methods, like SVR and GP, the difference is very small.

Method Binary Data Normal Data
SVR 0.52 ± 0.01 0.52 ± 0.01
Gaussian Process 0.53 ± 0.01 0.52 ± 0.01
Ridge Regression 0.43 ± 0.03 0.29 ± 0.04
LASSO 0.48 ± 0.02 0.43 ± 0.02
Elastic Net (λ1 = 0.2) 0.47 ± 0.02 0.41 ± 0.02
Elastic Net (λ1 = 0.4) 0.47 ± 0.02 0.44 ± 0.02
Elastic Net (λ1 = 0.6) 0.46 ± 0.02 0.44 ± 0.02
Elastic Net (λ1 = 0.8) 0.48 ± 0.02 0.43 ± 0.02
PCA 0.39 ± 0.01 0.38 ± 0.01
PLS 0.47 ± 0.01 0.43 ± 0.01

Table 6.5: Comparison of experiment results between the binary representation and
the original representation of the bovine SNP dataset.

Finally, we show the empirical results of the approach with feature selection

(using binary dataset); see Table 6.6. We tried various combinations of feature

selection and regression methods. The best combinations are logic regression with

SVR/GP/PLS, whose correlation on the test data are all about 0.47, which is smaller

than 0.53, the result of GP alone without feature selection. To our surprise, the

performance of the methods with feature selection is worse than that without feature

selection.

Table 6.7 shows more empirical results using haplotype block as the feature se-

lection method, which are based on 3 different ways to generate haplotype blocks,

“Confidence Intervals” [107], “Four Gamete Rule” [108], and “Solid Spine of Link-

age Disequilibrium (LD)” [106]. We had thought that the biological background

knowledge would help the feature selection process, however, to our surprise, the

results using haplotype block are much worse than those using the other three fea-

ture selection methods. We guess the reason might be that the algorithms that try

to find haplotype blocks only take the SNPs as input, and do not care about the

quantitative traits for prediction. It might be the case that the haplotype blocks

found are not significantly associated with the quantitative traits, and instead, the

SNPs excluded from the blocks are actually correlated with the traits. In order
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Regression Method Feature Selection Method Correlation Coefficient (CC) RMSE

Linear Regression M5 Prime 0.44 ± 0.01 26.57 ± 0.33
Linear Regression Correlation-based 0.43 ± 0.01 27.81 ± 0.38

PLS Logic Regression 0.47 ± 0.01 27.33 ± 0.23
LASSO Haplotype Block 0.25 ± 0.03 53.28 ± 3.83

SVR Logic Regression 0.47 ± 0.01 26.73 ± 0.28
SVR Correlation-based 0.43 ± 0.02 28.55 ± 0.41

Gaussian Process Logic Regression 0.47 ± 0.01 26.81 ± 0.28
Gaussian Process Correlation-based 0.42 ± 0.02 29.23 ± 0.40
Gaussian Process - 0.53 ± 0.01 25.12 ± 0.39

Table 6.6: Experiment results of the regression methods with feature selection on
the binary bovine SNP dataset. (This result using Haplotype Block as the feature
selection method is using on “Solid Spine of LD” to generate the haplotype blocks.
This is the best result using haplotype block as the feature selection method. More
results appear in Table 6.7.)

to verify this possibility, we tried the other way around, i.e. using only the SNPs

outside the blocks, and found that the results were actually better than that using

the SNPs in the blocks (see Table 6.8), which proved that using haplotype blocks

for feature selection did not work in our problem.

Confidence Intervals Four Gamete Rule Solid Spine of LD
Linear Regression 0.17 ± 0.03 0.11 ± 0.04 0.20 ± 0.02
LASSO 0.21 ± 0.04 0.14 ± 0.03 0.25 ± 0.03
SVR 0.16 ± 0.03 0.15 ± 0.04 0.19 ± 0.03

Table 6.7: Experiment results on FatEBV using Haplotype Block for feature selec-
tion measured by Correlation. The first row lists three ways to generate haplotype
blocks. The first column lists three regression methods tried, Linear Regression,
LASSO, and SVR.

From the experiments above, there are two general findings. First, the two kernel

methods, GP and SVR, are among the best methods tried in this study. Second,

feature selection methods not only fail to increase the prediction accuracy, but they

actually reduce it.

We recommend GP and SVR without feature selection to the data provider.

Table 6.9 shows the results of both method using 304 observations as training data

and the withheld 167 observations as test data. The average correlation of the 5

traits reaches 0.56 for both methods, which is much better than 0.47 (GP) and

0.46 (SVR), the average correlation from the cross-validation results using 304 ob-
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Confidence Intervals Four Gamete Rule Solid Spine of LD
In-block-SNPs 0.17 ± 0.03 0.11 ± 0.04 0.20 ± 0.02
Out-block-SNPs 0.43 ± 0.02 0.44 ± 0.04 0.37 ± 0.03

Table 6.8: Experiment results on comparingFatEBV using in-block-SNPs versus
out-block-SNPs by applying Haplotype Block for feature selection. The first row
lists three ways to generate haplotype blocks. We use Linear Regression as the
regression method in this experiment.

CC (GP) RMSE (GP) CC (SVR) RMSE (SVR)
FatEBV 0.58 24.62 0.57 24.66
FatPercentEBV 0.60 0.24 0.60 0.24
MilkEBV 0.55 667.22 0.55 668.77
ProteinEBV 0.55 19.53 0.56 19.53
ProteinPercentEBV 0.54 0.11 0.54 0.11

Table 6.9: Experiment results on GP and SVR using 304 observations as training
data and the withheld 167 observations as test data.

servations. In particular, the correlation for FatPercentEBV is increased by 43%,

from 0.42 to 0.60. This indicates that with more observations, the prediction of

quantitative traits using SNP data will be more accurate.

6.7.1 Statistic Significance Test

In order to verify that the kernel methods do perform better than the statistical

methods, we apply student’s t-test to compare the mean prediction accuracy of the

methods. The null hypothesis is that the mean prediction accuracy of method A is

the same as that of method B. Here we choose the significance level at α = 0.05, i.e.

95% confidence interval. In order to reject the null hypothesis, we need a p-value to

be smaller than 0.05.

As we have mentioned, for each method, we perform 50 experiments (5 repetition

of the 10-fold cross-validation experiment), so the sample size for the significance

test is 50. In all the experiments, we use the binary representation of the dataset

and prediction target is FatEBV. For the Elastic Net method, we only include the

one with λ1 = 0.8, as it is the Elastic Net parameter setting that performs best in

the experiment.

Table 6.10 summaries the results of the significance test. The only two p-values

that are greater than 0.05 are the comparison between GP and SVR, and the com-
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SVR GP
Ridge Regression 1.86e−3 8.85e−5

LASSO 2.58e−3 1.40e−4

Elastic Net (λ1 = 0.8) 0.16 1.15e−2

PCA 2.34e−10 1.14e−13

PLS 1.46e−2 3.28e−4

GP 0.40 —

Table 6.10: Statistical significance test on comparing the methods’ prediction accu-
racy. The value in row i and column j is the p-value resulting from a student t-test
comparing the method listed in the first column of row i and the method listed in the
first row in column j. As we are using the 0.05 significance level, a p-value smaller
than 0.05 will reject the null hypothesis, which indicates the prediction accuracies
of the methods compared is really different.

parison between SVR and Elastic Net (λ1 = 0.8). The rest results are all statistical

significant at the 95% confidence interval, which verifies that the two machine-

learning kernel methods do generally perform better than the statistical methods.

Also, there is no obvious performance gap between GP and SVR.

6.8 Discussion

How good are our results? The result of QTL mapping has clear implications

on the animal breeding industry. Additionally, the advent of SNP datasets intro-

duces a wealth of genetic variation information for identifying the QTL associated

with economically important traits. An automated or generic approach for accu-

rate prediction of those traits and locating relevant QTL based upon the SNPs

information will have a strong impact on selecting breeding animal.

In the literature of QTL mapping, some researchers have already proposed to

use SNP dataset to predict complex traits, and reported very good results, but

some of them were a little over-optimistic. Meuwissen et al. [99] reported that

the correlation of GEBV with true breeding values was 0.78 − 0.85 using Bayesian

methods. However, their results are based on a simulation dataset with strict as-

sumptions, such as equally spaced QTL always centered between two markers, and

other assumptions, which may not be possible or valid, such as assuming commercial

populations, being in a mutation-drift equilibrium (MDE) and a trait with heritabil-

ity, h2 = 0.5. De Roos et al. [100] tried Meuwissens methods [99] on a real dairy

cattle dataset with 32 markers and 1135 progeny-tested bulls that were sired by 27
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grandsires, which are the “grandfather” of the bulls. One of the markers is known

to have a large effect on fat percentage. They reported that the correlation reached

0.746 using the similar Bayesian methods. But when computing polygenic effects,

haplotype effects, and gene effects in the multi-QTL model, the information from

test data is also used, which compromises their results. Long et al. [101] also tried

to use SNPs to predict quantitative traits of broiler sires. They first discretized the

quantitative traits into binary classes, and then developed a two-step feature selec-

tion method to find the most relevant SNPs for the binary traits. They claimed that

the two-step method improved classification accuracy over the case without feature

selection from around 50% to above 90%. One fatal problem with their approach

is that all the samples are used in the feature selection methods, which will cause

their model overfit their current samples and makes their results unrealistic.

In our study, the average prediction accuracy of the 5 traits is about 0.56 using

the kernel methods, GP and SVR. Although these results are not particularly good,

to our knowledge, it is the first time that such a high dimensional real SNP dataset

(1341 SNPs) has been used for breeding value estimation and QTL mapping. It is a

very encouraging starting point, as with the availability of more bovine samples and

the development of other kernel methods, we see the possibility of more accurate

prediction of quantitative traits based on the genetic markers information.

Why feature selection failed in our study? One of a major objective of this

study is to find the SNP markers associated with the phenotypic traits, so that

the QTL of those traits could possibly be located. However, the feature selection

methods tried all failed in this case.

We looked into the problem to figure out why those methods failed. We found

that the features selected based on the training data could achieve nearly perfect

accuracies back on the training data, but they just did not generalize well on the test

data. Another finding was that a different cut of training and test data would often

lead to a different subset of features to be selected based on the training data. We

guess that there could be several reasons for this to happen. First, the SNP dataset

might contain too much noise, i.e. quite a few SNPs appear to be highly correlated

with the traits by chance, due to the relatively small sample size as compared with

the number of SNPs. (That keeps the feature selection methods from discovering the

true interactions.) Secondly, perhaps none of 1341 SNPs are actually very closely
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associated with the traits. It is suggested that more than 30,000 SNPs are needed to

cover all the possible locations of QTL on the bovine genome [6]. Thirdly, perhaps

the feature selection methods we tried are not powerful enough to detect the most

relevant SNPs.

6.9 Future Work

For future research, we would like to verify the reasons why feature selection fail

to produce any improvement in this problem. This requires exploring other feature

selection methods - ones that have proved to work well for high dimensional data,

like Multifactor dimensionality reduction (MDR). Also, we would like to explore

ways to use some biological background information to help filter the SNPs for

further analysis. Our the experiment results suggest that the binary dataset seems

to be a better representation of the SNP dataset. We would like to see if there are

more suitable representations, e.g., using three bits to represent the values of the

SNPs, instead of two.
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Chapter 7

Conclusion

In this dissertation, we applied two machine-learning kernel methods, Support Vec-

tor Machine and Gaussian Process, along with five statistical regression methods, to

the the SNP dataset to learn a regressor for estimating breeding value and mapping

QTL. The empirical results from this study indicate that the two kernel methods

could achieve better prediction accuracy than the statistical methods. We also tried

several feature selection techniques in an attempt to reduce the high dimensionality

of the SNP dataset and to find the most relevant SNPs associated with the traits

for prediction. However, we found that these feature selection methods actually

degraded prediction accuracy.
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