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Abstract

Classification — i.e. categorizing data instances into pre-defined categories — is an

interesting and challenging task. Many real world problems involve classification, in

domains such as medical informatics, image analysis, and text tagging. We consider

the challenge of learning a classifier from data. This is especially challenging when

data instances are correlated.

Here, we focus on learning an image segmenter – e.g. a system that classifies each

pixel of a magnetic resonance (MR) image of a brain as either tumor or non-tumor.

Here the labels of neighboring pixels are correlated. By contrast, discriminative ap-

proaches that assume the data instances are independent and identically distributed

(i.i.d.), such as Logistic Regression (LR) and Support Vector Machines (SVM), take

a single pixel as an input to a fitted decision function and make a decision for that

individual pixel that ignores the continuity of labels of neighboring pixels. To be ef-

fective here, it is important to also consider the spatial correlations of labels: that is,

neighboring pixels tend to have same labels. This has led to the now-standard ran-

dom field approach (eg, Conditional Random Fields, CRFs), which involves learning

and using two potential functions: one for estimating relevant characteristics of the

individual pixel, and the other that deals with interactions between adjacent pixels.

This dissertation presents extensions to CRFs to address the following three

challenging issues: (1) Modeling spatial correlations more effectively by using a

variant of support vector machines for the random field potential, leading to Sup-

port Vector Random Fields (SVRFs). (2) Using both unlabelled and labelled data

in a supervised learning framework, leading to Semi-Supervised Discriminative Ran-

dom Fields (SSDRFs) that produce more accurate model parameters. (3) Modeling

spatial correlations more efficiently, leading to both Decoupled Conditional Random

Fields (DCRFs) that decouple learning of the two potentials of a random field, and

Pseudo Conditional Random Fields (PCRFs) that explicitly model spatial correla-

tion only in inference.



Our empirical evaluations on complex tasks (such as segmenting brain tumors)

show these systems perform statistically significantly better than existing methods

and promise wide practical applications.



Acknowledgements

It is great honor and pleasure to get the chance to express my deep gratitude to many

people who have influenced my thesis work. First of all, I am very thankful that I

met Prof. Russ Greiner as my advisor, who has provided me with the opportunity

to work in machine learning. His expertise in machine learning has guided me

to face challenging problems and solve many hurdles that seemed like solid walls.

I especially thank his infinite patience and commitment, devoting much time to

reading my work over and over again, answering my non-sense questions. These

all invaluable lessons have greatly motivated my thesis work as well as my attitude

towards life, work, and people. Prof. Greiner meant more than an advisor to me.

I sincerely thank Prof. Dale Schuurmans not only for serving on committee,

but for his insightful comments over my work. I met him as a student in his class,

and his amazingly amusing class gave significant impacts on my knowledge and the

way understanding problems. I also truly thank Prof. Osmar Zäıane who was my
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Chapter 1

Introduction

As our society evolves into the information age, we are all being overwhelmed by

a tremendous amount of data. Many of our daily activities are recorded as data

in computers, which represent experiences of different resources. This motivates a

large range of systems designed to deal with such data, including Machine Learning

algorithms that allow computers to automatically learn from experiences, to improve

their performance of some specified tasks. Machine learning algorithms apply many

principles to deal with a wide range of applications. One of the primary tasks using

machine learning principles is building “classifiers,” which categorize novel data

instances into pre-defined categories.

Many real world problems involve classification tasks, in domains such as medical

informatics (e.g. to diagnose if a patient has a particular form of cancer [45]),

image analysis (e.g. to classify if a pixel from an magnetic resonance [MR] image

is a tumor [54]), and text tagging (e.g. to find a particular gene name within

a given sentence [26]). As many standard classification methods [23, 62] assume

independent and identically distributed (iid) data, they therefore fail to produce

high quality classification when the data instances to be categorized are correlated–

e.g. if dealing with pixels of an image, neighboring pixels are likely to have the same

class label. This dissertation focuses on this type of correlation, which we denote as

spatial correlations [35, 36, 39, 40, 68].

1.1 Motivation

We focus on the image segmentation task. Discriminative approaches that deal

with iid data instances, such as Logistic Regression [23, 49] and Support Vector

Machines [9, 62], take features of a single pixel as an input into a fitted decision
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function, whose decision is based only on these single-pixel properties. This is

suboptimal for this image segmentation task as it does not incorporate the fact that

neighboring pixels tend to have the same class labels.

Figure 1.1 illustrates some tasks explicitly requiring spatial correlations. The

task here is to classify pixels into pre-defined categories. Figure 1.1(a) makes it clear

that simply classifying a pixel one by one, based only on its gray-value intensity, will

not produce a high quality classification result since there are some pixels within

the ‘A’ shape whose gray-level intensity is the same as the intensity of pixels in the

background. However, by considering the fact that adjacent pixels tend to have the

same class labels, a model can encode the spatial correlations of labels, improving

the classification accuracy.

Another example is the face detection task: classifying each pixel in an image

into either face or non-face (see Figure 1.1(b).) If pixel p is classified as a face (resp.

non-face), then pixels around p have a high likelihood of being labelled a face (resp.

non-face). If we can effectively model such correlations, we can then improve the

quality of the face detection system.

Much of this dissertation is motivated by the third task: segmenting brain tu-

mors. Each pixel in a magnetic resonance (MR) image (Figure 1.1(c)) is examined

to determine which is in a tumor. The boxed white blob in the figure locates the only

tumor area. As with previous examples, adjacent pixels are highly likely to have

the same class labels. All three cases illustrate that modelling spatial dependencies

of labels helps produce accurate classification results.

There are many challenges associated with incorporating spatial dependencies.

First, it is important to model spatial correlations accurately. In the past, many

researchers have used Markov Random Fields (MRFs) to model spatial correla-

tions [4, 42]. Although they model spatial correlations of labels, MRFs are genera-

tive models that attempt to compute the joint probability model of the observations

and their associated class labels, which incorporate a prior over class labels. We,

however, have a discriminative task: to produce a conditional probability model of

the class labels given the observations. This has motivated researchers to extend

generative MRFs to discriminative Conditional Random Fields (CRFs) [35, 37].

Both of MRFs and CRFs have shown robust performance for classification tasks

in a 2-D lattice structure, especially compared to iid classifiers. However, the limita-

tions of their models can prevent achieving high accuracy. Most part of this research

2



(a) (b) (c)

Figure 1.1: An illustration of spatial dependencies among pixels: (a) Pixel Classifi-
cation task in the presence of noise (b) Face detection task (c) Tumor Segmentation
task

provides models that incorporate spatial dependency effectively.

Second, supervised learning frameworks typically require (X,Y) pairs of data

instances to train the decision function f : X → Y, where X denotes a data instance

(e.g. an image) and Y the corresponding a set of labels of pixels in X; we will

later use the learned decision function f to classify a new testing instance (e.g.

an image that is not observed when fitting f). We typically have lots of Xs but

relatively few of the associated “ground truths” Ys. The challenge here is to acquire

enough true yx ∈ Y, where yx is a ground truth for pixel x ∈ X. Producing

these labels usually involves human experts’ judgements – e.g. medical doctors can

manually produce such the ground truths for every MR image for the brain tumor

segmentation tasks. As this can be very expensive, we often have a great number of

MR images whose ground truths are not available. This leads us to explore semi–

supervised learning: that is, using both unlabelled and labelled data when learning

a classification model [11, 26]. As another motivation for semi–supervised learning

approach, since even thousands of X examples can only sparsely cover the parameter

space, using unlabelled examples may overcome the issue of sparseness.

Third, learning a model that incorporates spatial correlations of labels among

adjacent data instances structured in a 2-D lattice increases the computational com-

plexity: typically, CRF-based variants require fitting two sets of parameters, for

the two potentials of a random field. Unfortunately, the algorithms for learning

these 2-D CRF-variants involve intractable computations. In this thesis, we present

3



two simple but effective frameworks that incorporate spatial correlations, but are

relatively efficient : Decoupled Conditional Random Fields (DCRFs) and Pseudo

Conditional Random Fields(PCRFs).

Here, we present several models to address the challenges of building the clas-

sifiers that incorporate spatial correlations. Our empirical experiments , on both

synthetic and real data sets, demonstrate that our models are effective and efficient.

1.2 Thesis Outline

Chapter 2 reviews general classification models covering both iid approaches and

beyond. This will highlight the general problems of learning iid classification mod-

els, and then their extensions to deal with 1-D and 2-D structured classification

tasks including various random fields: generative Markov Random Fields and dis-

criminative Conditional Random Fields (for 1-D) and Discriminative Random Fields

(DRFs; for 2-D). Note that each of Chapter 4, 5, 6, and 7 also summarizes other

related works relevant to that chapter.

Chapter 3 outlines data sets and an accuracy measurement to evaluate models’

performance on classification tasks – denoising and brain tumor segmentation. Our

motivation to use Jaccard score as a performance measure is highlighted.

Chapter 4 defines an important variant of conditional random fields, Support

Vector Random Fields (SVRFs). SVRFs extend CRFs by incorporating Support

Vector Machines, which improves their effectiveness. SVRFs address the first chal-

lenge previously discussed: how to incorporate spatial dependencies effectively. The

empirical experiments on pixel classification problems over both synthetic and real

data sets demonstrate the effectiveness of the model.

Chapter 5 discusses the challenge of learning a model using both unlabelled and

labelled data, leading to the learning framework of Semi Supervised Discriminative

Random Fields (SSDRFs). Our experimental results demonstrate that our SSDRF

produces more effective classification results than Discriminative Random Fields

(DRFs) based on a supervised learning framework.

For the next two chapters, each provides frameworks that address a compu-

tational challenge required when learning typical CRF-based models. Chapter 6

proposes an approximation to model spatial compatibility by decoupling the two

potentials of random fields, leading to the De-coupled Conditional Random Fields

(DCRFs) model. Experiments on synthetic and real data sets show that DCRFs
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can be learned efficiently and achieve the accuracy of standard CRF variant model,

SVRFs.

Chapter 7 presents another framework that can be efficiently learned, which com-

pactly defines a simple template to encode interactions between neighboring data

instances as an alternative to DCRFs. While CRF-based models, including DCRFs,

require learning parameter sets for each of two potentials, Pseudo Conditional Ran-

dom Fields (PCRFs) only learn one parameter set, for the local conditional prob-

ability, but not the one used for modelling spatial correlations. This significantly

simplifies the learning procedure. Spatial correlations, however, are considered in

inference steps. We present empirical evidences of this model’s robust performance

over several baseline models: efficient learning producing an accurate classifier.

In Chapter 8, we summarize challenges in modelling spatial compatibility and

review the contributions made in this thesis. We also discuss the future extensions

and research directions not addressed in the thesis.

1.3 Related Publications

This dissertation extends the following publications:

• Support Vector Random Fields (Chapter 4)

Chi-Hoon Lee, Russell Greiner, and Mark Schmidt. Support Vector Random

Fields for Spatial Classification, In Proceedings of the 9th European Confer-

ence on Principles and Practice of Knowledge Discovery in Databases (PKDD)

(Joint with ECML), pp. 121-132, Oct, 2005.

• Semi-Supervised Random Fields (Chapter 5)

Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, and Russell

Greiner. Learning to Model Spatial Dependency: Semi-Supervised Discrimi-

native Random Fields. In Advances in Neural Information Processing Systems

19 (NIPS), pp. 793-800, Cambridge, MA 2007.

• Decoupled Conditional Random Fields (Chapter 6)

Chi-Hoon Lee, Russell Greiner, and Osmar Zäıane. Efficient Spatial Classifi-

cation using Decoupled Conditional Random Fields. In Proceedings of the

10th European Conference on Principles and Practice of Knowledge Discovery

in Databases (PKDD) (Joint with ECML), pp. 272-283, Germany Sep. 2006.
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• Pseudo Conditional Random Fields (Chapter 7)

Chi-Hoon Lee, Mattew Brown, Shaojun Wang, Albert Murtha, Russell Greiner.

Constrained Classification on Structured Data. In Proceedings of National

Conference on Artificial Intelligence (AAAI), pp. 1812-1813, July 2008.

Chi-Hoon Lee, M. Brown, R. Greiner, S. Wang, A. Murtha. Segmenting Brain

Tumors using Pseudo-Conditional Random Fields, In Proceedings of Medical

Image Computing and Computer-Assisted Intervention (MICCAI), pp. 359-

366, Sep. 2008.

1.4 Thesis Statements

This thesis research proposes classification models that encode spatial correlations

to support the following claims:

1. It is possible to model spatial correlations of labels effectively.

2. It is possible to effectively incorporate unlabelled data, as well as labelled data,

to learn a model that can use spatial correlations.

3. It is possible to learn models that are computationally efficient when we con-

sider spatial correlations.
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Chapter 2

Background: iid and non-iid
Classifiers

This thesis explores the challenges of learning a classifier to deal with labels that

are spatially correlated in a 2-D lattice structure. In this chapter, we briefly review

the general classification problem that predicts a class variable y ∈ Y given a vector

of features x = (x1, ..., xd) ∈ X, where we focus on X = ℜd and Y is a finite set.

For now, we will view feature vectors as descriptions of observations for iid data

instances (later we remove this assumption). In order to perform a classification

task for an input x, a classifier, possibly represented as a probability model p(y|x),

is learned from a training data set, which is typically in form of a set of n pairs

{(xi, yi)}
n
i=1.

There are two approaches for modelling a classifier – generative versus discrim-

inative [28]. We can use graphical models to illustrate this difference. In general, a

graphical model has a set of nodes, each representing a variable, connected with arcs

that encode dependencies. N.b. the absence of an arc is used to encode the claim

that there are no direct dependencies between a pair of variables. In Figure 2.1, the

probabilistic relationships between two nodes are represented with directed edges.

Here, the directed arrow between nodes indicates direct conditional dependency.

For instance, the edge from node y to node x in Figure 2.1(a) implies that x is

conditional dependent on y. Therefore, the graphical model that represents rela-

tionships (eg, conditional dependency) among nodes has a major influence on how

a probability model is formulated; the details are discussed in [28].

Section 2.1 and 2.2 introduce several approaches that deal with independent and

identically distributed (iid) data instances. The iid assumption is then extended to

1-D and 2-D structures and related work is discussed in Section 2.3 and 2.4.
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Figure 2.1: (a) Generative approach represented as a graphical model (b) Discrimi-
native approach as a graphical model

2.1 iid Generative Models

Generative approaches, illustrated in Figure 2.1(a), view the probability distribu-

tion p(y|x) for classification tasks as estimating a joint probability distribution

p(x, y) [28, 48]. Given training data sets, we estimate two probability distribu-

tions: the class conditional probability density (a.k.a. likelihood) p(x|y) and the

prior p(y). These two probability distributions are used to solve the classification

task as

p(y|x) =
p(x|y)p(y)

p(x)
∝ p(x|y)p(y)

One well-known class of classifiers, based on the generative approach, are the

Bayes classifiers [6, 21, 38]. A Bayes classifier is learned from training examples by

estimating p(x|y) and p(y). However, it is not trivial to accurately estimate the

likelihood p(x|y). To see the difficulty in estimating parameters

θij ≡ p(x = xi|y = yj)

for the likelihood p(x|y), suppose y ∈ {+,−} and x is a feature vector of d binary

components. Since xi takes on 2d possible values and yj takes one of two possible

values, in general we may need to estimate 2d different independent parameters.

This requires the learner to observe unrealistically many training examples.

We can drastically reduce the number of parameters, and hence the required

training size, if the features are independent. Näıve Bayes dramatically reduce the

complexity by making a conditional independence assumption when modelling p(x|y)

– specifically that the feature vector components are conditionally independent given

a class label y. Therefore, given d components for x, the likelihood is represented

8
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Figure 2.2: Graphical representation of Näıve Bayes

as

p(x|y) = p(x1, ..., xd|y) =
d∏

i=1

p(xi|y)

For example, if x = (x1, x2), then p(x1, x2|y) = p(x1|y)p(x2|y). Figure 2.2 shows the

Näıve Bayes graphical model, which embodies the claim that expresses the nodes –

x1, . . ., xd – are independent given y. That is, there is no edge among the feature

components. This conditional independence dramatically reduces the number of

independent parameters for p(x|y) to just 2d.

Note that even with its unrealistic assumption, Näıve Bayes perform well on

many challenging applications including text classification [16] and medical diagno-

sis [48].

2.2 iid Discriminative Models

As discussed in the previous section, generative approaches solve a classification

problem by modelling a joint probability distribution over observations and class

labels. By contrast, discriminative approaches directly model a conditional proba-

bility distribution p(y|x); see Figure 2.1(b). One apparent reason for using discrim-

inative approaches rather than generative is “One should solve the [classification]

problem directly and never solve a more general problem as an intermediate step

[such as modelling p(x|y)]” [73]. Here, we start discussion with two most popular

discriminative techniques – Logistic Regression and Support Vector Machine.

Logistic Regression

Logistic regression is one of the most popular discriminative approaches. The opti-

mal decisions for a class label y for input x are based on the conditional probability

p(y|x). For binary classification, the model has the form

log
P (y = 1 | x)

P (y = 0 | x)
= xTw , (2.1)

9



γ

Τ 0β + β = 0x

Figure 2.3: Support Vector Machine

parameterized by w ∈ ℜd. We can re-write Equation (2.1) as a specific form for the

conditional probability over labels:

Pw(y = 1 | x) = σ(xTw), (2.2)

where the logistic function σ(a) = 1
1+exp(−a) turns the linear expression of Equation

(2.1) into probabilities in [0, 1]. The model parameter w is learned from n training

data instances using the maximum conditional log-likelihood criterion:

l(w) =
n∑

i=1

logPw(yi|xi) =
n∑

i=1

log σ(xT
i w) (2.3)

A learning procedure is formulated as an optimization problem

arg max
w

n∑

i=1

log σ(xT
i w) (2.4)

However, as Equation (2.4) often leads to overfitting, many implementations add a

regularization term

w∗ = arg max
w

{ n∑

i=1

log σ(xT
i w) −

λ‖w‖2

2

}

(2.5)

Support Vector Machine

As another discriminative approach, Support Vector Machine (SVM) has been ex-

tensively explored for many interesting classification tasks [9, 23, 62]. One of the

key concepts in SVM is seeking to find a margin maximizing hyperplane between

the classes as a decision function. It in turn produces a signed distance between

data instances and the hyperplane (see Figure 2.3).
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Using n pairs of training data, {(xi, yi)}
n
i=1, the hyperplane is constructed by

solving the following optimization problem

max
β,β0,‖β‖=1

γ

subject to yi(x
T
i β + β0) ≥ γ, i = 1, . . . , n (2.6)

Since the decision function f(x) is represented with parameters β and β0 – i.e. f(x) =

xTβ + β0, Equation (2.6) can be reformulated as

min
β,β0

1

2
‖β‖2

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , n (2.7)

Note that Equation (2.7) is a convex optimization problem, which can be solved

by introducing Lagrange multipliers. Using the Lagrange (primal) function, we can

obtain the dual optimization problem as

maxα

∑n
i=1 αi −

1
2

∑n
i

∑n
j αiαjyiyjx

T
i xj

subject to 0 ≤ αi, i = 1, . . . , n
∑n

i=1 αiyi = 0 (2.8)

From Equation (2.7) and (2.8), we can reconstruct a solution vector β̂ as a weighted

combination of the training examples:

β̂ =

n∑

i

α̂iyixi

where α̂i is the solution of Equation (2.8). This shows that the solution vector β̂

is defined in terms of a linear combination of support vectors xi – data instances

whose corresponding αi > 0.

One main characteristic in Support Vector Machine is that we need to specify

only the inner product (or different kernel) between the data instances – i.e. xT
i x.

We can use this observations to transform data instances into a higher dimensional

space (i.e. feature space) where data instances that are not separable in the input

space might be linearly separable. The further details, including ways to deal with

class overlap in feature space, can be found in [9, 23, 62]

2.3 Non-iid Generative Models

Most Bayes classifiers, including Näıve Bayes, assume data instances are iid. But

consider a POS tagging task, which is the process of assigning a part-of-speech tag
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Figure 2.4: Graphical representation of Hidden Markov Model

such as noun, verb, pronoun, preposition, adverb, adjective or other tag to each

word in a sentence. Simple Bayes classifiers ignore dependencies of labels among

words (ie, pos tags of words in a sentence). For example, in the sentence “I called

a travel agent to book hotels today.”, there are nine words to be tagged (classified).

Any iid classifier including Näıve Bayes would probably classify the word “book”

as a noun (as that is the most likely interpretation, given only the word), but if

we can use the context, then “book” can be classified as a verb by considering the

correlations between “to” and “book”, and between “book” and “hotels”.

A Hidden Markov Model (HMM) – Figure 2.4 – relaxes the independence as-

sumption, and allow correlations between the labels of words in a 1-D chain struc-

ture [57]. An HMM models the joint distribution p(X,Y), where X = {xi}
n
i=1 (xi

corresponds to an observation) and Y = {yi}
n
i=1 (yi corresponds to a label for obser-

vation xi). An HMM assumes (1) that each class label yi depends only on the label

of its immediate predecessor yi−1 (this is the Markovian assumption), and (2) that

feature observation xi is conditionally independent of everything else, given only its

class label yi. These two assumptions provide an HMM with tractable computa-

tions to learn the model as well as to perform classification for non-iid data in 1-D

structure. For example, an HMM would view each word (within a sentence) is an

instance to be classified. Here, the links from yi−1 to yi allow dependencies between

the labels, which are therefore not independent. The joint probability of class labels

Y and observations X is factorized as

p(X,Y) =

n∏

i=1

p(yi|yi−1)p(xi|yi) (2.9)

Named entity recognition, speech recognition, and gene/motif finding tasks are pop-

ular examples of HMM applications that require modelling correlations of adjacent

labels for sequentially structured data [24, 25, 56, 57].
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Figure 2.5: Graphical representation of Markov Random Fields. xi denotes an
observation at pixel i and yi its class label.

2.3.1 Non-iid for 2-D structures

There has been much related work on using a random field theory to model class

dependencies in 2-D structures and more recently discriminative contexts [42, 36].

Here, we will review Markov Random Fields, which is formulated as a generative

classifier in 2-D structures.

Problem Formulation

Here, we will focus on the task of classifying elements (pixels or regions) of a

two-dimensional image, although the discussed methods can be applied to higher-

dimensional data. An image is represented with a set S of n pixels. For an instance

X = (x1,x2, . . . ,xn), we seek to infer the most likely joint class labels:

Y∗ = (y∗1 , y
∗
2, . . . , y

∗
n),

where x ∈ ℜd, and y∗i is in a finite set. If we assume that the labels assigned

to elements are independent, the following joint probability can be formulated:

P (Y|X) =
∏

i∈S P (yi|X). However, conditional independency does not hold for

2-D like image data, since spatially adjacent elements are likely to receive the same

labels. We therefore need to explicitly consider this local dependency.

Markov Random Fields (MRFs)

Markov Random Fields (MRFs) provide a mathematical formulation for modelling

local dependencies, and are defined as follows [42]:

13



Definition 2.3-1. A set of random variables Y is called a Markov Random

Field on S with respect to a neighborhood N , if and only if the following two

conditions are satisfied, where S − {i} denotes the set difference, yS−{i} denotes

random variables in S−{i}, Ni denotes the neighboring random variables of random

variable i, and Ω is the space of all possible joint labellings:

1. P (Y) > 0, ∀Y ∈ Ω

2. P (yi|yS−{i}) = P (yi|yNi
)

Condition 2 (Markovianity) states that the conditional distribution of an element

yi is dependent only on its neighbors. Markov Random Fields have traditionally

sought to maximize the joint probability P (X,Y) (a generative approach). In this

formulation, the posterior over the labels given the observations is formulated using

Bayes’ rule as:

P (Y|X) ∝ P (Y)P (X|Y) = P (Y)
∏

i∈S

P (xi|yi) (2.10)

In Equation (2.10), the equivalence between MRFs and Gibbs Distributions [5,

42] provides an efficient way to factor the prior P (Y) over cliques defined in the

neighborhood graph G (see Figure 2.5(a).) The prior P (Y) is written as

P (Y) =
exp(

∑
c∈C Vc(Y))∑

Y′∈Ω exp(
∑

c∈C Vc(Y′))
(2.11)

where C is a set of cliques in G and Vc(Y) is a clique potential function of la-

bels for clique c ∈ C. From Equation (2.10) and (2.11), the target configuration

Y∗ is a realization of a locally dependent Markov Random Field with a specified

prior distribution. Based on Equation (2.10) and (2.11) and using Z to denote the

(normalizing) “partition function”, then the distribution can be factored as:

P (Y|X) =
1

Z
exp

[∑

i∈S

log(P (xi|yi)) +
∑

c∈C

Vc(Yc)
]

(2.12)

An MRF assumes the factorized likelihood to be Gaussian distributions [77]. The

factorized data likelihood for P (X|Y) in Equation (2.10) allows straightforward

Maximum Likelihood parameter estimation. Although there have been many ap-

proximation algorithms designed to find the optimal Y∗, we focus on a local method
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called Iterated Conditional Modes (ICM) as it has proven to work effectively [5, 35],

written as:

y∗i = arg max
yi∈L

P (yi|yNi
,xi) (2.13)

Assuming observations to be conditionally independent given class labels and a

pairwise neighborhood system for the prior over labels

P (yi|yNi
,xi) =

1

Zi

exp
[
log(P (xi|yi)) + β

∑

j∈Ni

yiyj

]
,

ICM is formulated as:

y∗i = arg max
yi∈L

1

Zi
exp

[
log(P (xi|yi)) + β

∑

j∈Ni

yiyj

]
(2.14)

where β is a constant and L is a set of class labels.

This concept has proven to be applicable in a wide variety of domains where there

are correlations among neighboring instances. However, the generative nature of the

model and the assumption that the observations are conditionally independent given

class labels in a 2-D structure can be too restrictive to capture complex dependencies

between neighboring elements or between observations and labels. In addition,

the prior over labels is completely independent from the observations, thus the

interactions between neighbors are not proportional to their similarity.

2.4 Non-iid Discriminative Models

The fundamental iid assumption in logistic regression and support vector machine

needs to be relaxed to deal with correlations of labels in a 1-D sequence struc-

ture. There are two well known “discriminative” approaches – a Maximum-Entropy

Markov Model (MEMM) and a Conditional Random Field (CRF) – to model cor-

relations of labels in a 1-D structure [37, 46].

As an alternative to HMMs, an MEMM, shown in Figure 2.6, is able to handle

the overlapping features and does not require enumeration of the space of all pos-

sible observations [46]. Given an observation X in 1-D sequence, the conditional

probability in an MEMM over label sequence Y is formulated as

P (Y|X) =
n∏

i

P (yi|yi−1,xi), (2.15)

where

P (yi|yi−1,xi) =
1

Z(yi−1,xi)
exp

(∑

k

λkfk(yi,xi)
)
, (2.16)
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Figure 2.6: Graphical representation of an MEMM

where Z(yi−1,xi) =
∑

yi
P (yi|yi−1,xi) is the normalizing factor that makes the

distribution sum to one across all yi. Equation (2.16) is derived by the maximum

entropy principles that state the best model for data is the one that maximizes

the entropy given constraints [3, 46]. Here, the constraints applied are that the

expected value Ẽ(fk) for kth feature on the empirical distribution must be equal to

its expected value E(fk) on the learned model distribution – ie. Ẽ(fk) = E(fk).

Although MEMMs improves over HMMs by utilizing more descriptive feature

representations, an MEMM suffers from a weakness called label bias problem – the

probability transitions leaving any given state1 must sum to one [37, 46]. This is

clearly observed in Equation (2.16) – ie. the normalizing factor.

2.4.1 Non-iid for 2-D structures

To overcome the disadvantages of HMMs and MEMMs, Lafferty et al. [37] proposed

a Conditional Random Field (CRFs) as a single exponential model P (Y|X) of joint

probability of entire state sequence Y given an observation X.

CRFs seek to maximize the conditional probability of the labels given the ob-

servations P (Y∗|X) (a discriminative model), and is defined as follows [37]:

Definition 2.4-1. Let G = (S,E) be a graph such that Y is indexed by the

vertices S of G. Then (X,Y) is said to be a Conditional Random Field if, when

conditioned on X, each random variable yi obeys the Markov property with respect

to the graph: P (yi|X, ys\i) = P (yi|X, yNi
).

This model alleviates the need to model the observations P (X), allowing the

use of arbitrary attributes of the observations without explicitly modelling them.

As illustrated in Figure 2.7(a), CRFs assume a 1-dimensional chain-structure where

only immediate predecessor elements are neighbors. This allows the factorization of

the joint probability over labels.

1Several states may correspond to a label. However, we assume each state has a single label.
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Figure 2.7: Graphical representations of Conditional Random Fields in 1-D (a) and
2-D (b).

Discriminative Random Fields (DRFs), extending 1-dimensional CRFs to 2-

dimensional structures [35], attempt to overcome the disadvantages of MRFs —

notably its conditional independence assumption and the absence of observation in

the second potential — by directly modelling the conditional probability distribution

P (Y |X ). A CRF, defined as

P (Y |X ) =
1

Z(X)
exp




∑

i∈S

Φw(yi,X) +
∑

j∈Ni

Ψν(yi, yj,x)



 (2.17)

directly computes the probability distribution without modelling any prior; see Fig-

ure 2.7(b). The notation is essentially the same as in Equation (2.12): Z(X) is the

partition function, S is the set of instances, X = {xi}i∈S is the set of descriptions of

those pixels, and Y = {yi}i∈S is the set of labels. Here Ni is the set of neighbors of

node xi — in 2-D, the pixel at location (a, b) has 4 neighbors, at (a−1, b), (a+1, b),

(a, b − 1) and (a, b + 1) [5, 31]; see Figure 2.7(b). In Equation (2.17), “Φw(yi,X)”

is called the “Association” potential, which deals with a single instance. While its

value can depend on all of X, it typically relies only on xi, quantifying the belief

of xi being class yi. The “Ψν(yi, yj ,X)” term is called the “Local-Consistency” (or

“Interaction”) potential in variants of CRFs; it is typically used to prefer labelling

that assign the same class labels to neighboring pixels. (We can view Ψν(·) as a

data dependent smoothing function, which differs from MRFs, which instead use

only a “data independent” term.) Here, w and ν refer to the parameters associated

with these potential functions.

Note that this is a much more powerful model than the Gaussian Association

potential and the indicator function used as the Interaction potential (that does not
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consider the observations) in MRFs, avoiding the assumption associated with MRF’s

likelihood – the conditional independency assumption of observations given labels.

(Refer to Equation (2.12).) However, the main drawback in a CRF framework is

that it requires significant amount of training time. Sutton et al. [65] discusses

the computation complexity challenge by proposing a “piecewise training” approach

that approximates the computation of Z(X) as an extension of MEMM.

In this chapter, we have reviewed general classification problems from iid to

non–iid classification models, including in a 1-D chain structure and a 2-D lattice

structure.
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Chapter 3

Data Sets and Accuracy
measure for Experiments

This chapter presents the data sets – both synthetic and real world – that we use

to evaluate our various systems. It also motivates why we use the Jaccard score as

the performance measure.

3.1 Synthetic Data sets

Our synthetic data sets are based on binary images (64 by 64 per image), which

were corrupted by zero mean Gaussian noise with unit standard deviation. Each

ground truth image, shown in the first row from Figure 3.1, contains pixel value 0

or 1 that indicates each pixel’s class label – a background or a foreground. We have

generated 150 images per each data set (different data sets have different shapes);

150 images are partitioned for training (100 images) and testing (50 images).

The motivations in using these synthetic data sets are (1) to see how accurately

our models work with the binary image de-noising tasks, where the foreground pixels

are corrupted by the synthetically generated noise, and (2) to compare our models

with other related work [35, 36, 74] that reported experimental results on data sets

generated by the same methods as we described here.

3.2 Real Data sets

We applied our models to the real-world problem of tumor segmentation in medical

imaging. We focused on the task of brain tumor segmentation in MRI, an important

task in surgical planning and radiation therapy, which is currently being laboriously

done by human medical experts.
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Figure 3.1: Examples on synthetic data sets. Ground truth images (each pixel has
1 or 0 value, indicating a foreground or a background class label) are shown in the
first row and randomly corrupted images by N (0, 1) are displayed in the second row.

(a) (b)

Figure 3.2: (a) A slice of MR image (b) Its tumor areas (We have changed the
brightness of non-tumor areas to highlight tumor areas.)

Here, our primary goal in using real world data is to quantify classification results

from models that this dissertation has explored on tumor segmentation task. For

instance, given a slice of image (Figure 3.2 (a)), we are interested in finding tumor

areas (Figure 3.2 (b)) as effectively as possible.

Our experimental data set consisted of T1, T1c (T1 after injecting contrast

agent), and T2 images (each 258 by 258 pixels; Figure 3.3) from patients, each

having either a grade 2 astrocytoma, an anaplastic astrocytoma, or a glioblastoma

multiforme.

The data were preprocessed with an extensive MR preprocessing pipeline (de-

scribed in [60], and making use of [47, 63]) to reduce the effects of noise, inter-slice
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(a) T1 (b) T2 (c) T1c

Figure 3.3: A multi-spectral MRI

intensity variations, and intensity inhomogeneity. In addition, this pipeline robustly

aligns the different modalities with each other, and with a template image in a stan-

dard coordinate system (allowing the use of alignment-based features, mentioned

below).

We used the most effective feature set identified in the comparative study in [60].

This multi-scale feature set contains traditional image-based features in addition to

three types of ‘alignment-based’ features: spatial probabilities for the 3 normal

tissue types (white matter, gray matter and cerebrospinal fluid), spatial expected

intensity maps, and a characterization of left-to-right symmetry (all measured at

multiple scales).

As with many of the related works1 on brain tumor segmentation (such as [12,

17, 30, 76]), we employed a patient-specific training scenario, where training data

for the classifier is obtained from the patient to be segmented: here we first train

on subset Pa of studies for a patient and then test on subset Pb of the same studies

for the patient. Note that Pa and Pb are disjoint.

3.3 Accuracy

To quantify the performance of each model, we use the Jaccard score

J =
TP

(TP + FP + FN)
, (3.1)

where TP denotes true positives, FP false positives, and FN false negatives. We

used this score to penalize the false negatives since many imaging tasks are very

1Here, our primary focus is to compare different classifiers’ performance (e.g. accuracy and
training time of proposed models). Therefore, issues related to MR images such as variations of
noise, standardization of MR images, and uncertainty associated with ground truths are beyond of
our discussion.
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imbalanced: that is, only a small percentage of pixels are in the “positive” class.

This allows fair evaluations when a classifier produces high volume of false negatives

with very few of false positives. We carry out paired example t-tests to measure the

statistical significance of comparisons of performance between algorithms, as widely

used in literature [44, 61, 64, 71, 72].
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Part I

Models – Effectiveness

23



Chapter 4

Support Vector Random Fields
– SVRFs

4.1 Introduction

The task of classification has traditionally focused on data that is “independent and

identically distributed” (iid), in particular assuming that the class labels for different

data points are conditionally independent (ie. knowing that one patient has cancer

does not mean another one will). However, real-world classification problems often

deal with data points whose labels are correlated, which violates the iid assumption.

There is extensive literature focusing on the 1-dimensional ‘sequential’ case (refer

to [37]), where correlations in the labels of data points in a linear sequence exist,

such as in strings, sequences, and language. This chapter focuses on the more

general ‘spatial’ case, where these correlations exist in data with two-dimensional

(or higher-dimensional) structure, such as in images, volumes, graphs, and videos.

Classifiers that make the iid assumption often produce undesirable results when

applied to data whose labels are interdependent. For example, in the task of image

labelling, such an iid-based classifier could classify a pixel as ‘face’, even if all ad-

jacent pixels were classified as ‘non-face’. As discussed in Chapter 2, this problem

motivates the use of Markov Random Fields (MRFs) and more recently Conditional

Random Fields (CRFs) for spatial data. These classification techniques augment

the performance of an iid classification technique (often a Mixture Model for MRFs,

and Logistic Regression for CRFs) by taking into account spatial class dependencies.

Support Vector Machines (SVMs) are classifiers that have appealing theoretical

properties [62], and have shown impressive empirical results in a wide variety of

tasks. However, this technique makes the critical iid assumption. This chapter pro-
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pose an extension to CRFs that considers spatial correlations among data instances

(as in Random Field models), while still taking advantage of the powerful discrim-

inative properties of SVMs. We refer to this technique as Support Vector Random

Fields (SVRFs)

Section 4.2 presents our Support Vector Random Field. Experimental results

on synthetic and real data sets are given in Section 4.3, while a summary of our

contribution is presented in Section 4.4.

4.2 Support Vector Random Fields (SVRFs)

This section presents Support Vector Random Fields (SVRFs), our extension of a

CRF that allows the modelling of non-trivial 2-D (or higher) spatial dependencies

using SVMs. As with all random fields, this model has two major components: The

observation-matching potential function and the local-consistency potential func-

tion. The observation-matching function captures relationships between the obser-

vations and the class labels, while the local-consistency function models relationships

between the labels of neighboring data points and the observations at data points.

Since the selection of the observation-matching potential is critical to the perfor-

mance of the model, the Support Vector Random Field model employs SVMs for this

potential, providing a theoretical and empirical advantage over the logistic model

used in DRFs and the Gaussian model used in MRFs, which produce unsatisfactory

results for many tasks. We formulate the SVRF model as

P (Y|X) =
1

Z(X)
exp

{∑

i∈S

log(O(yi,Υi(X))) +
∑

j∈Ni

V (yi, yj ,X)
}
, (4.1)

where Υi(X) computes features from the observations X for location i, O(yi,Υi(X))

is the observation-potential, and V (yi, yj ,X) is the local-consistency potential. The

pair-wise neighborhood system is defined as a local dependency structure. We will

now examine these potentials in more detail.

4.2.1 Observation-Matching

The observation-matching potential seeks to find a probability distribution that

maps from the observations to corresponding class labels. Note that our observation-

matching potential corresponds to Φ(.) in Equation (2.17). Kumar et al. [35] em-

ploys a Generalized Linear Models (GLM) for this potential. However, the esti-

mation process in GLMs may not find “satisfactory” parameters that would give

25



accurate results in data whose feature sets may have a high number of dimensions

and/or several features have a high degree of correlation (refer to Section 4.3) [58].

Fortunately, the CRF framework allows a flexible choice of the observation-

matching potential function. We overcome the disadvantages of the GLM by em-

ploying a Support Vector Machine classifier, seeking to find the margin maximizing

hyperplane between the classes. This classifier has appealing properties in high-

dimensional spaces and is less sensitive to class imbalance [1].

Parameter estimation for SVMs involves optimizing the following Quadratic Pro-

gramming problem for training data {(xi, yi)}
n
i=1 (where C is a constant that quan-

tifies the misclassification error):

maxα

∑n
i=1 αi −

1
2

∑n
i

∑n
j αiαjyiyjx

T
i xj

subject to 0 ≤ αi ≤ C and
∑n

i=1 αiyi = 0 (4.2)

Consequently, the decision function of SVMs, given the parameters αi for the n

training instances and bias term b, is f(x) =
∑n

i=1(αiyix · xi) + b. (for a more

discussion of SVMs, we refer to Chapter 2.)

Unfortunately, the decision function f(x) produced by SVMs measures distances

to the decision boundary, which can be an arbitrary real number. We adopt the

approach of [53] to convert the decision function to a probability function scaling

values in [0,1]. This is done by using the sigmoid function:

O(yi = 1,Υi(X)) =
1

1 + exp(B1f(Υi(X)) +B0)
(4.3)

The parameters B1 and B0 are estimated from training data that are represented

as pairs (f(Υi(X)), ti), where f(·) is the Support Vector Machine decision function,

and ti denotes a relaxed probability that yi = 1 as in Equation (4.3). We could set

ti = 1, if the class label at i is 1 (i.e. yi = 1). However, in order to incorporate

the possibility that Υi(X) has the opposite class label (ie. -1), we simply define:

ti = N++1
N++2 , if yi = 1, and ti = 1

N−+2 , if yi = −1, where N+ and N− are the

number of positive and negative class instances. This acts as “regularization” that is

applied to data samples, as opposed to parameter regularization, leading to accurate

classification results [43, 53].

By producing the new forms of training instances, we can solve the following

optimization problem to estimate parameters, substituting O(yi = 1,Υi(X)) with

p(Υi(X)):
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arg max
B0,B1

n∑

i=1

[
ti log p(Υi(X)) + (1 − ti) log(1 − p(Υi(X)))

]
(4.4)

4.2.2 Local-Consistency

In MRFs, local-consistency considers correlations between neighboring data points,

and is considered to be observation independent: that is, the observation similar-

ity is not incorporated – βyiyj. CRFs provide more powerful modelling of local-

consistency by removing the assumption of observation independence. In order to

define a local-consistency that corresponds to Ψ(·) in a CRF (refer to Equation

(2.17)), we need an approach to express “continuity” of labels between pairwise

sites, including “similarity” between observations. For this, we use a linear function

of pairwise continuity:

V (yi, yj,X) = yiyjν
Tψij(X), (4.5)

ψij(X) is a function that computes features for sites i and j based on observations

X. While DRFs model the local-consistency by considering the absolute difference

between pairwise observations, we propose a new mapping function ψ(·) and let the

learning process learn parameter ν that helps to encourage continuity in addition

to compensating for errors associated with Observation-matching potential (using

max(Υ(X)) to denote the vector of maximum values for each feature):

ψij(X) =
(

max(Υ(X))− | Υi(X) − Υj(X) |
)
· � max(Υ(X)) , (4.6)

where ·� denotes components wise division.

4.2.3 Learning and Inference

Our proposed model needs to estimate the parameters of the observation-matching

function and the local-consistency function. We estimate these parameters sequen-

tially (first parameters of the observation-matching, and then parameters of local-

consistency), which has empirically proven to be more effective than the simultane-

ous learning approach of DRFs.

The parameters of the Support Vector Machine decision function f(·) are first

estimated by solving the Quadratic Programming problem in Equation (4.2) (using

SVMlight [27]). We then convert the decision function to a probability function using

Equation (4.4) and the new training instances – pairs of (f(Υi(X)), ti). Finally, we
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adopted pseudo-likelihood [35, 42] to estimate the local consistency parameters ν,

due to its simplicity and fast computation. For training on n pixels from K images,

pseudo-likelihood is formulated as:

ν̂ = arg max
ν

K∏

k=1

n∏

i=1

P (yk
i |y

k
Ni
,Xk, ν) (4.7)

As in [35], to ensure that the log-likelihood is convex, ν is assumed as N (ν;0, τ2I),

where I is the identity matrix.

We compute the local-consistency parameters using its pseudo-likelihood in log

space, l(ν̂):

l(ν̂) = arg max
ν

K∑

k=1

n∑

i=1

{
Ok

i +
∑

j∈Ni

V (yk
i , y

k
j ,X

k) − log(zk
i )
}
−

1

2τ2
νT ν (4.8)

Note that we simplified the notation of O(yi,Υi(X
k)) by Ok

i .

In this model, zk
i is a partition function for each site i in image k, and τ2 is

a regularizing constant. Equation (4.8) is solved by gradient descent – computing

its first derivatives, and assuming the observation matching function is a constant

during this process.

As this uses the SVM learning procedure, the time complexity of learning for an

image with n pixels is O(n2), although in practice it is much faster.

The inference problem is to infer an optimal labelling Y∗ given a new instance X

and the estimated model parameters. We herein adopted the Iterated Conditional

Modes (ICM) approach described in Equation (2.13), which maximizes the local

conditional probability iteratively. Although ICM is iterative, it often converges

quickly to a high quality configuration, and each iteration has time complexity

O(n).

4.3 Experiments

We have evaluated our proposed model on synthetic and real-world binary image

labelling tasks (refer to Chapter 3), comparing our approach to Logistic Regression

(LR), SVMs, and DRFs for these problems. The accuracy is measured by the

Jaccard score introduced in Chapter 3.

4.3.1 Synthetic image sets

As shown in Figure 4.2, two of five data sets contained balanced class labels (Car

and Objects), while the other three contained imbalanced classes. For instance, a
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Size image has 826 foreground and 3270 background pixels.

Example results and aggregated scores are shown in Figure 4.2. The last 4

columns from Figure 4.1 illustrate the outcomes from each technique– SVMs, LR,

SVRFs, and DRFs.

Logistic Regression and subsequently DRFs performed poorly in all three im-

balanced data sets (Toybox, Size, and M shown in Figure 4.1). In these cases,

SVMs outperformed these methods and moreover our proposed SVRFs outper-

formed SVMs. In the first balanced data set (Car), DRFs and SVRFs both outper-

formed SVMs and Logistic Regression at the p < 0.001 level on a paired example

t-test. However, DRFs performed poorly on the second balanced data set (Objects).

This is due to DRFs simultaneous parameter learning, which tends to overweight

the local-consistency potential. Since the observation-matching is underweighted,

edges become degraded during inference. Terminating inference before convergence

could reduce this, but this is not desirable for automatic classification. Overall,

our Support Vector Random Field model demonstrated the best performance on all

data sets, in particular those with imbalanced data and a greater proportion of edge

areas.

4.3.2 Brain Tumor Segmentation

There has been significant research focusing on automating challenging task – brain

tumor segmentation (see [18]). Markov Random Fields have been explored pre-

viously for this task [18], but recently SVMs have shown impressive performance

[17, 76]. This represents a scenario where our proposed Support Vector Random

Field model could have a major impact. We evaluated the four classifiers from the

previous section over seven brain tumor patients. Results for two of the patients

are shown in Figure 4.3, while average scores over the seven patients are shown in

Figure 4.4. Note that ‘SVM+prob’ in Figure 4.3 denotes the classification results

from the Support Vector Machine probability estimate computed by Equation (4.3).

The Logistic Regression model performs poorly at this task, but DRFs perform sig-

nificantly better. As with the synthetic data in cases of class imbalance, SVMs

outperform both Logistic Regression and the DRFs. Finally, SVRFs improve the

scores obtained by the SVMs by almost 5% (statistically significant at p < 0.002 on

a paired example t-test.)

We compared convergence times (inference) of the DRFs and SVRFs by mea-
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Figure 4.1: Examples on synthetic data sets

suring how many label changes occurred between inference iterations averaged over

21 trials (see Figure 4.5). These results show that DRFs on average require almost

3 times as many iterations to converge, due to the overestimation of the local-

consistency potential.

4.4 Conclusion

We have proposed a novel model for classification of data with spatial dependencies.

The Support Vector Random Field combines ideas from SVMs and CRFs, and

outperforms SVMs and DRFs on both synthetic data sets and an important real-
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Figure 4.2: Averaged Jaccard scores on synthetic data sets

world application. Our Support Vector Random Field model appears robust to class

imbalance, can be efficiently trained, converges quickly during inference, and can

trivially be augmented with kernel functions to further improve accuracy.
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Figure 4.3: Examples of the classification result
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Chapter 5

Semi Supervised Discriminative
Random Fields – SSDRF

5.1 Introduction

As discussed in Chapter 2, random field models are a popular probabilistic frame-

work for representing complex dependencies in natural image data. Discriminative

random fields (DRFs) [33, 36] directly model the conditional probability over the

pixel label field given an observed image. Following the basic tenet of Vapnik [73],

it is natural to anticipate that learning an accurate joint model should be more

challenging than learning an accurate conditional model. Indeed, recent experi-

mental evidences show that DRFs tend to produce more accurate image labelling

models than MRFs do, in many applications like gesture recognition [55] and object

detection [33, 36, 74, 69].

Although DRFs tend to produce superior pixel labellings to MRFs, partly by

relaxing the assumption of conditional independence of observed images given the

labels, the approach relies more heavily on supervised training. DRF training typ-

ically uses labelled image data where each pixel label has been assigned. However,

it is considerably more difficult to obtain labelled data for image analysis than for

other classification tasks, such as document classification, since hand-labelling the

individual pixels of each image is much harder than assigning class labels to objects

like text documents.

Recently, semi-supervised training has become important in many application

areas due to the abundance of unlabelled data. Consequently, many researchers are

now developing semi-supervised learning techniques for a variety of approaches,

including generative models [51], self-learning [10], co-training [7], information-
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theoretic regularization [13, 20], and graph-based transduction [78, 79, 80]. However,

most of these techniques have been developed for univariate classification problems,

or class label classification with a structured input [78, 79, 80]. Unfortunately,

semi-supervised learning for structured classification problems, where the predic-

tion variables are interdependent in complex ways, have not been as widely studied.

Current work on semi-supervised learning for structured predictors [2, 26] has

focused primarily on simple sequence prediction tasks where learning and inference

can be efficiently performed using standard dynamic programming. Unfortunately,

the problem we address is more challenging, since the spatial correlations in a 2-D

grid structure create numerous dependency cycles. That is, our graphical model

structure prevents exact inference from being feasible. Kumar et al. [36] and Vish-

wanathan et al. [74] argue that learning a model in the context of approximate

inference creates a greater risk of the over-fitting and over estimating.

In this chapter, we extend the work on semi-supervised learning for sequence

predictors [2, 26], particularly the DRFs based approach [26], to semi-supervised

learning of DRFs. There are several advantages of our approach to semi-supervised

DRFs. (1) We inherit the standard advantage of discriminative conditional versus

joint model training, while still being able to exploit unlabelled data. (2) The use

of unlabelled data enhances our ability to avoid parameter over-fitting and over-

estimation in grid based random fields even when using a learner that uses only

approximate inference methods. (3) We are still able to model spatial correlations

in a 2-D lattice, despite the fact that this introduces dependency cycles in the

model. That is, our semi-supervised training procedure can be interpreted as a MAP

estimator, where the parameter prior for the model on labelled data is governed by

the conditional entropy of the model on unlabelled data. This allows us to learn

local potentials that capture spatial correlations while often avoiding local over-

estimation. We demonstrate the robustness of our model by applying it to a pixel

denoising problem on synthetic images, and also to a challenging real world problem

of segmenting tumor in magnetic resonance images. In each case, we have obtained

significant improvements over current baselines based on standard DRF training.

5.2 Semi-Supervised DRFs (SSDRFs)

We formulate a new semi-supervised DRF training principle based on the standard

supervised formulation of [33, 36]. Let X be an observed input image, represented by
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X = {xi}i∈S , where S is a set of the observed image pixels (nodes). Let Y = {yi}i∈S

be the joint set of labels over all pixels of an image. For simplicity we assume each

component yi ∈ Y ranges over binary classes Y = {−1, 1}. For example, X might

be a magnetic resonance image of a brain and Y is a realization of a joint labelling

over all pixels that indicates whether each pixel is normal or a tumor. In this case,

Y would be the set of pre-defined pixel categories (e.g. tumor versus non-tumor).

A DRF is a conditional random field defined on the pixel labels, conditioned on the

observation X. More explicitly, the joint distribution over the labels Y given the

observations X is written

pθ(Y|X) =
1

Zθ(X)
exp

(∑

i∈S

Φw(yi,X) +
∑

j∈Ni

Ψν(yi, yj,X)
)

(5.1)

Here Ni denotes the neighboring pixels of i; Φw(yi,X) = log
(
σ(yiw

Thi(X)
)

de-

notes the node potential at pixel i, which quantifies the belief that the class label is

yi for the feature vector hi(X), where σ(t) = 1
1+e−t ; Ψν(yi, yj ,X) = yiyjν

Tµij(X) is

an edge potential that captures spatial correlations among neighboring pixels (here,

the ones at positions i and j), such that µij(X) is the pre-defined feature vector

associated with positions i and j from X. Zθ(X) is the normalizing factor, also

known as a (conditional) partition function, which is

Zθ(X) =
∑

Y

exp
(∑

i∈S

Φw(yi,X) +
∑

j∈Ni

Ψν(yi, yj ,X)
)

(5.2)

Finally, θ = (w,ν) are the model parameters. When the edge potential Ψν(yi, yj ,X)

is set to zero, a DRF yields a standard logistic regression classifier. The potentials in

a DRF can use properties of the observed image, and thereby relax the conditional

independence assumption of MRFs. Moreover, the edge potentials in a DRF can

smooth discontinuities between heterogeneous class pixels, and also correct errors

made by the node potentials.

Assume we have a set of independent labelled images X and their corresponding

pixel labels Y, Dl =
(
(X(1),Y(1))), · · · , (X(M),Y(M))

)
, and a set of independent

unlabelled images, Du =
(
X(M+1), · · · ,X(T )

)
. Our goal is to build a DRF model

from the combined set of labelled and unlabelled examples, Dl ∪ Du.

The standard supervised DRF training procedure is based on maximizing the

log of the posterior probability of the labelled examples in Dl
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CL(θ) =

M∑

k=1

logP (Y(k)|X(k)) −
ν

T
ν

2τ2
(5.3)

We assume a Gaussian prior over the edge parameters ν and a uniform prior over

parameters w. Here p(ν) = N (ν;0, τ2I), where I is the identity matrix. The hyper-

parameter τ2 adds a regularization term. In effect, the Gaussian prior introduces a

form of regularization to limit over-fitting on rare features and avoid degeneracy in

the case of correlated features.

There are a few issues regarding the supervised learning criteria (5.3). First,

the value of τ2 is critical to the final result, and unfortunately selecting the appro-

priate τ2 is a non-trivial task, which in turn makes the learning procedures more

challenging and costly [39]. Second, the Gaussian prior is data-independent, and is

not associated with either the unlabelled or labelled observations a priori.

Inspired by the work in [20] and [26], we propose a semi-supervised learning

algorithm for DRFs that makes full use of the available data by exploiting a form

of entropy regularization as a prior over the parameters on Du. Specifically, for a

semi-supervised DRF, we attempt to find θ that maximizes the following objective

function

RL(θ) =
M∑

m=1

log Pθ(Y
(m)|X(m)) +

γ

T∑

m=M+1

∑

Y

Pθ(Y|X(m)) log Pθ(Y|X(m)) (5.4)

The first term of (5.4) is the conditional likelihood over the labelled data set Dl,

and the second term is a conditional entropy prior over the unlabelled data set Du,

weighted by a tradeoff parameter γ. The resulting estimate is then formulated as a

MAP estimate.

The goal of the objective (5.4) is to minimize the uncertainty on possible configu-

rations over parameters. That is, minimizing the conditional entropy over unlabelled

instances provides more confidence to the algorithm that the hypothetical labellings

for the unlabelled data are consistent with the supervised labels, as greater certainty

on the estimated labellings coincides with greater conditional likelihood on the su-

pervised labels, and vice versa. This criterion has been shown to be effective for
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univariate classification [20], and chain structured CRFs [26]; here we apply it to

the 2-D lattice case.

5.3 Parameter Estimation

Several factors constrain the form of training algorithm: Because of overhead and

the risk of divergence, it was not practical to employ a Newton method. Although

the criticism of the gradient descent’s principle is well taken, it is the most practical

approach we will adopt to optimize the semi-supervised MAP formulation (5.4) and

allows us to improve on standard supervised DRF training.

To formulate a local optimization procedure, we need to compute the gradient

of the objective (5.4) with respect to the parameters. Unfortunately, because of

the nonlinear mapping function σ(.), we are not able to represent the gradient of

objective function as compactly as [26], which was able to express the gradient as

a product of the covariance matrix of features and the parameter vector θ. Never-

theless, it is straightforward to show that the derivatives of objective function with

respect to the node parameters w is given by 1

∂

∂w
RL(θ) =

M∑

m=1

∑

i∈Sm

(
y

(m)
i Ωw(y

(m)
i ,X(m)) −

∑

Y

pθ(Y|X(m))yiΩw(yi,X
(m))

)
hi(X

(m)) (5.5)

+ γ
T∑

m=M+1

∑

i∈Sm

(
∑

Y

pθ(Y|X(m))Λw,ν(X, yi, yj)yiΩw(yi,X
(m))

−
[∑

Y

pθ(Y|X(m))Λw,ν(X, yi, yj)
]

[∑

Y

pθ(Y|X(m))yiΩw(yi,X
(m))

])

hi(X
(m)), (5.6)

where

Ωw(yi,X
(m)) = 1 − σ(yiw

Thi(X
(m))),

Λw,ν(X, yi, yj) =
(
Φw(yi,X) +

∑

j∈Ni

Ψν(yi, yj,X)
)
,

and the terms in (5.5) are the gradient of the supervised component of the DRF over

1Note that the derivatives of objective function with respect to the edge parameters ν are
computed analogously.
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labelled data, and the second terms are the gradient of conditional entropy prior of

the DRF over unlabelled data.

It is intractable to compute the conditional partition function Zθ(X). Therefore,

as in standard supervised DRFs, we need to incorporate some form of approximation.

Following [5, 33, 36], we incorporate the pseudo-likelihood approximation, which

assumes that the joint conditional distribution can be approximated as a product

of the local posterior probabilities given the neighboring nodes and the observation

pθ(Y|X) ≈
∏

i∈S

pθ(yi|yNi
,X) (5.7)

pθ(yi|yNi
,X) =

1

zi(X)
exp

(
Φw(yi,X) +

∑

j∈Ni

Ψν(yi, yj ,X)
)

(5.8)

Using the factored approximation in (5.8), we can reformulate the training ob-

jective as

RLPL(θ) =

M∑

m=1

∑

i∈Sm

log pθ(Y
(m)
i |Y

(m)
Ni

,X(m)) (5.9)

+γ

T∑

m=M+1

∑

i∈Sm

∑

yi

pθ(yi|yNi
,X(m)) log pθ(yi|yNi

X(m))

Here, the derivative of the second term in (5.9), with respect to the potential

parameters w and ν, can be reformulated as a factored conditional entropy, yielding

∂

∂w
RLPL(θ) = (5.10)

M∑

m=1

∑

i∈Sm

(
y

(m)
i Ωw(y

(m)
i ,X(m)) −

∑

yi

pθ(yi|yNi
,X(m))yiΩw(yi,X

(m))

)
hi(X

(m))

+γ
T∑

m=M+1

∑

i∈Sm

(
∑

yi

pθ(yi|yNi
,X(m))Λw,ν(X, yi, yj)yiΩw(yi,X

(m))

−
[∑

yi

pθ(yi|yNi
X(m))Λw,ν(X, yi, yj)

]

[∑

yi

pθ(yi|yNi
,X(m))yiΩw(yi,X

(m))
])

hi(X
(m)),

Assuming the factorization, the true conditional entropy and feature expecta-

tions can be computed in terms of local conditional distributions. This allows us

efficiently to approximate the global conditional entropy over unlabelled data. Note

that there may be an over-smoothing issue associated with the pseudo-likelihood
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approximation, as mentioned in [36, 74]. However, due to the fast and stable per-

formance of this approximation in the supervised case [5, 36] we still employ it, but

below show that the over-smoothing effect is mitigated by our data-dependent prior

in the MAP objective (5.4).

5.4 Inference

As a result of our formulation, the learning method is tightly coupled with the in-

ference steps. That is, for the unlabelled data, XU , each time we compute Equation

(5.10), we perform inference steps for each node i and its neighboring nodes Ni. Our

inference is based on iterative conditional modes (ICM), and is given by Equation

(2.14).

We could alternatively compute the marginal conditional probability P (yi|X) =
∑

yS\i
P (yi, yS\i|X) for each node using the sum-product algorithm (i.e. loopy belief

propagation), which iteratively propagates the belief of each node to its neighbors.

Clearly, there are a range of approximation methods available including Globerson

et al. [19] that approximates computations of marginal conditional probability, each

entailing different accuracy-complexity tradeoffs. However, we have found that ICM

yields good performance at our tasks below, and is probably one of the simplest

possible alternatives.

5.5 Experiments

In this section, we present a series of experiments on synthetic and real data sets

using our novel semi-supervised DRFs (SSDRFs). In order to evaluate our model,

we compare the results with those using maximum likelihood estimation (MLE) of

supervised DRFs [33]. We consider the standard MLE DRF from [33], instead of

the parameter regularized DRFs from [36], as we want to compare different perfor-

mance of “learned parameters” from the MLE and MAP [36, 39]. That is, proper

regularization helps find “good” parameters achieving accurate classification results.

To quantify the performance of each model, we used the Jaccard score as defined

in Chapter 3.

The tradeoff parameter, γ, was hand-tuned and then held fixed at 0.2 for all the

experiments.
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 J: 0.933377

 J: 0.729527  J: 0.957983

Figure 5.1: Sample outputs from synthetic data sets. From left to right: Testing
instance, Ground Truth, Logistic Regression (LR), DRF, and SSDRF

5.5.1 Synthetic image sets

To see if our semi-supervised learning approach learns model parameters that achieve

good quality of classification results, we used 18 synthetic data sets, each with its own

shape (refer to Chapter 3). Figure 5.1 shows the results of using supervised DRFs,

as well as semi-supervised DRFs. Kumar et al. and Vishwananthan et al. [36, 74]

reported over-smoothing effects from the local approximation approach of pseudo-

likelihood (PL) while our experiments indicate that the over-smoothing is caused

not only by PL approximation, but also by the sensitivity of the regularization to

the parameters. However, using our semi-supervised DRF as a MAP formulation,

we have dramatically improved the performance over standard supervised DRF.

Note that the first row in Figure 5.1 shows good results from the standard DRF,

while the oversmoothed outputs are presented in the last row. Although the ML

approach may learn proper parameters from some of data sets, unfortunately its

performance has not been consistent since the standard DRF’s learning of the edge

potential tends to be overestimated. For instance, the last row shows that overes-

timated parameters of the DRF segment almost all pixels into a class due to the

complicated edges and structures containing non-target area within the target area.

Our semi-supervised DRF performance is, however, not degraded at all. Overall,

by learning more statistics from unlabelled data, our model dominates the standard

DRF in most cases. This is because our MAP formulation avoids the overestimate

of potentials and uses the edge potential to correct the errors made by the node

potential. Figure 5.2(a) shows the results over 18 synthetic data sets. Each point

41



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DRF

S
S

D
R

F

(a) Jaccard scores from DRF and SSDRF for all 18 synthetic data sets

1 2 3 4 5 6 7 8 9 10
3900

4000

4100

4200

4300

4400

4500

(b) Log likelihood values (Y axis) for a testing image by increasing ratio
(X axis) of unlabelled instances for SSDRF
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Table 5.1: Jaccard scores for DU

Testing from DU

Studies LR DRF SSDRF

p1 53.84 59.81 59.81
p2 83.24 83.65 84.67
p3 30.72 30.17 75.76
p4 72.04 76.16 79.02
p5 73.26 73.59 75.25
p6 88.39 89.61 87.01
p7 69.33 69.91 75.60
p8 58.49 58.89 73.03
p9 60.85 56.49 83.91

Average 65.57 66.48 77.12

Table 5.2: Jaccard scores for DS

Testing from DS

Studies LR DRF SSDRF

p1 68.01 68.75 68.75
p2 69.61 69.73 70.06
p3 23.11 21.90 71.13
p4 56.52 63.07 68.40
p5 51.38 52.36 51.29
p6 85.65 86.35 85.43
p7 66.71 68.68 70.27
p8 44.92 45.36 73.09
p9 21.11 20.16 38.06

Average 54.11 55.15 66.27

above the diagonal line in Figure 5.2(a) indicates SSDRF producing significantly

higher Jaccard scores for a data set at p < 0.001 level on a paired example t-test.

Note that our learning approach shows stable convergence as we increased the

ratio (nU/nL) of unlabelled data sets in our learning, as in Figure 5.2(b), where

nU denotes the number of unlabelled images and nL the number of labelled images.

This implies that model parameters tend to be insensitive to the increment of the

number of unlabelled data while fixing nL. Similar results have also been reported

in simple single variable classification task [20].

5.5.2 Brain Tumor Segmentation

We applied three models to the classification of nine studies from brain tumor MR

images. For each study, i, we partitioned the MR images into three disjoint sets:

DL
i , DU

i , and DS
i , where DL

i denotes labelled, DU
i unlabelled, and DS

i testing data

sets.

Per study i, LR and DRF take DL
i as the training set, and test on DU

i and DS
i .

Our SSDRFs is trained with labelled and unlabelled data: that is, DL
i and DU

i . The

tests are performed on DU
i and DS

i . Note that even though the ground truths of

DU
i are available, they are not considered during training steps.

We segmented the “enhancing” tumor area, the region that appears hyper-

intense after injecting the contrast agent (we also included non-enhancing areas

contained within the enhancing contour). Table 5.1 and 5.2 present Jaccard scores

of testing DU
i and DS

i for each study, pi, respectively. While the standard supervised

DRF improves over its degenerate model LR by 1%, semi-supervised DRF signifi-
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Figure 5.3: From Left to Right: Human Expert, LR, DRF, and SSDRF

cantly improves over the supervised DRF by 11%, which is significant at p <0.006

using a paired example t test. Considering the fact that MR images contain much

noise and the three modalities are not consistent among slices of the same patient,

our improvement is considerable. Figure 5.3 shows the segmentation results by over-

laying the testing slices with segmented outputs from the three models. Each row

demonstrates the segmentation for a slice, where the white blob areas for the slice

correspond to the enhancing tumor area.

5.6 Conclusion

We have proposed a new semi-supervised learning algorithm for DRFs, which was

formulated as MAP estimation with conditional entropy over unlabelled data as

a data-dependent prior regularization. We introduced a simple approximation ap-

proach for this new learning procedure that exploits the local conditional probability

to efficiently compute the derivative of the objective function.

We have applied this new approach to the problem of image pixel classification
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tasks. By exploiting the auxiliary unlabelled data, we are able to improve the

performance of the state of the art supervised DRF approach. Our semi-supervised

DRF approach shares all of the benefits of the standard DRF training, including the

ability to exploit arbitrary potentials in the presence of dependency cycles, while

improving accuracy through the use of the unlabelled data.

The main drawbacks of our SSDRF (in comparison with DRFs) are (1) the in-

creased training time involved in computing the derivative of the conditional entropy

over unlabelled data and (2) the challenge in selecting an appropriate γ. Never-

theless, the algorithm is efficiently trained on unlabelled data sets, and obtains a

significant improvement in classification accuracy over standard supervised training

of DRFs as well as the iid logistic regression classifier. To further accelerate the

performance with respect to accuracy, we may apply loopy belief propagation [75]

or graph-cuts [8] as an inference tool. Since our model is tightly coupled with in-

ference steps during the learning, the proper choice of an inference algorithm will

most likely improve segmentation tasks.
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Part II

Models – Efficiency

46



Chapter 6

De-coupled Conditional
Random Fields – DCRFs

6.1 Introduction

There are a number of random field approaches for classification tasks of spatially

correlated data instances, including generative models like Markov Random Field

(MRF) [31, 42], as well as discriminative models, including Conditional Random

Field (CRF) [37] and its variants – Discriminative Random Field (DRF) [35], As-

sociative Markov Nets (AMN) [68] , and our recent Support Vector Random Field

(SVRF) [40]. As MRFs assume conditional independence among observations given

class labels, their learning procedures tend to be faster than the discriminative mod-

els (variants of CRFs); however, this assumption means they are not as accurate.

The more accurate models, unfortunately, can be prohibitively slow, which may not

be tolerable to classification tasks such as image segmentations.

In this chapter, we propose a novel approach to our discriminative random fields

model to make it more efficient. We develop a “decoupled” learner, DCRF to avoid

the expense of learning parameters in the framework of random fields. We found

that, as expected, the resulting DCRF is much faster to train than the corresponding

(non-decoupled) SVRFs. Moreover, we were pleasantly surprised to find that this

improvement in speed did not cost a degradation in accuracy: that is, our DCRF is

essentially as accurate as SVRFs!

Section 6.2 presents a quick overview of related systems. It motivates our ap-

proach by noting that these systems – especially the ones that produce accurate

labelling – can be very slow to train. Section 6.3 introduces our novel “Decou-

pled Conditional Random Field” (DCRF) approach, and provides details for both
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learning the parameters and for inference (i.e. classification — here segmentation).

Section 6.4 demonstrates the accuracy and efficiency of our model by presenting ex-

perimental results over various domains, including the challenging real-world prob-

lem of segmenting brain tumor from MRI scans.

6.2 Related Work

In the MRF framework, the probability over the n joint labels Y given the obser-

vations X is written as

P (Y |X ) ∝ P (Y )P (X |Y ) = P (Y )

n∏

i

P (xi | yi )

As the factorization of the likelihood is only a crude approximation to reality, this

approach will typically produce inferior labels. The prior P (Y ) can explicitly in-

corporate dependencies among the labels. Due to the equivalence between MRFs

and Gibbs Distributions [5], an MRF is formulated as

P (Y |X ) ∝
1

Z(X)
exp




∑

i∈S

D(xi, yi) +
∑

j∈Ni

V (yi, yj)



 , (6.1)

where S is the set of nodes (i.e. pixels), V (yi, yj) is a potential function of labels,

yi and yj, Ni is a set of neighbors of node i, and the “partition function” Z(X) =
∑

Y exp
[∑

i∈S D(xi, yi) +
∑

j∈Ni
V (yi, yj)

]
is used to normalize the equation.

Notice V (yi, yj) depends only on the labels yi and yj, but not on the infor-

mation about the pixels {xi}i∈S . Therefore, an MRF prefers a set of labels Y∗

where neighbors have the same value. Also, as the partition function Z(X) involves

summing over all |L||S| possible labellings (assuming there are |L| labels for each

pixel), it is very expensive to compute. However, an MRF assumes D(xi, yi) to

be Gaussian distributions, and hence estimating maximum likelihood parameters is

computationally efficient [4, 29, 35, 77].

CRFs have been extended to two well-defined models that differ by their choice

of Association potentials: Discriminative Random Fields (DRFs) [35], which use

Logistic Regression, and Support Vector Random Fields (SVRFs) [40], which use

Support Vector Machines (SVM) [9]. Note that CRF variants produce better ac-

curacy than their generative alternative, MRFs. However, their good performance

compromises the efficiency in learning steps.
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For example, the learning task in DRFs and SVRFs involves estimating the

parameters w and ν that maximize the log-likelihood of the given data sample.

Both systems use a regularization term to avoid overfitting. The parameters are

estimated by maximizing the log-likelihood for M images formulated as

〈 ŵ, ν̂ 〉 =

argmax
w,ν




M∑

k=1

∑

i∈S

Φw(y
(k)
i ,X(k)) +

∑

j∈Ni

Ψν(y
(k)
i , y

(k)
j ,X(k)) − log(Z(k)(X))



−
ν

T
ν

2τ2

(6.2)

Although SVRF significantly improves the accuracy of DRF even when features

may be correlated, SVRF has shown that selecting the appropriate τ2 in SVRF and

DRF is a non-trivial task, which makes the overall learning procedures more chal-

lenging and costly. Coordination Classifiers [22], an ensemble classifier, expresses

the spatial correlations by synthetically creating “neighborhoods” among iid data

instances. Its performance depends on how the neighborhoods are determined. As-

sociative Markov Nets (AMN) [68], a variant of Max-Margin Markov Nets [67], dis-

criminatively train Markov nets. AMNs exploit the spatial correlations by adopting

the maximum-margin principle of maximizing the margin between target labels and

the best runner-up label assignments. Hence, this process employs the same ideas

underlying SVM. SVRFs differ by actually performing the same basic computations

that an SVM performs. Note that a Boosted Random Field (BRF) [70] combines

a set of iid classifiers that correspond to Association potentials, where each poten-

tial is trained on a specific class to quantify the likelihood of a class on a pixel.

Hence, a BRF does not explicitly consider the spatial correlation. We see there are

problems in training each of the systems mentioned in this section: some are inac-

curate (as they use inappropriate models), while others require significant amount

of computation time, or user inputs.

6.3 The DCRF System

This section presents the foundations to formalize our Decoupled Conditional Ran-

dom Field, DCRF. We first motivate our approach of decoupling the training of the

two potentials, then discuss inference — i.e. how to use the resulting system to

segment an image.
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First, if we ignore the dependencies among the labels of the pixels ( i.e. as-

sume that they are independent and identically distributed), we would use only the

“Association” potential, which attempts to maximize

PA(Y |X ) ∝ exp

(
∑

i∈S

Φ(yi,X)

)

(6.3)

Many existing classifiers ( e.g. Näıve Bayes, Logistic Regressions, SVM, etc.) are

(perhaps implicitly) attempting to optimize Equation (6.3).

Alternatively, a discriminative model that only considers spatial coherence would

attempt to optimize

PLC(Y |X ) ∝ exp

(
∑

i∈S

Ψ(yi, yNi
,X)

)
(6.4)

where yNi
are the labels of i’s neighbors.

Equation (6.3) and (6.4) provide different frameworks for approximating the

probability distributions P (Y |X ). Each is only partial, in that the first (second)

does not properly incorporate spatial coherence (resp., the local observations).

Notice typical CRF models involve the sum of these equations — written in log

space as
∑

i∈S

Φ(yi,x) +
∑

i∈S

Ψ(yi, yNi
,X) (6.5)

(Compare to Equation (2.17). Note that the neighborhood is considered in Ψ(·)

explicitly.)

We now observe that the potentials forms in Equation (6.5) follows MAP formu-

lations for the joint probability over labels: that is, we can approximate the global

optimal joint class labels by maximizing the local probability distribution using the

principles of pseudo-likelihood and Iterative Conditional Modes (ICM)1 [9] — i.e.

P (Y |X ) =
∏

i∈S P ( yi | yNi
,X ). Thus, for each pixel i, the formulation to model

P ( yi | yNi
,X ) given its neighbors yNi

is:

Φw(yi,x) +
∑

j∈Ni

Ψν(yi, yj ,X) (6.6)

N.b., as we will only be seeking the argmax, we can safely omit the normalizing

“− log(zi)” term from Equation (6.2), as it will be constant here.

1Although pseudo-likelihood and ICM principles are only guaranteed to achieve local maxima,
the discussion of the global optimality issues is beyond the scope of this chapter.
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Equation (6.6) shows that we can approximate a CRF model using a decoupled

system, corresponding to the simple sum of two different potentials. (This differs

from standard ensemble methods [14], as we are directly combining potentials rather

than classifiers.) We will see that, as expected, it is much faster to learn these

individual summands individually , before combining them. Our empirical evidence

shows that, surprisingly, the resulting DCRF system can be as accurate!

6.3.1 Association-only Potential

The association potential provides a local likelihood being class label yi for feature

characteristics xi to describe pixel i: PA( yi |xi ). Our “decoupling” principle allows

us to select a function that quantifies the conditional probability for a given observed

instance. We incorporate a maximal margin approach where the two classes of pixels

are classified based on a hyperplane that maximizing the distances between the two

classes.

As suggested above, we consider a potential based on SVMs; note this method

inherits the SVM’s relative insensitivity to class imbalance, and their ability to

typically outperform other discriminative classifiers such as GLMs, especially in

cases where the classes overlap [62], which is common case in imaging applications.

We find a decision function f(x) by solving the optimization problem as in

Equation (2.8) over the αis, and produce f(x) =
∑n

i=1 αi yi x
T
i x + β0 then use

the decision function sign ( f(x) ) to classify a test instance x. Our implementation

actually uses Sequential Minimal Optimization (SMO), which is even more efficient

than standard SVM implementations [52].

Notice that f(x) computes the distance to the hyperplane from the instance x.

We can use this to compute a sigmoid function [53, 43]:2

Φw(yi,X) =
1

1 + exp(AA × yi(wTxi) +BA)
(6.7)

using the parameters AA and BA.

As noted above, our approach (like SVRFs) differs from Max-Margin Markov

Nets (M3N) [67] and AMN [68] as those system explicitly maximize a margin between

the target labels and most probable label assignments considering joint labels.

2We augment the instance xi by including a constant 1, and hence the w include a “constant”
term as well.
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6.3.2 Local-Consistency-only Potential

We use our “local-consistency-only” potential to model the “neighborhood coher-

ence” between pixels. Its goal is to encourage instances within the specified neighbor-

hood system to have the same labels when their feature characteristics are similar,

and therefore is mainly to smooth regions (and hence remove errors) produced by

the Association-only potential.

For similar instances in a neighborhood to have similar (in our discrete case,

“identical”) class labels, we introduce a max-margin based potential, which tries

to make the labels of a testing instance same as the labels of its neighbors. This

potential learns a pairwise max-margin model that quantifies the likelihood that two

pixels will have the same class labels, given their descriptions:

Ψν(yi, yj ,X) = I(yi, yj) × [νT 〈ψ(xi,xj), 1 〉] (6.8)

where I(yi, yj) returns +1 if yi = yj, and −1 otherwise. (We define ψ(xi,xj) below.)

Equation (6.8) reduces the pairwise discriminative learning problem to the binary

class problem, over similar versus dissimilar classes. That is, we apply Quadratic

Programming (QP) (refer to Equation (2.8)) to the training set

Snew = { (ψ(xr,xj), I(yr, yj)) | j ∈ Nr }

over all instances r with neighbors j ∈ Nr, to find the optimal parameter ν.

Note that each pair of pixels is projected by ψ(·) onto a similarity feature space.

In this chapter, we use ψ(xi,xj) = xT
i xj , which produces a scalar: the cosine mea-

sure of the similarity. Note this attains its largest value when the two vectors match

one another. Due to “localized” neighborhood system for the Local-consistency po-

tential, the increment to the training data size only grows linearly with the number

of pixels. Notice that feature-wise space depends on ψ(·).

As we will need to combine this potential with the Association-only one, we need

to produce values within a “comparable” range. We therefore convert Equation (6.8)

to the probability scale, using the same transformation used to produce Equation

(6.7).

Ψ(yi, yj,X) =
1

1 + exp (ALC × I(yi, yj)(νT 〈ψ(xi,xj), 1 〉) +BLC)
(6.9)

where again ALC and BLC are set to optimize the fit to a sigmoid, which produces

a probability distribution as in Association-only potential.
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6.3.3 Inference

Our goal in producing this DCRF system is then to find relevant regions within

images — e.g. tumor regions within MR images of a brain. This involves inferring

a binary label (tumor versus non-tumor) for each individual pixel. As noted above,

this corresponds to computing the most likely vector Y∗ = argmaxy P (Y |X ) given

the evidence X, based on the (possibly unnormalized) potential functions. In our

case, we will use the potential function in Equation (6.6), which is the sum of

the Association-only PA( · ) (Equation (6.3)) and Local-Consistency-Only PLC( · )

(Equation (6.4)) potentials. While the inference seeking Y∗ can be expensive,

there are several existing approximation algorithms for CRFs, including Iterative

Conditional Modes (ICM) [9], Graph-Cuts (GC) [8], and Loopy Belief Propagation

(LBP) [28].

DCRF uses ICM since it converges quickly and has been shown empirically to

produce accurate results [40, 5].3 ICM iteratively maximizes the local conditional

probabilities, assuming the other labels are correct:

y∗i = argmax
yi∈{+1,−1}

P ( yi | yNi
,X )

= argmax
yi∈{+1, −1}

Φ(yi,X) + Ψ(yi, yNi
,X) (6.10)

Of course, we could add the normalization factor zi in Equation (6.10), which

constrains outputs to follow probability axioms. However, the constant factor is

irrelevant, since our inference approach seeks only the most likely value.

Our DCRF model uses QP within SMO. Assuming each image has n pixels, and

each pixel has E neighbors then learning the Association-only potential requires

O(n2) steps per image, and Local-Consistency-only potential requires O( (n×E)2 )

per image. Here, we used E is 4. Inference (here, classifying the regions in a test

image) requires O(n) per iteration. Empirically, we found that ICM converged after

5 iterations, on average.

3While GC and LBP are considered be the best inference methods, even if the graph structure
has loops, we used ICM for the reasons shown above. Note this issue is orthogonal to the goal of this
chapter, which is to compare the training time and accuracy of our DCRF to other CRF-related
models.
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Target Test Image LR DRFs SVM SVRFs DCRFs

Figure 6.1: Results from synthetic image sets. Left to right: Target, Test Image,
LR, DRFs, SVM, SVRFs, and DCRFs. Rows 1 to 5 from the top down correspond
respectively to datasets 1, 3, 10, and 11 in Figure. 6.2

6.4 Experiments

We implemented the Decoupled CRFs described above, DCRFs, and compared it

with other random field techniques on both synthetic and real-world tasks. As

many imaging tasks are very imbalanced (in that the “positive” class includes only

a small percentage of the pixels), the standard evaluation criteria of “accuracy” is

problematic. We therefore use the Jaccard score. The details about data sets and

Jaccard score are discussed in Chapter 3.

6.4.1 Synthetic image sets

We first apply our DCRFs to artificially generated images where foreground and

background pixels are significantly corrupted by noises. This in turn provides us

with an opportunity – how our approach relaxes classification results based on iid
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Figure 6.2: Averaged Jaccard scores on synthetic data sets

assumption by encoding spatial correlations.

Figure 6.1 shows some of the experiment results. Each row in Figure 6.1 presents

one example, showing (from left to right), the true labels, the test images, and

outputs from Logistic Regression (LR), DRFs, SVM, SVRFs, and DCRF. We see

that, overall, SVRFs and DCRFs are most accurate. Especially when the test images

are imbalanced, LR (third column) and DRFs (fourth column) produce degraded

outputs caused by the poor parameter estimations from the imbalanced data.

As shown in Figure 6.1, SVRFs’ results do not always produce highest Jaccard

scores, which implies that regularization term τ2 in the SVRF frameworks impacts

on the accuracy. The “appropriate” value of this parameter for data samples helps

find “optimal” model parameter ν producing good segmentation results. In general,

it is not trivial to find such “good” values. While we can use cross-validation method

to estimate this parameter, others [35, 40] have argued that this does not guarantee

effective performance.

Figure 6.2 shows that the DCRF and the SVRF are the two best performers

overall, at this segmentation task, dealing with both the balanced and imbalanced

data: each was significantly better than the others at the p < 0.001 level based on a

paired example t-test; moreover, our DCRF performs better than the SVRF at the
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Table 6.1: Average elapsed learning time (seconds)

DRF SVRF DCRF

Synthetic 1581.3 714.5 21.2

Brain Tumor 1392.4 1209.4 82.3

p < 0.004 level. Note that the SVRF can sometimes produce better results than the

DCRF— see data sets 3, 9, and 12 in Figure 6.2. Here, we assume that the SVRF

found good estimates for τ2. It is also shown in data sets 6, 7, 9, 12, and 14 that

the good estimation of the regularization of DRFs help DRFs perform better than

SVM.

The first row of Table 6.1 reports the average learning time for DRFs, SVRFs and

DCRFs over these fifteen cases. Notice first that our DCRF requires significantly

less time than the other two approaches — 30 times faster than SVRF and over

70 times faster than DRF. This is because there are fast ways to solve DCRF’s

underlying QPs. We found the SVRF was superior to DRF at the p < 0.001 level.

We attribute this to the observation that the SVRF learner regards the Association

potential as a constant while learning the Local consistency potential, but DRFs

attempt to optimize both potentials simultaneously. Finally, recall that our DCRF

does not compute the partition function during the training.

6.4.2 Brain Tumor Segmentation

We next apply our various models to the task of segmenting brain tumors from MR

images. In our experiment, we evaluate the following seven classifiers on thirteen

different time points from seven patients. Maximum Likelihood (ML ≡ degener-

ate MRF), Logistic Regression (LR ≡ degenerate DRF), SVM (degenerate SVRF),

MRF, DRF, SVRF and DCRF. For each of the Random Field methods, we initialize

inference with the corresponding degenerate classifier ( i.e. Maximum Likelihood,

Logistic Regression, or SVM). To provide a fair comparison between SVM-based

models (SVRF and DCRF) and the other models, we only used the linear kernel.

We consider the following 3 tasks, each using ground truth defined by an expert

radiologist:

The first task is the relatively easy one of segmenting the “enhancing” tumor

areas — the region that appears hyper-intense after injecting a contrast agent. (Note

this includes non-enhancing areas contained within the enhancing contour – e.g.

necrotic areas.) The second task is to segment the entire edema area associated
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Table 6.2: Jaccard scores (percentage) for Enhancing tumor areas

Enhancing tumor Area
Studies ML MRF LR DRF SVM SVRF DCRF

1-1 23.1 24.6 44.4 46.1 50.7 52.8 53.2
2-1 0.0 0.0 61.3 61.5 87.4 87.7 87.1
3-1 69.2 69.7 61.8 61.8 83.0 84.8 86.8
3-2 40.1 40.3 84.8 84.6 85.7 85.8 85.8
4-1 26.9 27.3 49.1 50.4 78.8 81.7 82.6
4-2 58.9 59.7 68.3 70.2 76.7 77.9 79.2
4-3 49.2 50.2 71.3 71.6 88.2 88.1 88.8
4-4 65.6 68.2 87.5 87.1 87.0 87.1 86.9
5-1 67.0 67.5 52.2 51.4 82.8 84.3 84.1
6-1 37.4 37.6 76.4 76.2 79.2 80.4 80.0
7-1 63.2 63.0 75.5 76.7 81.0 81.4 81.1
7-2 37.7 39.3 75.9 75.8 86.5 87.3 86.8
7-3 45.3 45.6 81.8 81.5 87.7 87.6 87.8

Average 44.9 45.6 63.6 68.8 81.1 82.1 82.3

with the tumor, which is significantly more challenging due to the high degree of

similarity between the intensities of edema areas and normal cerebrospinal fluid in

the various modalities. The final task is segmenting the gross tumor area as defined

by the radiologist. This can be a subset of the edema but a superset of the enhancing

area, and is inherently a very challenging task even for human experts, given the

modalities examined.

Tables 6.2, 6.3 and 6.4 present the classification results for the three tasks. Over

all three tasks, we see that the best results are typically obtained by either DCRFs

and SVRFs, which are comparable to one another, and statistically better than the

rest: The differences between SVRFs and the next best, SVM, across the three tasks

is significant at the p < 0.000002 level based on a paired example t-test, but the

same t-test between SVRFs and DCRFs across the tasks indicates no difference —

i.e. here p = 0.37. However, Table 6.1 (second row) shows that our method requires

significantly less training time — by a factor of 14! Although SVM performed very

well visually on the three tasks(see Figure 6.3), just as we saw on the synthetic data

results, this performance can not always be guaranteed.

In Table 6.2, the results from the second patient “2-1” produced an interesting

observation; significant overlap between Gaussians in the high dimensional feature

space leads ML and subsequently MRFs to misclassify all areas as non-tumors. This

example shows that inappropriate modelling of P (X |Y ) can generate extremely
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Table 6.3: Jaccard scores (percentage) for Edema tumor areas

Edema Area
Studies ML MRF LR DRF SVM SVRF DCRF

1-1 21.9 21.6 35.7 36.7 58.0 58.2 58.0
2-1 33.3 34.2 59.2 61.4 89.4 89.2 89.3
3-1 34.4 34.4 75.5 77.2 81.7 82.2 81.9
3-2 47.6 48.1 73.6 74.1 80.3 81.1 80.5
4-1 28.3 29.1 38.6 41.2 54.0 55.4 54.6
4-2 43.2 46.8 45.3 46.7 54.7 57.7 54.9
4-3 35.4 35.4 69.9 70.6 69.2 69.1 69.1
4-4 44.1 43.7 78.6 79.0 77.7 77.3 79.5
5-1 47.8 48.6 63.6 65.7 74.8 76.9 74.6
6-1 40.3 40.1 79.3 79.7 82.2 83.7 82.9
7-1 74.9 77.7 91.2 92.4 94.8 94.9 94.9
7-2 39.2 40.4 80.9 82.7 83.1 82.8 83.1
7-3 54.1 53.9 79.3 80.7 84.6 84.5 85.6

Average 41.9 42.6 62.2 68.3 75.7 76.4 76.1

poor performance (see the first row of Figure 6.3). Although the segmentation tasks

for edema and gross tumor areas are very hard, the best discriminative approaches

( i.e. SVRF and DCRF) still produce segmentations that are typically very similar

to the manual segmentations, for all three tasks.

6.5 Conclusions

As standard independent and identically distributed classification algorithms do not

consider spatial correlations, they typically fail to correctly classify such correlated

data instances. Such spatial correlations can, however, be effectively modelled by

various Random Field frameworks. However, these systems (especially the ones

that work effectively.) can require a significant amount of time to learn. This time

constraint makes such models inappropriate for large scale real-world problems, such

as segmenting brain tumors.

In this chapter, we have proposed a Decoupled CRF (DCRF) to improve the effi-

ciency of a discriminative Random Field method for finding regions in an image. Our

proposed model first learns the two potentials (Association and Local-consistency)

independently, each based on a variant of Support Vector Machines. Afterwards, to

segment regions in a novel image, it uses a new potential that is the simple sum of

these potentials, using ICM (with respect to this combined potential) to produce a

labelling. One main drawback in the DCRF is the independently learned potentials

58



Table 6.4: Jaccard scores (percentage) for Gross tumor areas

Gross Tumor Area
Studies ML MRF LR DRF SVM SVRF DCRF

1-1 19.3 19.5 39.4 40.9 40.7 40.5 41.1
2-1 35.4 35.7 65.1 66.1 78.2 76.9 78.0
3-1 44.4 46.1 72.9 73.4 77.9 78.7 78.2
3-2 51.2 51.3 76.3 76.2 78.1 78.8 80.2
4-1 37.4 38.7 39.4 40.1 41.4 41.2 42.1
4-2 38.0 40.2 39.7 39.4 62.1 64.9 62.1
4-3 66.0 68.5 73.3 73.5 64.4 64.5 64.1
4-4 46.7 45.8 83.8 83.5 86.0 87.0 86.2
5-1 50.1 50.9 65.3 68.3 82.8 84.8 83.4
6-1 46.6 47.6 79.6 79.4 87.6 88.2 87.8
7-1 66.4 66.3 71.9 73.2 74.6 74.1 74.7
7-2 49.6 52.4 68.3 67.9 72.7 72.9 72.5
7-3 43.4 43.7 73.5 72.7 81.6 81.2 82.0

Average 45.7 46.7 60.6 65.7 71.4 71.8 71.7

do not guarantee “optimality” in modelling spatial correlations.

Our empirical results — on both synthetic and real-world data — show that

our DCRF approach is virtually as accurate as the most accurate random field for

this task (SVRF), but the learning time is many times faster (here, by a factor over

14 in one case, and over 30 in another). In addition, our model produces effective

classification results, even when data sets are heavily imbalanced.

We currently use only (a variant of) linear SVMs; we expect further accuracy

improvements by using other kernels. We also use only a very simple approach

for combining the two potentials; again we anticipate other combination rules may

produce yet better results.
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Human
Expert ML MRF SVRF DCRFSVMDRFLR

Figure 6.3: Classification results of seven methods on five different test slices, com-
pared with human expert segmentation
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Chapter 7

Pseudo Conditional Random
Fields – PCRFs

7.1 Introduction

As with much of related work, there are a range of approximation methods available

to learn parameters in the framework of general random fields including DCRFs [39]

and Pairwise training [64, 65]. As an alternative to such approximations, we present

a novel efficient supervised learning framework, Pseudo Conditional Random Fields

(PCRFs), to model spatial compatibility among data instances. Although DCRFs

learn two sets of model parameters including explicit learning parameters for edge

potentials, our PCRFs can be viewed as a regularized iid discriminative classifier,

where the classification task is performed with a regularization term that explicitly

incorporates correlated dependencies. Specifically, a classifier is first trained under

the iid assumption, and then relaxes its iid assumption during inference step. In

other words, we regularize a decision of an iid classifier for a pixel by considering its

neighboring pixels’ labels as well as their feature characteristics.

We demonstrate our framework’s performance by applying it to classify pixels

using synthetic and real world problem of MR image analysis. In each case, we

have obtained significant accuracy improvement over baselines – LR and SVM. In

addition, the PCRF is as accurate as state-of-the-art CRF variants. Note that our

training only involves learning an iid learner, and therefore its learning is much more

efficient than CRF-variants.

Section 7.2 briefly reviews related work highlighting our motivation. Section 7.3

then introduces our novel framework – PCRFs – describing the two major steps

in typical supervised learning – Learning and Inference. Section 7.3.2 discusses
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one major contribution to relax the iid assumptions made from base classifiers.

Section 7.4 shows empirical experiments for efficiency and effectiveness of our model.

In Section 7.5, we summarize our PCRF, also comparing with DCRFs.

7.2 Related Works

Extensions to CRFs such DRFs and SVRFs were designed to overcome these disad-

vantages of MRFs by relaxing conditional independency and incorporating observa-

tions when formulating spatial dependency. In Equation (2.17), the typical CRF’s

formulation is strictly based on conditional probability distribution, while an MRF

is formulated on joint distribution of X and Y. In addition, the CRF variants in-

corporate observations of data instances using the Ψ(yi, yj,X). Empirically, CRF

variants have shown better accuracy over spatially correlated classification problems

than MRFs [35, 37].

The effectiveness of DRFs and SVRFs is compromised by the computational

complexity of computing Z(X) (refer to Equations (2.17) and (4.1)). Typically,

their learning algorithms involve maximizing conditional likelihood which requires

computing the derivatives of their objective. This in turn involves computing the

conditional expectation of feature [34, 35, 40]. DRFs and SVRFs use approxima-

tions to avoid intractable computations associated with the conditional expectation.

Recently, an alternative technique to deal with the computation of Z(X), matrix-

tree theorem, was applied to non-projective dependency parses: that is, dependency

parses involves the exponential number of structured possibilities in sentence pars-

ing tasks [32]. However, the näıve application of the theorem yields time complexity

O(n4) for n words in a sentence.

The Decoupled Conditional Random Fields (DCRF) (discussed in Chapter 6)

was introduced to improve the efficiency of CRF-based formulations by decoupling

the two potential functions when learning parameters. Specifically, the DCRF sys-

tem views a CRF as the combination of two “independently learned” potentials [39].

PCRFs differ from DCRFs since PCRFs only require learning parameters for a sin-

gle potential. Coordination Classifiers [22], as an ensemble classifier, marginalizes

its local consistency potential to compute the singleton potential. This means that

two potentials are dependent which differs from our PCRFs.

In the next section, we propose a novel system, PCRF that efficiently learn

parameters that model spatial correlation, efficiently learning model parameters.
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This also produces effective classification results.

7.3 Pseudo Conditional Random Fields – PCRFs

While it is less expensive to estimate the maximum likelihood MRF parameters

than the CRF parameters, CRF (and its variants) are more accurate. We introduce

our Pseudo Conditional Random Fields (PCRF) system to take advantage of both

approaches.

Our PCRF seeks the most-likely labelling, viewed as

Pθ(Y |X ) =
∏

i∈S

Pθ( yi |X,Y − yi )

Given feature vectors (observations) – xi and xNi
for each pixel i and its neighboring

pixels Ni – as well as the class label yj for each neighboring pixel j ∈ Ni, the PCRF

formulation then defines

Pθ( yi |xi,xNi
, yNi

) = ψθ(xi, yi) × ρNi
, (7.1)

where the potential function ψθ(.) is parameterized by θ and ρNi
is a regularization

term that helps minimize uncertainty of ψθ(.) by incorporating spatial dependencies.

If we simply define ψθ = pθ(yi|xi) and ρNi
= 1, i ∈ S, we obtain the typical local

conditional probabilistic model that corresponds to an iid classifier – for instance,

logistic regression. However, the challenges to represent regularization term ρNi
still

remain: (1) it explicitly needs to model spatial dependency; (2) it needs to be data

dependent, implying that spatial correlations should consider observation similarity.

Therefore, we define ρNi
as a product of two functions, considering neighboring pixels

Ni.

ρNi
=
∏

j∈Ni

φo(xi,xj) × φc(yi, yj) (7.2)

Note that φo(xi,xj) is a potential function that quantifies how much observations

of pixels at i and j are comparable. The φc(yi, yj) function measures interactions

between two class labels – yi and yj – and specifies how continuity with respect to

class labels can be determined. In other words, if φc(y, y′) gives a large score when

y ≡ y′, then it prefers to have neighboring pixels being the same class label.

7.3.1 Learning

Typical CRF variant models are slow as they try to compute exact expectations,

when learning parameters [34, 35, 37, 41]. To approximate the computation, one
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can use pseudo-likelihood, contrastive divergence, and pseudo-marginal approxima-

tion [34, 35, 41]. However, none of them consistently outperforms the others [34].

In the PCRF system, the parameter to be learned is associated with ψθ(xi, y)

ψθ(xi, y) = σ(θTh(xi)), (7.3)

where σ(t) = 1
1+exp(−t) corresponds to a local discriminative classifier (i.e. logistic

regression), and h(xi) is a feature function. This explicitly quantifies the probabil-

ity being class y given observation xi. Note that we mainly focus on discriminative

approaches rather than generative ones due to their robustness over generative ap-

proaches [49].

PCRF’s learning algorithm is simple, and more efficient than CRF variants due

to its formulation (Equation (7.3)); we only need to find parameter θ∗ for a local

potential function ψ(.) by maximizing conditional log likelihood,

θ∗ = arg max
θ

∑

i∈S

[
yi log σ(θTh(xi)) + (1 − yi) log(1 − σ(θTh(xi)))

]
, (7.4)

where yi is a class label of observation xi.

7.3.2 Inference

Inference in our PCRF system explicitly incorporates spatial correlations. Our ob-

jective in inference is to find Y∗ maximizing P (Y|X), written in log scale as,

Y∗ = arg max
Y

log P (Y|X)

= arg max
Y

∑

i∈S

(
logψ(xi, yi) + log ρNi

)
, (7.5)

where X = {xi}i∈S and Y = {yi}i∈S . Note that Equation (7.5) requires considering

an exponential number of possibilities (i.e. 2|S| for binary case) to find an optimal

Y∗. To efficiently solve Equation (7.5), we express it as,

log P (Y|X) =
∑

i∈S

logψ(xi, yi) +
∑

j∈Ni

(
log φo(xi,xj) + log φc(yi, yj)

)
(7.6)

Here, we see Equation (7.6) as an energy minimization problem, and therefore use

graph cuts as they are designed to solve the pixel classification problem [8].

We solve graph cuts using linear programming to seek max-flow/min-cut, where

a graph is represented with nodes corresponding pixels and edges connecting neigh-

boring pixels. The weight between nodes i and j is determined by φo(.) and φc(.).

64



Ground Truth Testing slice LR MRF(LR) PCRF

Figure 7.1: Synthetic data examples

Here, we need to introduce two auxiliary nodes: s and t denoting tumor and non-

tumor class labels, respectively. The weight between node s and node i is weighted

with ψ(xi, s), and ψ(xi, t) for node t and i.

7.4 Experiments

In this section, we present empirical results on synthetic and real world problem –

magnetic resonance image analysis – using our novel PCRF. In order to evaluate

our model, we first compare the results with baseline models – typical iid classifiers.

Since the PCRF can be viewed as a regularized discriminative iid classifier, we

want to highlight the effective performance of our PCRF in comparison with its

corresponding iid classifier. Second, we also perform experiments by augmenting

a typical MRF using a discriminative iid classifier that relaxes an MRF’s local

likelihood assumption. That is, we use a local conditional probability models –

logistic regression and support vector machine – in a typical MRF. They are denoted

as MRF(LR) and MRF(SVM), respectively.

We use φo(xi,xj) = xT
i xj which produces a scalar: the cosine measure of the

similarity. Note this produces its largest value as the two vectors match one another.

We also set φc(yi, yj) = α, if yi ≡ yj, otherwise 1−α, where α weighs the continuity

of same class labels. Here, we set α = 0.6

7.4.1 Synthetic image sets

This section demonstrates our PCRF performance as a binary classification over a 2-

D lattice comparing with base models using eighteen synthetic data sets introduced

in Chapter 3.

Examples in Figure 7.1 illustrate classification results from two of synthetic sets.

The first two columns are the ground truth and its testing image. The classification
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(a) PCRF vs. LR. The PCRF produces signif-
icantly more accurate results than LR at p <

0.0036
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(b) PCRF vs. MRF(LR). The PCRF is signif-
icantly more accurate than MRF(LR) at p <

0.0013

Figure 7.2: Jaccard scores (percentage) from synthetic data sets
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results are presented from third columns: Logistic Regression(LR), MRF(LR), and

PCRF. It is clear that LR produces the worst classification results, even though it

accurately retrieves shape boundaries. Background pixels in LR are classified as

target labels since a classification decision for a pixel is made only by considering

the observation of the pixel. MRF(LR) produces better accuracy than LR since it

simply relaxes LR’s decisions by considering neighboring pixels’ label distributions.

This results in smoothing effects, but still suffers from under estimates of background

pixel labels.

The last column demonstrates effects of considering neighboring pixels with re-

spect to their labels as well as observation similarity. Our PCRF distinguishes

boundaries clearly, and the background pixels are relatively more corrected compar-

ing with LR and augmented MRF. This is because the PCRF formulation avoids

under estimates of spatial compatibility. Figure 7.2 supports robustness of PCRF

from eighteen data sets. Each point above the diagonal line in Figure 7.2 indicates

PCRF producing higher Jaccard scores for a data set.

7.4.2 Brain Tumor Segmentation

We first applied three models – LR, MRF(LR), and PCRF – to the classification of

eleven studies from brain tumor MR images, where an MR image (a.k.a. slice) has

three modalities available. Refer to Figure 3.3 for the examples of three modality.

We segmented the “enhancing” tumor area, the region that appears hyper-intense

after injecting the contrast agent, and we also included non-enhancing areas con-

tained within the enhancing contour. Figure 7.3 shows examples of classification

results including the ground truth and testing slice at the first and second column,

respectively. It is clear that the visual identification of tumor areas is not a trivial

task.

From examples on the first row in Figure 7.3, LR correctly classifies pixels from

the slice with an outlined tumor contour, but it also incorrectly produces many small

blobs as false positives. As shown in Figure 7.3, MRF(LR) further smooths rough

boundaries of LR result. However, it still suffers from many false positives. PCRFs

show better smoothed tumor areas. From the second and third rows examples, it

is clear that PCRF is robustly effective. Overall, PCRF’s accuracy is higher than

the other two models — LR and MRF(LR) — at the p < 0.0045 and p < 0.0048

level on a paired example t-test, respectively. Figure 7.4 presents Jaccard scores
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(a) Testing slice (b) Ground Truth (c) LR (d) MRF(LR) (e) PCRF

Figure 7.3: Classification results from various models. PCRF reduces false positives,
resulting in better smoothed tumor shapes

(percentage) from all testing results.

Figure 7.5 presents other segmentation results, showing the results from seg-

menting the entire Edema Area associated with the tumor. This is known to be

more challenging because of the high degree of similarity between the intensities of

edema areas and normal cerebrospinal fluid in the various modalities.

Here, we implement PCRF(SVM), which differs from the PCRF system by using

an SVM to compute the ψ(x, y) (from Equation (7.5)) which models the relationship

between a voxel’s feature vector and its label. An SVM produces the distance be-

tween a hyperplane and a data instance as its decision value fSV M (xi) ∈ (−∞,+∞).

To normalize this unbounded range, we fit this value to a sigmoid function:

gβ0,β1
(fSV M (x)) = P ( y = +1 | fSV M (x) ) =

1

1 + exp(β0 + β1(fSV M (x)))
, (7.7)

estimating the parameters β0 and β1 from the training data {(fSV M (xi), yi)}i. Refer

to Section 4.2.1 for details.

Figure 7.6 compares the percentage Jaccard scores of PCRF(SVM) vs SVM

to classify enhancing, edema, and gross tumor areas. We see that PCRF(SVM)

outperforms its base classifier SVM at p < 0.0001.
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(a) PCRF vs. LR
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(b) PCRF vs. MRF(LR)

Figure 7.4: Jaccard scores (percentage) for Enhancing areas
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Slice  Ground Truth 

LR(J=71.7461) MRF(LR)(J=71.7461) PCRF(J=72.6892)

SVM(J=81.8403) MRF(SVM)(J=82.2355) PCRF(SVM)(J=84.2077)

(a) PCRF removes most of false positives that were determined by
its base classifiers.

Slice  Ground Truth 

LR(J=65.9437) MRF(LR)(J=65.9437) PCRF(J=68.2344)

SVM(J=78.8773) MRF(SVM)(J=79.1667) PCRF(SVM)(J=83.0994)

(b) PCRF successfully recovers false negatives by filling in holes.

Figure 7.5: Classification results for edema areas. Jaccard scores(percentage) are
presented along with classification results.
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(a) PCRF(SVM) vs. SVM for Enhancing areas
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(b) PCRF(SVM) vs. SVM for Edema areas
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(c) PCRF(SVM) vs. SVM for Gross tumor areas

Figure 7.6: Jaccard scores(percentage) from Enhancing, Edema, and Gross Tumor
areas
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(a) PCRF(SVM) vs. SVRF

Figure 7.7: Jaccard scores(percentage) from Enhancing areas

We also compared our PCRF system with the state-of-the-art CRF variant, the

Support Vector Random Field (SVRF [40]), whose potential functions are based on

Support Vector Machines (SVMs). Figure 7.7 shows that PCRF(SVM) is compara-

ble with SVRF.

We also perform efficiency tests for the PCRF: how efficiently the PCRF is

learned. As our PCRF did not need to learn parameters for modelling its spatial

correlation, we anticipated it would be significantly faster during the learning stage.

The learning times (average across 11 patients, in seconds) confirm this:

Table 7.1: Average elapsed learning time (seconds)

DRF SVRF DCRF PCRF

Tumor segmentation 1697 1276 63 38

Our PCRF was over 40 times faster than the DRF and over 30 times faster than

the SVRF (p < 10−37 and p < 10−29, paired-samples t-tests for DRFs and SVRFs,

respectively). Even DCRF, known as the fastest CRF variant, is significantly slower

than our PCRF (p < 10−26).
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7.5 Conclusion

We found that the PCRF(SVM) system, which uses a linear SVM to map from

a data instance to label, worked effectively. We might be able to obtain further

performance improvements by using a non-linear kernel function. We are extending

this work to develop effective systems to overcome the limitations of patient-specific

training, by taking advantage using semi-supervised learning principles.

This chapter has presented the Pseudo Conditional Random Field (PCRF)

model, a CRF-inspired formulation that incorporates a specified potential func-

tion to model the relationships between neighboring data instances. Our PCRF is

efficient to train as it does not need to fit parameters that model the neighbor rela-

tionships. This in turn allows PCRF to be trained much faster than DCRFs. Both

PCRF and DCRF are designed to be efficient. Which is better? If one has sufficient

domain knowledge to express the two PCRF potentials, then we recommend using

PCRFs. As data distributions can be changed, the hand-tuned potentials, which

may require multiple trials but taking advantage of domain expertise, could have an

advantage of accurately reflecting data characteristics. Our PCRF can be viewed

as a regularized iid classifier, which relaxes its decisions by considering neighboring

instances with respect to labels and observations. Thus, during inference, PCRF

relaxes the iid assumption. We demonstrate that PCRF is effective by showing it

can effectively segment brain tumors from MR images, achieving state-of-the-art

segmentation results, but at a small fraction of the training time.
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Chapter 8

Conclusions and Future
directions

This dissertation presents several novel models that incorporate spatial correlations,

to produce systems that are effective segmenters, and that can be learned efficiently.

They are extensions to conditional random fields (CRFs), often based on discrimi-

native iid classifiers such as Logistic Regression and Support Vector Machines.

Support Vector Random Fields (SVRFs) and Semi-Supervised Discriminative

Random Fields (SSDRFs) produce accurate classification results both on synthetic

and real world problems, outperforming their degenerate iid classifiers as well as

several random fields. Decoupled Conditional Random Fields (DCRFs) and Pseudo

Conditional Random Fields (PCRFs) are designed to efficiently learn models for

spatial correlations, while remaining as effective as typical CRF variants.

8.1 Future Directions

There are several future directions that can lead to yet other interesting theoretical

and empirical results. One of major challenges in incorporating spatial correlations

in 2-D lattice is dealing with the computational complexity of the CRF framework,

which involves an intractable computation for computing the normalizing factor

Z(X). This challenge forces practitioners to use approximations, including pseudo

likelihood, which have key impacts on classification results [34]. We believe that

“effective” approximations produce highly accurate classification results with “effi-

cient” learning procedures.
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8.1.1 Model

Here, we discuss several future directions in designing a model that incorporates

spatial correlations, which can produce accurate classification results.

1. The typical CRF formulations involves two potentials – one to express the

local conditional probability for a class label given features of the individual

pixel, and the other to express the local spatial compatibility among local

neighborhood. By exploring different ways to express the local spatial com-

patibility, we may be able to find some approaches that can produce yet other

accurate classification results on challenging tasks.

2. As mentioned above, a CRF can be seen as a combination of two potentials. A

DCRF uses only a very simple approach to combine the two potentials; again

we anticipate other combination rules may produce yet better results.

3. For the local conditional probability, our current methods use only linear

SVMs. We anticipate further improvements by using other kernels, although

this may require using extensive prior knowledge about data sets.

4. Dietterich et al. [15] propose learning a CRF by applying Friedman’s gradient

tree boosting method; their empirical experiments demonstrate that a CRF

can be learned efficiently, achieving high accurate classification results. We

also want to extend Friedman’s gradient tree boosting to deal with spatial

correlations in a 2-D structure, learning a model by stage-wise optimizations,

similar to the boosting process [59].

8.1.2 Applications

We anticipate being able to apply our models to several other applications.

1. In this dissertation, our experiments on brain tumor segmentation task are

based on patient-specific scenario, where training and testing are performed

on a specific patient. We can continue to extend our models to deal with non

patient-specific scenario, where we can train a model on k patients {A1, . . . , Ak},

and test the learned model on novel patient Ak+1. We anticipate this approach

will still yield effective results.
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2. The problem we have investigated so far is “classification” where each pixel in

a given image is categorized into a class. For the brain tumor segmentation

task, it would be interesting and useful to develop a framework that produces

a probability map; that is, mapping each voxel xi into the probability that it

is a tumor. Currently, we use graph cuts [8] for inference (i.e. to produce the

class labels for voxels); graph cuts can be modified to produce a probability

map as an alternative to the classification result.

3. The empirical evaluations on challenging real world problems show encourag-

ing results, and hence we can extend the models to a wide range of applications

such as 3-D classification problems.

8.2 Summary of Contributions

This dissertation extends typical iid classification to a 2-D lattice structure that

incorporates spatial correlations of class labels. Essentially, the primary results in

this thesis are:

• Our SVRF system, as a novel type of CRFs, is an effective segmenter.

• Our SSDRF system incorporates unlabelled as well as labelled data in a su-

pervised learning framework produces an effective segmenter.

• Our DCRF and PCRF systems, which efficiently learn models that incorporates

spatial correlations, can achieve effective classification results.

The first statement is addressed in Chapter 4 which defines Support Vector Ran-

dom Fields (SVRFs), that exploit the ideas underlying Support Vector Machines.

The SVRF is based on a typical supervised learning framework. Its classification

accuracy is significantly better than degenerate iid basis classifier and other random

fields.

To explore the challenge of the second statement, we propose a semi-supervised

learning framework to learn a model that incorporates spatial compatibility in Chap-

ter 5. Empirical results demonstrate that by incorporating unlabelled data into the

learning procedure, we can produce a conditional random field that is more accurate

than the one learned without the unlabelled data.

While working on these two challenges, we noticed that the learning efficiency

was one of the critical issues in CRF-variants especially when the graph structure
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of class labels contains cycles (e.g. on grids). Chapter 6 first presents a “decou-

pled” approach, that separately learns the two potentials. To further enhance the

learning efficiency, Chapter 7 presents an alternative; use a standard iid discrimina-

tive classifier to learn the local conditional probability model without considering

dependencies among class labels. This system uses a hand-tuned model of spatial

dependencies in the inference steps. Our empirical results show that these learning

approaches are significantly faster than the standard approaches, while achieving

the classification results as effective as CRF-variants.

We anticipate that we will be able to use these ideas in other applications where

correlations exist among data instances such as social network analysis and web

information extraction [50, 66].
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