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Abstract

Classification — i.e. categorizing data instances into pre-defined categories — is an
interesting and challenging task. Many real world problems involve classification, in
domains such as medical informatics, image analysis, and text tagging. We consider
the challenge of learning a classifier from data. This is especially challenging when
data instances are correlated.

Here, we focus on learning an image segmenter — e.g. a system that classifies each
pixel of a magnetic resonance (MR) image of a brain as either tumor or non-tumor.
Here the labels of neighboring pixels are correlated. By contrast, discriminative ap-
proaches that assume the data instances are independent and identically distributed
(i.7.d.), such as Logistic Regression (LR) and Support Vector Machines (SVM), take
a single pixel as an input to a fitted decision function and make a decision for that
individual pixel that ignores the continuity of labels of neighboring pixels. To be ef-
fective here, it is important to also consider the spatial correlations of labels: that is,
neighboring pixels tend to have same labels. This has led to the now-standard ran-
dom field approach (eg, Conditional Random Fields, CRFs), which involves learning
and using two potential functions: one for estimating relevant characteristics of the
individual pixel, and the other that deals with interactions between adjacent pixels.

This dissertation presents extensions to CRFs to address the following three
challenging issues: (1) Modeling spatial correlations more effectively by using a
variant of support vector machines for the random field potential, leading to Sup-
port Vector Random Fields (SVRFs). (2) Using both unlabelled and labelled data
in a supervised learning framework, leading to Semi-Supervised Discriminative Ran-
dom Fields (SSDRFs) that produce more accurate model parameters. (3) Modeling
spatial correlations more efficiently, leading to both Decoupled Conditional Random
Fields (DCRFs) that decouple learning of the two potentials of a random field, and
Pseudo Conditional Random Fields (PCRFs) that explicitly model spatial correla-

tion only in inference.



Our empirical evaluations on complex tasks (such as segmenting brain tumors)
show these systems perform statistically significantly better than existing methods

and promise wide practical applications.



Acknowledgements

It is great honor and pleasure to get the chance to express my deep gratitude to many
people who have influenced my thesis work. First of all, I am very thankful that I
met Prof. Russ Greiner as my advisor, who has provided me with the opportunity
to work in machine learning. His expertise in machine learning has guided me
to face challenging problems and solve many hurdles that seemed like solid walls.
I especially thank his infinite patience and commitment, devoting much time to
reading my work over and over again, answering my non-sense questions. These
all invaluable lessons have greatly motivated my thesis work as well as my attitude
towards life, work, and people. Prof. Greiner meant more than an advisor to me.

I sincerely thank Prof. Dale Schuurmans not only for serving on committee,
but for his insightful comments over my work. I met him as a student in his class,
and his amazingly amusing class gave significant impacts on my knowledge and the
way understanding problems. I also truly thank Prof. Osmar Zaiane who was my
Master advisor, serving on doctoral committee. Since I met him, he has always
shown his strong support on me including his encouragement and introduction to
the research worlds. He has been always a big brother to me. Special thanks also
go to Prof. Ivan Mizera and Prof. J. Ross Mitchell who served on my dissertation
committee. Their constructive feedback and comments have been significantly useful
in improving the quality of this dissertation. My thanks are also due to Prof. Ryan
Hayward who introduced the University of Alberta to me as a graduate school. He
has been devoted to helping students reach academic and professional success. He
has been more than a professor to me!

I am also happy to mention the Brain Tumor Analysis Project group and its
associated people. Without their help and support, I would have never come up
with the most of the original contributions in my thesis. There are number of
friends who have enriched my UofA life in various ways. I would like to thank Prof.

Shoajun Wang and Dr. Feng Jiao who work on many interesting project together.



It would be an unbounded list to mention all other friends I am indebted to.

I also thank my parents and my sister who have been always there for me sup-
porting my decisions. My parents-in-law deserve warm and special very special
thanks for their endless love and care. Especially, I deeply express great gratitude
to my parents-in-law who have shown their invaluable encouragement and support.
Also, my thanks go to my brother-in-law, Dr. Chan-Ik Cheigh who has paid close
attentions to me and my family.

Finally, but most importantly, my extraordinary thanks go to my lovely wife,
Meejung Cheigh and my son, Samuel JungSoo Lee. They have sacrificed their pre-
cious time to make this happen. Even though our situations were in hard times, she
has shown the true affection and dedication she always had towards me and Jung-
Soo. She has been always with me as wife, friend, companion, and even consultant
for statistical analysis tasks. Big thanks go to JungSoo who has brought us tons of
happiness.

Lastly, I would like to take this great moment to foremost thank God for being
my strength and guide for my life. May God bless us all.



Table of Contents

Introduction
1.1 Motivation . . . . . . . . . e
1.2 Thesis Outline . . . . . . . . . . . .. .
1.3 Related Publications . . . . . . . . . . . ... .
1.4 Thesis Statements . . . . . . . . ..
Background: iid and non-iid Classifiers
2.1 1iid Generative Models . . . . . . . . ..o
2.2 iid Discriminative Models . . . . . . . . . . ... L
2.3 Non-iid Generative Models . . . . . . . . . . ... ...
2.3.1 Non-iid for 2-D structures . . . . . . . . . . .. .. ... ...
2.4 Non-iid Discriminative Models . . . . . . . . . . .. ... ... ...
2.4.1 Non-iid for 2-D structures . . . . . . . . . . .. .. ... ...
Data Sets and Accuracy measure for Experiments
3.1 Synthetic Datasets . . . . . .. .. ... .. .. ... ... ...
3.2 Real Datasets . . . . . . . . . . e
3.3 Accuracy .. ...

Models — Effectiveness
Support Vector Random Fields — SVRFs

4.1 Introduction . . . . . . . . . . ...
4.2 Support Vector Random Fields (SVRFs) . . . . ... ... ... ...
4.2.1 Observation-Matching . . . . . ... ... ... .. ......
4.2.2 Local-Consistency . . . . .. .. .. ... ... ... .....
4.2.3 Learning and Inference . . . . . . . . ... ... ... .....
4.3 Experiments. . . . . . . ...
4.3.1 Synthetic image sets . . . . . . . .. ...
4.3.2 Brain Tumor Segmentation . . . ... ... ... .......
4.4 Conclusion . . . .. ... .

Semi Supervised Discriminative Random Fields — SSDRF
5.1 Introduction . . . . . . . . . . ...

5.2 Semi-Supervised DRFs (SSDRFs) . . . . . .. ... ... ... ... ..
5.3 Parameter Estimation . . . ... ... ... ... .. ... ...
5.4 Inference. . . . . . . . . . ..
5.5 Experiments. . . . . . . ..
5.5.1 Synthetic image sets . . . . . . . ... ...
5.5.2 Brain Tumor Segmentation . . . .. ... ... ........

5.6 Conclusion . . . . . . . .



IT Models — Efficiency

6 De-coupled Conditional Random Fields — DCRFs
6.1 Introduction. . . . .. ... ... . ... ...
6.2 Related Work . . . . . . . . ..
6.3 The DCRF System . . . . . . . . .. ... . .. ...
6.3.1 Association-only Potential . . . . . . . ... ... ... ....
6.3.2 Local-Consistency-only Potential . . . . ... ... ... ...
6.3.3 Inference . . ... ... . . ... ...
6.4 Experiments. . . . . . ... ..
6.4.1 Synthetic image sets . . . . . . . ...
6.4.2 Brain Tumor Segmentation . . . ... ... .. ........
6.5 Conclusions . . . . . . . . . . . e

7 Pseudo Conditional Random Fields — PCRF's

7.1 Introduction . . . . . . . . . . ..
7.2 Related Works . . . . . . . .
7.3 Pseudo Conditional Random Fields - PCRFs . . . .. ... ... ..
7.3.1 Learning . . . . . . . . . . ..
7.3.2 Inference . . . . . . . . . ...
74 Experiments. . . . . . . . . .. e
7.4.1 Synthetic image sets . . . . . . . . ... ... L.
7.4.2 Brain Tumor Segmentation . . . ... ... ... .......
7.5 Conclusion . . . . . . . . e

8 Conclusions and Future directions

8.1 Future Directions . . . . . . . . . . . .. ... ...
81.1 Model . ... . . . . .
8.1.2 Applications . . . . . . ... ..

8.2 Summary of Contributions . . . . . . ... .. ... ... .......

Bibliography



List of Tables

N oo oio

=W N = N —

—

Jaccard scores for DY . . . ... 43
Jaccard scores for D . ... 43
Average elapsed learning time (seconds) . . . .. .. ... ... ... 56
Jaccard scores (percentage) for Enhancing tumor areas . . . . . . . 57
Jaccard scores percentage; for Edema tumor areas . . . ... ... 58
Jaccard scores (percentage) for Gross tumor areas . . . ... .. .. 59

Average elapsed learning time (seconds) . . . .. .. ... ... ... 72



List of Figures

1.1

w N

s w0 W
=W

5.1
5.2

6.1

oo
W N

NN
W~

An illustration of spatial dependencies among pixels: (a) Pixel Clas-
sification task in the presence of noise (b) Face detection task (c)
Tumor Segmentation task . . . . .. .. ... ... .......... 3

(a) Generative approach represented as a graphical model (b) Dis-

criminative approach as a graphical model . . . . . . . .. ... ... 8
Graphical representation of Naive Bayes . . . . . . .. ... .. ... 9
Support Vector Machine . . . . . ... ... . ... ... ... .... 10
Graphical representation of Hidden Markov Model . . . . . ... .. 12
Graphical representation of Markov Random Fields. x; denotes an

observation at pixel ¢ and y; its class label. . . . . . . .. ... ... 13
Graphical representation of an MEMM . . . .. ... .. ...... 16
Graphical representations of Conditional Random Fields in 1-D (a)

and 2-D (b).. . . .. 17

Examples on synthetic data sets. Ground truth images (each pixel
has 1 or 0 value, indicating a foreground or a background class label
are shown in the first row and randomly corrupted images by A (0, 1

are displayed in the second row. . . . . . . . ... ... .. ... ... 20
(a) A slice of MR image (b) Its tumor areas (We have changed the

brightness of non-tumor areas to highlight tumor areas.) . . . . . . . 20
A multi-spectral MRI . . . . . . ... ... ... L 21
Examples on synthetic datasets . . . .. .. ... ... ... .... 30
Averaged Jaccard scores on synthetic datasets . . .. .. ... ... 31
Examples of the classification result . . . . . ... ... .. ..... 32

Averaged accuracy for MR image analysis. DRFs outperform LR
significantly at p < 0.005 and SVRFs significantly improve the scores
over SVMs at p < 0.002. . . . . . . . . ... ... 33
Convergence in inference . . . . . . . . . .. . ... ... ... 33

Sample outputs from synthetic data sets. From left to right: Testing

instance, Ground Truth, Logistic Regression (LR), DRF, and SSDRF 41
Accuracy and Convergency . . . . . . . . . .. . 42
From Left to Right: Human Expert, LR, DRF, and SSDRF . . . . . 44

Results from synthetic image sets. Left to right: Target, Test Image,
LR, DRFs, SVM, SVRFs, and DCRFs. Rows 1 to 5 from the top
down correspond respectively to datasets 1, 3, 10, and 11 in Figure. 6.2 54

Averaged Jaccard scores on synthetic datasets . . .. .. ... ... 55
Classification results of seven methods on five different test slices,

compared with human expert segmentation . . . ... ... ... .. 60
Synthetic data examples . . . . . . . ... o oo 65
Jaccard scores (percentage) from synthetic data sets . . . . . . . .. 66

Classification results from various models. PCRF reduces false posi-
tives, resulting in better smoothed tumor shapes . . . . . ... ... 68



7.4
7.5

7.6
7.7

Jaccard scores (percentage) for Enhancing areas. . . . . . ... . .. 69
Classification results for edema areas. Jaccard scores(percentage) are

presented along with classification results. . . . . . .. .. ... ... 70
Jaccard scores(percentage) from Enhancing, Edema, and Gross Tu-
MOT ATEAS « « + « v v v e e e e e e e e e e e e e e e 71

Jaccard scores(percentage) from Enhancing areas . . . . . . .. ... 72



Chapter 1

Introduction

As our society evolves into the information age, we are all being overwhelmed by
a tremendous amount of data. Many of our daily activities are recorded as data
in computers, which represent experiences of different resources. This motivates a
large range of systems designed to deal with such data, including Machine Learning
algorithms that allow computers to automatically learn from experiences, to improve
their performance of some specified tasks. Machine learning algorithms apply many
principles to deal with a wide range of applications. One of the primary tasks using
machine learning principles is building “classifiers,” which categorize novel data
instances into pre-defined categories.

Many real world problems involve classification tasks, in domains such as medical
informatics (e.g. to diagnose if a patient has a particular form of cancer [45]),
image analysis (e.g. to classify if a pixel from an magnetic resonance [MR] image
is a tumor [54]), and text tagging (e.g. to find a particular gene name within
a given sentence [26]). As many standard classification methods [23, 62] assume
independent and identically distributed (iid) data, they therefore fail to produce
high quality classification when the data instances to be categorized are correlated—
e.g. if dealing with pixels of an image, neighboring pixels are likely to have the same
class label. This dissertation focuses on this type of correlation, which we denote as

spatial correlations [35, 36, 39, 40, 68].

1.1 Motivation

We focus on the image segmentation task. Discriminative approaches that deal
with iid data instances, such as Logistic Regression [23, 49] and Support Vector

Machines [9, 62], take features of a single pixel as an input into a fitted decision



function, whose decision is based only on these single-pixel properties. This is
suboptimal for this image segmentation task as it does not incorporate the fact that
neighboring pixels tend to have the same class labels.

Figure 1.1 illustrates some tasks explicitly requiring spatial correlations. The
task here is to classify pixels into pre-defined categories. Figure 1.1(a) makes it clear
that simply classifying a pixel one by one, based only on its gray-value intensity, will
not produce a high quality classification result since there are some pixels within
the ‘A’ shape whose gray-level intensity is the same as the intensity of pixels in the
background. However, by considering the fact that adjacent pixels tend to have the
same class labels, a model can encode the spatial correlations of labels, improving
the classification accuracy.

Another example is the face detection task: classifying each pixel in an image
into either face or non-face (see Figure 1.1(b).) If pixel p is classified as a face (resp.
non-face), then pixels around p have a high likelihood of being labelled a face (resp.
non-face). If we can effectively model such correlations, we can then improve the
quality of the face detection system.

Much of this dissertation is motivated by the third task: segmenting brain tu-
mors. Each pixel in a magnetic resonance (MR) image (Figure 1.1(c)) is examined
to determine which is in a tumor. The boxed white blob in the figure locates the only
tumor area. As with previous examples, adjacent pixels are highly likely to have
the same class labels. All three cases illustrate that modelling spatial dependencies
of labels helps produce accurate classification results.

There are many challenges associated with incorporating spatial dependencies.
First, it is important to model spatial correlations accurately. In the past, many
researchers have used Markov Random Fields (MRFs) to model spatial correla-
tions [4, 42]. Although they model spatial correlations of labels, MRFs are genera-
tive models that attempt to compute the joint probability model of the observations
and their associated class labels, which incorporate a prior over class labels. We,
however, have a discriminative task: to produce a conditional probability model of
the class labels given the observations. This has motivated researchers to extend
generative MRF's to discriminative Conditional Random Fields (CRF's) [35, 37].

Both of MRF's and CRFs have shown robust performance for classification tasks
in a 2-D lattice structure, especially compared to iid classifiers. However, the limita-

tions of their models can prevent achieving high accuracy. Most part of this research



Figure 1.1: An illustration of spatial dependencies among pixels: (a) Pixel Classifi-
cation task in the presence of noise (b) Face detection task (¢) Tumor Segmentation
task

provides models that incorporate spatial dependency effectively.

Second, supervised learning frameworks typically require (X,Y) pairs of data
instances to train the decision function f : X — Y, where X denotes a data instance
(e.g. an image) and Y the corresponding a set of labels of pixels in X; we will
later use the learned decision function f to classify a new testing instance (e.g.
an image that is not observed when fitting f). We typically have lots of Xs but
relatively few of the associated “ground truths” Ys. The challenge here is to acquire
enough true y, € Y, where y, is a ground truth for pixel x € X. Producing
these labels usually involves human experts’ judgements — e.g. medical doctors can
manually produce such the ground truths for every MR image for the brain tumor
segmentation tasks. As this can be very expensive, we often have a great number of
MR images whose ground truths are not available. This leads us to explore semi-
supervised learning: that is, using both unlabelled and labelled data when learning
a classification model [11, 26]. As another motivation for semi—supervised learning
approach, since even thousands of X examples can only sparsely cover the parameter
space, using unlabelled examples may overcome the issue of sparseness.

Third, learning a model that incorporates spatial correlations of labels among
adjacent data instances structured in a 2-D lattice increases the computational com-
plexity: typically, CRF-based variants require fitting two sets of parameters, for
the two potentials of a random field. Unfortunately, the algorithms for learning

these 2-D CRF-variants involve intractable computations. In this thesis, we present



two simple but effective frameworks that incorporate spatial correlations, but are
relatively efficient: Decoupled Conditional Random Fields (DCRFs) and Pseudo
Conditional Random Fields(PCRFs).

Here, we present several models to address the challenges of building the clas-
sifiers that incorporate spatial correlations. Our empirical experiments , on both

synthetic and real data sets, demonstrate that our models are effective and efficient.

1.2 Thesis Outline

Chapter 2 reviews general classification models covering both iid approaches and
beyond. This will highlight the general problems of learning iid classification mod-
els, and then their extensions to deal with 1-D and 2-D structured classification
tasks including various random fields: generative Markov Random Fields and dis-
criminative Conditional Random Fields (for 1-D) and Discriminative Random Fields
(DRFs; for 2-D). Note that each of Chapter 4, 5, 6, and 7 also summarizes other
related works relevant to that chapter.

Chapter 3 outlines data sets and an accuracy measurement to evaluate models’
performance on classification tasks — denoising and brain tumor segmentation. Our
motivation to use Jaccard score as a performance measure is highlighted.

Chapter 4 defines an important variant of conditional random fields, Support
Vector Random Fields (SVRFs). SVRFs extend CRFs by incorporating Support
Vector Machines, which improves their effectiveness. SVRF's address the first chal-
lenge previously discussed: how to incorporate spatial dependencies effectively. The
empirical experiments on pixel classification problems over both synthetic and real
data sets demonstrate the effectiveness of the model.

Chapter 5 discusses the challenge of learning a model using both unlabelled and
labelled data, leading to the learning framework of Semi Supervised Discriminative
Random Fields (SSDRFs). Our experimental results demonstrate that our SSDRF
produces more effective classification results than Discriminative Random Fields
(DRFs) based on a supervised learning framework.

For the next two chapters, each provides frameworks that address a compu-
tational challenge required when learning typical CRF-based models. Chapter 6
proposes an approximation to model spatial compatibility by decoupling the two
potentials of random fields, leading to the De-coupled Conditional Random Fields
(DCRFs) model. Experiments on synthetic and real data sets show that DCRF's



can be learned efficiently and achieve the accuracy of standard CRF variant model,
SVRFs.

Chapter 7 presents another framework that can be efficiently learned, which com-
pactly defines a simple template to encode interactions between neighboring data
instances as an alternative to DCRFs. While CRF-based models, including DCRFs,
require learning parameter sets for each of two potentials, Pseudo Conditional Ran-
dom Fields (PCRFSs) only learn one parameter set, for the local conditional prob-
ability, but not the one used for modelling spatial correlations. This significantly
simplifies the learning procedure. Spatial correlations, however, are considered in
inference steps. We present empirical evidences of this model’s robust performance
over several baseline models: efficient learning producing an accurate classifier.

In Chapter 8, we summarize challenges in modelling spatial compatibility and
review the contributions made in this thesis. We also discuss the future extensions

and research directions not addressed in the thesis.

1.3 Related Publications

This dissertation extends the following publications:

e Support Vector Random Fields (Chapter 4)
Chi-Hoon Lee, Russell Greiner, and Mark Schmidt. Support Vector Random
Fields for Spatial Classification, In Proceedings of the 9th Furopean Confer-
ence on Principles and Practice of Knowledge Discovery in Databases (PKDD)
(Joint with ECML), pp. 121-132, Oct, 2005.

e Semi-Supervised Random Fields (Chapter 5)
Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, and Russell
Greiner. Learning to Model Spatial Dependency: Semi-Supervised Discrimi-
native Random Fields. In Advances in Neural Information Processing Systems

19 (NIPS), pp. 793-800, Cambridge, MA 2007.

e Decoupled Conditional Random Fields (Chapter 6)
Chi-Hoon Lee, Russell Greiner, and Osmar Zalane. Efficient Spatial Classifi-
cation using Decoupled Conditional Random Fields. In Proceedings of the

10th European Conference on Principles and Practice of Knowledge Discovery

in Databases (PKDD) (Joint with ECML), pp. 272-283, Germany Sep. 2006.



e Pseudo Conditional Random Fields (Chapter 7)

Chi-Hoon Lee, Mattew Brown, Shaojun Wang, Albert Murtha, Russell Greiner.
Constrained Classification on Structured Data. In Proceedings of National
Conference on Artificial Intelligence (AAAI), pp. 1812-1813, July 2008.
Chi-Hoon Lee, M. Brown, R. Greiner, S. Wang, A. Murtha. Segmenting Brain
Tumors using Pseudo-Conditional Random Fields, In Proceedings of Medical
Image Computing and Computer-Assisted Intervention (MICCAI), pp. 359-
366, Sep. 2008.

1.4 Thesis Statements

This thesis research proposes classification models that encode spatial correlations

to support the following claims:

1.

It is possible to model spatial correlations of labels effectively.

. It is possible to effectively incorporate unlabelled data, as well as labelled data,

to learn a model that can use spatial correlations.

. It is possible to learn models that are computationally efficient when we con-

sider spatial correlations.



Chapter 2

Background: iid and non-iid
Classifiers

This thesis explores the challenges of learning a classifier to deal with labels that
are spatially correlated in a 2-D lattice structure. In this chapter, we briefly review
the general classification problem that predicts a class variable y € Y given a vector
of features x = (z1, ...,24) € X, where we focus on X = R¢ and Y is a finite set.

For now, we will view feature vectors as descriptions of observations for iid data
instances (later we remove this assumption). In order to perform a classification
task for an input x, a classifier, possibly represented as a probability model p(y|x),
is learned from a training data set, which is typically in form of a set of n pairs
{(xi, i) Hisy-

There are two approaches for modelling a classifier — generative versus discrim-
inative [28]. We can use graphical models to illustrate this difference. In general, a
graphical model has a set of nodes, each representing a variable, connected with arcs
that encode dependencies. N.b. the absence of an arc is used to encode the claim
that there are no direct dependencies between a pair of variables. In Figure 2.1, the
probabilistic relationships between two nodes are represented with directed edges.
Here, the directed arrow between nodes indicates direct conditional dependency.
For instance, the edge from node y to node x in Figure 2.1(a) implies that x is
conditional dependent on y. Therefore, the graphical model that represents rela-
tionships (eg, conditional dependency) among nodes has a major influence on how
a probability model is formulated; the details are discussed in [28].

Section 2.1 and 2.2 introduce several approaches that deal with independent and
identically distributed (iid) data instances. The iid assumption is then extended to

1-D and 2-D structures and related work is discussed in Section 2.3 and 2.4.
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Figure 2.1: (a) Generative approach represented as a graphical model (b) Discrimi-
native approach as a graphical model

2.1 iid Generative Models

Generative approaches, illustrated in Figure 2.1(a), view the probability distribu-
tion p(y|x) for classification tasks as estimating a joint probability distribution
p(x,y) [28, 48]. Given training data sets, we estimate two probability distribu-
tions: the class conditional probability density (a.k.a. likelihood) p(x|y) and the
prior p(y). These two probability distributions are used to solve the classification

task as
p(x|y)p(y)
p(x)

One well-known class of classifiers, based on the generative approach, are the

p(ylx) < p(x|y)p(y)

Bayes classifiers [6, 21, 38]. A Bayes classifier is learned from training examples by
estimating p(x|y) and p(y). However, it is not trivial to accurately estimate the

likelihood p(x|y). To see the difficulty in estimating parameters

0ij = p(x = Xily = y;)

for the likelihood p(x|y), suppose y € {+, —} and x is a feature vector of d binary
components. Since x; takes on 2% possible values and y; takes one of two possible
values, in general we may need to estimate 2¢ different independent parameters.
This requires the learner to observe unrealistically many training examples.

We can drastically reduce the number of parameters, and hence the required
training size, if the features are independent. Naive Bayes dramatically reduce the
complexity by making a conditional independence assumption when modelling p(x|y)
— specifically that the feature vector components are conditionally independent given

a class label y. Therefore, given d components for x, the likelihood is represented
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Figure 2.2: Graphical representation of Naive Bayes

as

d
pxly) = plar,..zdy) = [[ply)
=1

For example, if x = (z1, z2), then p(z1, z2|y) = p(x1|y)p(z2|y). Figure 2.2 shows the
Naive Bayes graphical model, which embodies the claim that expresses the nodes —
1, ..., £q — are independent given y. That is, there is no edge among the feature
components. This conditional independence dramatically reduces the number of
independent parameters for p(x|y) to just 2d.

Note that even with its unrealistic assumption, Naive Bayes perform well on
many challenging applications including text classification [16] and medical diagno-

sis [48].

2.2 1id Discriminative Models

As discussed in the previous section, generative approaches solve a classification
problem by modelling a joint probability distribution over observations and class
labels. By contrast, discriminative approaches directly model a conditional proba-
bility distribution p(y|x); see Figure 2.1(b). One apparent reason for using discrim-
inative approaches rather than generative is “One should solve the [classification]
problem directly and never solve a more general problem as an intermediate step
[such as modelling p(x|y)]” [73]. Here, we start discussion with two most popular

discriminative techniques — Logistic Regression and Support Vector Machine.

Logistic Regression

Logistic regression is one of the most popular discriminative approaches. The opti-
mal decisions for a class label y for input x are based on the conditional probability

p(y|x). For binary classification, the model has the form

X w, (2.1)



Figure 2.3: Support Vector Machine

parameterized by w € R¢. We can re-write Equation (2.1) as a specific form for the

conditional probability over labels:
Pyly=1|x) = o(x"w), (2.2)

where the logistic function o(a) = turns the linear expression of Equation

1
1+exp(—a)
(2.1) into probabilities in [0,1]. The model parameter w is learned from n training

data instances using the maximum conditional log-likelihood criterion:
n n
l(w) = Z log Py, (yilxi) = Z log o (x}w) (2.3)
i=1 =1
A learning procedure is formulated as an optimization problem
n
T
arg max Z log o(x; w) (2.4)
i=1

However, as Equation (2.4) often leads to overfitting, many implementations add a
regularization term
n
AJwl]?
* — Ty — 2120
w" = arg max { Z;log o(x; w) 5 }
1=
(2.5)

Support Vector Machine

As another discriminative approach, Support Vector Machine (SVM) has been ex-
tensively explored for many interesting classification tasks [9, 23, 62]. One of the
key concepts in SVM is seeking to find a margin maximizing hyperplane between
the classes as a decision function. It in turn produces a signed distance between

data instances and the hyperplane (see Figure 2.3).
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Using n pairs of training data, {(x;,v;)}_,, the hyperplane is constructed by

solving the following optimization problem

max
B,ﬁo,llﬁH:l7
subject to y;(x B+ Go) >, i=1,...,n (2.6)

Since the decision function f(x) is represented with parameters ( and fy —i.e. f(x) =
x!' 3 + By, Equation (2.6) can be reformulated as

1
min —
MOQIWH

subject to y;(x! B+ 6) >1, i=1,...,n (2.7)

Note that Equation (2.7) is a convex optimization problem, which can be solved
by introducing Lagrange multipliers. Using the Lagrange (primal) function, we can

obtain the dual optimization problem as

n AN o e
maXe ) ;1 0 — 50 Zj QG YiY X Xy

subject to 0 < o, i=1,...,n > oy, =0 (2.8)

From Equation (2.7) and (2.8), we can reconstruct a solution vector 3 as a weighted

combination of the training examples:
n
B=Y dwyxi
i

where @; is the solution of Equation (2.8). This shows that the solution vector 3
is defined in terms of a linear combination of support vectors x; — data instances
whose corresponding a; > 0.

One main characteristic in Support Vector Machine is that we need to specify
only the inner product (or different kernel) between the data instances — i.e. x7x.
We can use this observations to transform data instances into a higher dimensional
space (i.e. feature space) where data instances that are not separable in the input

space might be linearly separable. The further details, including ways to deal with

class overlap in feature space, can be found in [9, 23, 62]

2.3 Non-iid Generative Models

Most Bayes classifiers, including Naive Bayes, assume data instances are iid. But

consider a POS tagging task, which is the process of assigning a part-of-speech tag
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Figure 2.4: Graphical representation of Hidden Markov Model

such as noun, verb, pronoun, preposition, adverb, adjective or other tag to each
word in a sentence. Simple Bayes classifiers ignore dependencies of labels among
words (ie, pos tags of words in a sentence). For example, in the sentence “I called
a travel agent to book hotels today.”, there are nine words to be tagged (classified).
Any iid classifier including Naive Bayes would probably classify the word “book”
as a noun (as that is the most likely interpretation, given only the word), but if
we can use the context, then “book” can be classified as a verb by considering the
correlations between “to” and “book”, and between “book” and “hotels”.

A Hidden Markov Model (HMM) — Figure 2.4 — relaxes the independence as-
sumption, and allow correlations between the labels of words in a 1-D chain struc-
ture [57]. An HMM models the joint distribution p(X,Y), where X = {x;}I"; (x;
corresponds to an observation) and Y = {y;}I ; (y; corresponds to a label for obser-
vation x;). An HMM assumes (1) that each class label y; depends only on the label
of its immediate predecessor y;_1 (this is the Markovian assumption), and (2) that
feature observation x; is conditionally independent of everything else, given only its
class label y;. These two assumptions provide an HMM with tractable computa-
tions to learn the model as well as to perform classification for non-iid data in 1-D
structure. For example, an HMM would view each word (within a sentence) is an
instance to be classified. Here, the links from y; 1 to y; allow dependencies between
the labels, which are therefore not independent. The joint probability of class labels

Y and observations X is factorized as
pX,Y) = []pilvi-)p(xily:) (2.9)
i=1

Named entity recognition, speech recognition, and gene/motif finding tasks are pop-
ular examples of HMM applications that require modelling correlations of adjacent

labels for sequentially structured data [24, 25, 56, 57].

12



Figure 2.5: Graphical representation of Markov Random Fields. x; denotes an
observation at pixel ¢ and y; its class label.

2.3.1 Non-iid for 2-D structures

There has been much related work on using a random field theory to model class
dependencies in 2-D structures and more recently discriminative contexts [42, 36].
Here, we will review Markov Random Fields, which is formulated as a generative

classifier in 2-D structures.

Problem Formulation

Here, we will focus on the task of classifying elements (pixels or regions) of a
two-dimensional image, although the discussed methods can be applied to higher-
dimensional data. An image is represented with a set S of n pixels. For an instance

X = (x1,X2,...,X,), we seek to infer the most likely joint class labels:

Y* = (yf7y>2k7 .. 7y7>;)7

where x € R?, and y; is in a finite set. If we assume that the labels assigned
to elements are independent, the following joint probability can be formulated:
P(Y|X) = [lieg P(yi|X). However, conditional independency does not hold for
2-D like image data, since spatially adjacent elements are likely to receive the same

labels. We therefore need to explicitly consider this local dependency.

Markov Random Fields (MRFs)

Markov Random Fields (MRFs) provide a mathematical formulation for modelling

local dependencies, and are defined as follows [42]:
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Definition 2.3-1. A set of random variables Y is called a Markov Random
Field on S with respect to a neighborhood N, if and only if the following two
conditions are satisfied, where S — {i} denotes the set difference, yg_y; denotes
random variables in S—{i}, N; denotes the neighboring random variables of random

variable 7, and € is the space of all possible joint labellings:
1. P(Y)>0,VY €Q

P(yilys—giy) = Pyilyn,)

Condition 2 (Markovianity) states that the conditional distribution of an element
y; is dependent only on its neighbors. Markov Random Fields have traditionally
sought to maximize the joint probability P(X,Y) (a generative approach). In this
formulation, the posterior over the labels given the observations is formulated using

Bayes’ rule as:
P(Y|X) o P(Y)P(X[Y) = P(Y) [] P(xilyi) (2.10)
1€S

In Equation (2.10), the equivalence between MRFs and Gibbs Distributions [5,
42] provides an efficient way to factor the prior P(Y) over cliques defined in the
neighborhood graph G (see Figure 2.5(a).) The prior P(Y) is written as

exp(D_.cc Ve(Y))
> vreq exXP(Xcec Ve(Y'))

where C is a set of cliques in G and V.(Y) is a clique potential function of la-

P(Y) =

(2.11)

bels for clique ¢ € C. From Equation (2.10) and (2.11), the target configuration
Y* is a realization of a locally dependent Markov Random Field with a specified
prior distribution. Based on Equation (2.10) and (2.11) and using Z to denote the

(normalizing) “partition function”, then the distribution can be factored as:

(ny——exp[ng (xilyi) + 3 Vel ¥e)] (2.12)

€S ceC

An MRF assumes the factorized likelihood to be Gaussian distributions [77]. The
factorized data likelihood for P(X]|Y) in Equation (2.10) allows straightforward
Maximum Likelihood parameter estimation. Although there have been many ap-

proximation algorithms designed to find the optimal Y*, we focus on a local method
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called Iterated Conditional Modes (ICM) as it has proven to work effectively [5, 35],
written as:
y; = argmax P(y|yn;, xi) (2.13)
yi€L
Assuming observations to be conditionally independent given class labels and a

pairwise neighborhood system for the prior over labels

Plulyxxi) = 5 exp [log(Pecilu)) + 83 i),

JEN;
ICM is formulated as:
. 1
yi = argmax 2 exp [log(P(Xi!yi)) +0 ; yiyj] (2.14)
JEN;

where 3 is a constant and L is a set of class labels.

This concept has proven to be applicable in a wide variety of domains where there
are correlations among neighboring instances. However, the generative nature of the
model and the assumption that the observations are conditionally independent given
class labels in a 2-D structure can be too restrictive to capture complex dependencies
between neighboring elements or between observations and labels. In addition,
the prior over labels is completely independent from the observations, thus the

interactions between neighbors are not proportional to their similarity.

2.4 Non-iid Discriminative Models

The fundamental iid assumption in logistic regression and support vector machine
needs to be relaxed to deal with correlations of labels in a 1-D sequence struc-
ture. There are two well known “discriminative” approaches — a Maximum-Entropy
Markov Model (MEMM) and a Conditional Random Field (CRF) — to model cor-
relations of labels in a 1-D structure [37, 46].

As an alternative to HMMs, an MEMM, shown in Figure 2.6, is able to handle
the overlapping features and does not require enumeration of the space of all pos-
sible observations [46]. Given an observation X in 1-D sequence, the conditional

probability in an MEMM over label sequence Y is formulated as

n

P(YX) = HP(yz‘|yz‘—1,Xi), (2.15)

where

P(yilyi—1,%;) = mexp (Zkkfk(yi,xi)), (2.16)
12— 1y ™1 k
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Figure 2.6: Graphical representation of an MEMM

where Z(y;—1,%;) = Zyi P(yi|lyi—1,%;) is the normalizing factor that makes the
distribution sum to one across all y;. Equation (2.16) is derived by the maximum
entropy principles that state the best model for data is the one that maximizes
the entropy given constraints [3, 46]. Here, the constraints applied are that the
expected value E (fr) for k' feature on the empirical distribution must be equal to
its expected value E(f;,) on the learned model distribution — ie. E(fy) = E(f3).
Although MEMMSs improves over HMMSs by utilizing more descriptive feature
representations, an MEMM suffers from a weakness called label bias problem — the
probability transitions leaving any given state! must sum to one [37, 46]. This is

clearly observed in Equation (2.16) — ie. the normalizing factor.

2.4.1 Non-iid for 2-D structures

To overcome the disadvantages of HMMs and MEMMs, Lafferty et al. [37] proposed
a Conditional Random Field (CRFs) as a single exponential model P(Y|X) of joint
probability of entire state sequence Y given an observation X.

CRFs seek to maximize the conditional probability of the labels given the ob-

servations P(Y*|X) (a discriminative model), and is defined as follows [37]:

Definition 2.4-1. Let G = (S, E) be a graph such that Y is indexed by the
vertices S of G. Then (X,Y) is said to be a Conditional Random Field if, when
conditioned on X, each random variable y; obeys the Markov property with respect
to the graph: P(y:|X, ys\;) = P(y:lX, yn;,).

This model alleviates the need to model the observations P(X), allowing the
use of arbitrary attributes of the observations without explicitly modelling them.
As illustrated in Figure 2.7(a), CRFs assume a 1-dimensional chain-structure where
only immediate predecessor elements are neighbors. This allows the factorization of

the joint probability over labels.

!Several states may correspond to a label. However, we assume each state has a single label.
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(a) (b)

Figure 2.7: Graphical representations of Conditional Random Fields in 1-D (a) and
2-D (b).

Discriminative Random Fields (DRFs), extending 1-dimensional CRFs to 2-
dimensional structures [35], attempt to overcome the disadvantages of MRFs —
notably its conditional independence assumption and the absence of observation in
the second potential — by directly modelling the conditional probability distribution
P(Y |X). A CRF, defined as

1

P(Y|X)= 7% P ;%(%,X) + J'EZN.\I/V(yi,yj,X) (2.17)

directly computes the probability distribution without modelling any prior; see Fig-
ure 2.7(b). The notation is essentially the same as in Equation (2.12): Z(X) is the
partition function, S is the set of instances, X = {x;};cgs is the set of descriptions of
those pixels, and Y = {y; }ies is the set of labels. Here V; is the set of neighbors of
node x; — in 2-D, the pixel at location (a,b) has 4 neighbors, at (a —1,b), (a+1,b),
(a,b—1) and (a,b+ 1) [5, 31]; see Figure 2.7(b). In Equation (2.17), “®(y;, X)”
is called the “Association” potential, which deals with a single instance. While its
value can depend on all of X, it typically relies only on x;, quantifying the belief
of x; being class y;. The “¥y (y;,y;,X)” term is called the “Local-Consistency” (or
“Interaction”) potential in variants of CRFs; it is typically used to prefer labelling
that assign the same class labels to neighboring pixels. (We can view ¥y (-) as a
data dependent smoothing function, which differs from MRFs, which instead use
only a “data independent” term.) Here, w and v refer to the parameters associated
with these potential functions.

Note that this is a much more powerful model than the Gaussian Association

potential and the indicator function used as the Interaction potential (that does not
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consider the observations) in MRFs, avoiding the assumption associated with MRF’s
likelihood — the conditional independency assumption of observations given labels.
(Refer to Equation (2.12).) However, the main drawback in a CRF framework is
that it requires significant amount of training time. Sutton et al. [65] discusses
the computation complexity challenge by proposing a “piecewise training” approach
that approximates the computation of Z(X) as an extension of MEMM.

In this chapter, we have reviewed general classification problems from iid to
non—iid classification models, including in a 1-D chain structure and a 2-D lattice

structure.
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Chapter 3

Data Sets and Accuracy
measure for Experiments

This chapter presents the data sets — both synthetic and real world — that we use
to evaluate our various systems. It also motivates why we use the Jaccard score as

the performance measure.

3.1 Synthetic Data sets

Our synthetic data sets are based on binary images (64 by 64 per image), which
were corrupted by zero mean Gaussian noise with unit standard deviation. Each
ground truth image, shown in the first row from Figure 3.1, contains pixel value 0
or 1 that indicates each pixel’s class label — a background or a foreground. We have
generated 150 images per each data set (different data sets have different shapes);
150 images are partitioned for training (100 images) and testing (50 images).

The motivations in using these synthetic data sets are (1) to see how accurately
our models work with the binary image de-noising tasks, where the foreground pixels
are corrupted by the synthetically generated noise, and (2) to compare our models
with other related work [35, 36, 74] that reported experimental results on data sets

generated by the same methods as we described here.

3.2 Real Data sets

We applied our models to the real-world problem of tumor segmentation in medical
imaging. We focused on the task of brain tumor segmentation in MRI, an important
task in surgical planning and radiation therapy, which is currently being laboriously

done by human medical experts.
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Figure 3.1: Examples on synthetic data sets. Ground truth images (each pixel has
1 or 0 value, indicating a foreground or a background class label) are shown in the
first row and randomly corrupted images by N (0, 1) are displayed in the second row.

(a) (b)

Figure 3.2: (a) A slice of MR image (b) Its tumor areas (We have changed the
brightness of non-tumor areas to highlight tumor areas.)

Here, our primary goal in using real world data is to quantify classification results
from models that this dissertation has explored on tumor segmentation task. For
instance, given a slice of image (Figure 3.2 (a)), we are interested in finding tumor
areas (Figure 3.2 (b)) as effectively as possible.

Our experimental data set consisted of T1, Tlc (T1 after injecting contrast
agent), and T2 images (each 258 by 258 pixels; Figure 3.3) from patients, each
having either a grade 2 astrocytoma, an anaplastic astrocytoma, or a glioblastoma
multiforme.

The data were preprocessed with an extensive MR preprocessing pipeline (de-

scribed in [60], and making use of [47, 63]) to reduce the effects of noise, inter-slice
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(a) T1 (b) T2 (c) Tlc

Figure 3.3: A multi-spectral MRI

intensity variations, and intensity inhomogeneity. In addition, this pipeline robustly
aligns the different modalities with each other, and with a template image in a stan-
dard coordinate system (allowing the use of alignment-based features, mentioned
below).

We used the most effective feature set identified in the comparative study in [60].
This multi-scale feature set contains traditional image-based features in addition to
three types of ‘alignment-based’ features: spatial probabilities for the 3 normal
tissue types (white matter, gray matter and cerebrospinal fluid), spatial expected
intensity maps, and a characterization of left-to-right symmetry (all measured at
multiple scales).

As with many of the related works® on brain tumor segmentation (such as [12,
17, 30, 76]), we employed a patient-specific training scenario, where training data
for the classifier is obtained from the patient to be segmented: here we first train
on subset P, of studies for a patient and then test on subset P, of the same studies

for the patient. Note that P, and P, are disjoint.

3.3 Accuracy

To quantify the performance of each model, we use the Jaccard score

TP
J= 3.1
(TP+ FP+FN)’ (3:-1)

where TP denotes true positives, FP false positives, and FN false negatives. We

used this score to penalize the false negatives since many imaging tasks are very

Here, our primary focus is to compare different classifiers’ performance (e.g. accuracy and
training time of proposed models). Therefore, issues related to MR images such as variations of
noise, standardization of MR images, and uncertainty associated with ground truths are beyond of
our discussion.
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imbalanced: that is, only a small percentage of pixels are in the “positive” class.
This allows fair evaluations when a classifier produces high volume of false negatives
with very few of false positives. We carry out paired example t-tests to measure the
statistical significance of comparisons of performance between algorithms, as widely

used in literature [44, 61, 64, 71, 72].
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Part 1

Models — Effectiveness
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Chapter 4

Support Vector Random Fields
— SVRFs

4.1 Introduction

The task of classification has traditionally focused on data that is “independent and
identically distributed” (iid), in particular assuming that the class labels for different
data points are conditionally independent (ie. knowing that one patient has cancer
does not mean another one will). However, real-world classification problems often
deal with data points whose labels are correlated, which violates the iid assumption.
There is extensive literature focusing on the 1-dimensional ‘sequential’ case (refer
to [37]), where correlations in the labels of data points in a linear sequence exist,
such as in strings, sequences, and language. This chapter focuses on the more
general ‘spatial’ case, where these correlations exist in data with two-dimensional
(or higher-dimensional) structure, such as in images, volumes, graphs, and videos.
Classifiers that make the iid assumption often produce undesirable results when
applied to data whose labels are interdependent. For example, in the task of image
labelling, such an iid-based classifier could classify a pixel as ‘face’, even if all ad-
jacent pixels were classified as ‘non-face’. As discussed in Chapter 2, this problem
motivates the use of Markov Random Fields (MRF's) and more recently Conditional
Random Fields (CRFs) for spatial data. These classification techniques augment
the performance of an iid classification technique (often a Mixture Model for MRF's,
and Logistic Regression for CRFs) by taking into account spatial class dependencies.
Support Vector Machines (SVMs) are classifiers that have appealing theoretical
properties [62], and have shown impressive empirical results in a wide variety of

tasks. However, this technique makes the critical iid assumption. This chapter pro-
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pose an extension to CRF's that considers spatial correlations among data instances
(as in Random Field models), while still taking advantage of the powerful discrim-
inative properties of SVMs. We refer to this technique as Support Vector Random
Fields (SVRFs)

Section 4.2 presents our Support Vector Random Field. Experimental results
on synthetic and real data sets are given in Section 4.3, while a summary of our

contribution is presented in Section 4.4.

4.2 Support Vector Random Fields (SVRFs)

This section presents Support Vector Random Fields (SVRFSs), our extension of a
CRF that allows the modelling of non-trivial 2-D (or higher) spatial dependencies
using SVMs. As with all random fields, this model has two major components: The
observation-matching potential function and the local-consistency potential func-
tion. The observation-matching function captures relationships between the obser-
vations and the class labels, while the local-consistency function models relationships
between the labels of neighboring data points and the observations at data points.
Since the selection of the observation-matching potential is critical to the perfor-
mance of the model, the Support Vector Random Field model employs SVMs for this
potential, providing a theoretical and empirical advantage over the logistic model
used in DRFs and the Gaussian model used in MRF's, which produce unsatisfactory
results for many tasks. We formulate the SVRF model as
1

P(YIX) = 755 e { 3 log(0ly: Yi(X)) +ZN Vg X)p (1)

where T;(X) computes features from the observations X for location i, O(y;, T:(X))
is the observation-potential, and V' (y;,y;, X) is the local-consistency potential. The
pair-wise neighborhood system is defined as a local dependency structure. We will

now examine these potentials in more detail.

4.2.1 Observation-Matching

The observation-matching potential seeks to find a probability distribution that
maps from the observations to corresponding class labels. Note that our observation-
matching potential corresponds to ®(.) in Equation (2.17). Kumar et al. [35] em-
ploys a Generalized Linear Models (GLM) for this potential. However, the esti-

mation process in GLMs may not find “satisfactory” parameters that would give
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accurate results in data whose feature sets may have a high number of dimensions
and/or several features have a high degree of correlation (refer to Section 4.3) [58].

Fortunately, the CRF framework allows a flexible choice of the observation-
matching potential function. We overcome the disadvantages of the GLM by em-
ploying a Support Vector Machine classifier, seeking to find the margin maximizing
hyperplane between the classes. This classifier has appealing properties in high-
dimensional spaces and is less sensitive to class imbalance [1].

Parameter estimation for SVMs involves optimizing the following Quadratic Pro-
gramming problem for training data {(x;, )}, (where C is a constant that quan-

tifies the misclassification error):

n AN o T
maXe ) ;1 0 — 50 Zj QG YiY X Xy

subject to 0 < oy <C and Y ' ouy; =0 (4.2)

Consequently, the decision function of SVMs, given the parameters «; for the n
training instances and bias term b, is f(x) = Y ;= (yx - x;) + b. (for a more
discussion of SVMs, we refer to Chapter 2.)

Unfortunately, the decision function f(x) produced by SVMs measures distances
to the decision boundary, which can be an arbitrary real number. We adopt the
approach of [53] to convert the decision function to a probability function scaling

values in [0,1]. This is done by using the sigmoid function:
_ 1
T+ exp(B1f (T:(X)) + Bo)

The parameters By and By are estimated from training data that are represented

O(y; = 1,74(X))

(4.3)

as pairs (f(Y;(X)),t;), where f(-) is the Support Vector Machine decision function,
and t; denotes a relaxed probability that y; = 1 as in Equation (4.3). We could set
t; = 1, if the class label at i is 1 (i.e. y; = 1). However, in order to incorporate

the possibility that T;(X) has the opposite class label (ie. -1), we simply define:

Ny+1

ti = N, 12

if y; = 1, and t; = N++2, if y; = —1, where Ny and N_ are the
number of positive and negative class instances. This acts as “regularization” that is
applied to data samples, as opposed to parameter regularization, leading to accurate
classification results [43, 53].

By producing the new forms of training instances, we can solve the following

optimization problem to estimate parameters, substituting O(y; = 1, T;(X)) with

p(Ti(X)):
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n

arg max [ti log p(Ti(X)) + (1 — ;) log(1 — p(Yi(X))) (4.4)

Bo,B
0P

4.2.2 Local-Consistency

In MRFs, local-consistency considers correlations between neighboring data points,
and is considered to be observation independent: that is, the observation similar-
ity is not incorporated — By;y;. CRFs provide more powerful modelling of local-
consistency by removing the assumption of observation independence. In order to
define a local-consistency that corresponds to ¥(:) in a CRF (refer to Equation
(2.17)), we need an approach to express “continuity” of labels between pairwise
sites, including “similarity” between observations. For this, we use a linear function

of pairwise continuity:

V(yi,yj, X) = yiyjvt i (X), (4.5)

1;;(X) is a function that computes features for sites i and j based on observations
X. While DRFs model the local-consistency by considering the absolute difference
between pairwise observations, we propose a new mapping function () and let the
learning process learn parameter v that helps to encourage continuity in addition
to compensating for errors associated with Observation-matching potential (using

max(Y (X)) to denote the vector of maximum values for each feature):
G5 (X) = (max(T(X)= | Ti(X) = 15(X) | ) -/ max(T(X)),  (4.6)
where -/ denotes components wise division.

4.2.3 Learning and Inference

Our proposed model needs to estimate the parameters of the observation-matching
function and the local-consistency function. We estimate these parameters sequen-
tially (first parameters of the observation-matching, and then parameters of local-
consistency), which has empirically proven to be more effective than the simultane-
ous learning approach of DRFs.

The parameters of the Support Vector Machine decision function f(-) are first
estimated by solving the Quadratic Programming problem in Equation (4.2) (using
SVMlight [27]). We then convert the decision function to a probability function using
Equation (4.4) and the new training instances — pairs of (f(Y;(X)), ;). Finally, we
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adopted pseudo-likelihood [35, 42] to estimate the local consistency parameters v,
due to its simplicity and fast computation. For training on n pixels from K images,
pseudo-likelihood is formulated as:
D= T Flyk, X", v) (4.7)
v argmgxlgil;llP(yl lyn,, X", .
As in [35], to ensure that the log-likelihood is convex, v is assumed as N (v; 0, 721),
where [ is the identity matrix.

We compute the local-consistency parameters using its pseudo-likelihood in log

space, [(V):
A 1
[(V) = arg mgxz Z {Of + Z V(yf,yf,Xk) - log(zf)} — FVTV (4.8)
k=1 i=1 JEN;
Note that we simplified the notation of O(y;, T;(X¥)) by OF.

In this model, zf is a partition function for each site i in image k, and 72 is
a regularizing constant. Equation (4.8) is solved by gradient descent — computing
its first derivatives, and assuming the observation matching function is a constant
during this process.

As this uses the SVM learning procedure, the time complexity of learning for an
image with n pixels is O(n?), although in practice it is much faster.

The inference problem is to infer an optimal labelling Y* given a new instance X
and the estimated model parameters. We herein adopted the Iterated Conditional
Modes (ICM) approach described in Equation (2.13), which maximizes the local
conditional probability iteratively. Although ICM is iterative, it often converges
quickly to a high quality configuration, and each iteration has time complexity

O(n).
4.3 Experiments

We have evaluated our proposed model on synthetic and real-world binary image
labelling tasks (refer to Chapter 3), comparing our approach to Logistic Regression
(LR), SVMs, and DRFs for these problems. The accuracy is measured by the

Jaccard score introduced in Chapter 3.

4.3.1 Synthetic image sets

As shown in Figure 4.2, two of five data sets contained balanced class labels (Car

and Objects), while the other three contained imbalanced classes. For instance, a
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Size image has 826 foreground and 3270 background pixels.

Example results and aggregated scores are shown in Figure 4.2. The last 4
columns from Figure 4.1 illustrate the outcomes from each technique— SVMs, LR,
SVRFs, and DRFs.

Logistic Regression and subsequently DRFs performed poorly in all three im-
balanced data sets (Toybox, Size, and M shown in Figure 4.1). In these cases,
SVMs outperformed these methods and moreover our proposed SVRFs outper-
formed SVMs. In the first balanced data set (Car), DRFs and SVRFs both outper-
formed SVMs and Logistic Regression at the p < 0.001 level on a paired example
t-test. However, DRFs performed poorly on the second balanced data set (Objects).
This is due to DRFs simultaneous parameter learning, which tends to overweight
the local-consistency potential. Since the observation-matching is underweighted,
edges become degraded during inference. Terminating inference before convergence
could reduce this, but this is not desirable for automatic classification. Owverall,
our Support Vector Random Field model demonstrated the best performance on all
data sets, in particular those with imbalanced data and a greater proportion of edge

areas.

4.3.2 Brain Tumor Segmentation

There has been significant research focusing on automating challenging task — brain
tumor segmentation (see [18]). Markov Random Fields have been explored pre-
viously for this task [18], but recently SVMs have shown impressive performance
[17, 76]. This represents a scenario where our proposed Support Vector Random
Field model could have a major impact. We evaluated the four classifiers from the
previous section over seven brain tumor patients. Results for two of the patients
are shown in Figure 4.3, while average scores over the seven patients are shown in
Figure 4.4. Note that ‘SVM+prob’ in Figure 4.3 denotes the classification results
from the Support Vector Machine probability estimate computed by Equation (4.3).
The Logistic Regression model performs poorly at this task, but DRFs perform sig-
nificantly better. As with the synthetic data in cases of class imbalance, SVMs
outperform both Logistic Regression and the DRFs. Finally, SVRFs improve the
scores obtained by the SVMs by almost 5% (statistically significant at p < 0.002 on
a paired example t-test.)

We compared convergence times (inference) of the DRFs and SVRFs by mea-
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Figure 4.1: Examples on synthetic data sets

suring how many label changes occurred between inference iterations averaged over
21 trials (see Figure 4.5). These results show that DRFs on average require almost
3 times as many iterations to converge, due to the overestimation of the local-

consistency potential.

4.4 Conclusion

We have proposed a novel model for classification of data with spatial dependencies.
The Support Vector Random Field combines ideas from SVMs and CRFs, and
outperforms SVMs and DRFs on both synthetic data sets and an important real-
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Figure 4.2: Averaged Jaccard scores on synthetic data sets

world application. Our Support Vector Random Field model appears robust to class
imbalance, can be efficiently trained, converges quickly during inference, and can

trivially be augmented with kernel functions to further improve accuracy.
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Figure 4.3: Examples of the classification result
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Chapter 5

Semi Supervised Discriminative
Random Fields — SSDRF

5.1 Introduction

As discussed in Chapter 2, random field models are a popular probabilistic frame-
work for representing complex dependencies in natural image data. Discriminative
random fields (DRFs) [33, 36] directly model the conditional probability over the
pixel label field given an observed image. Following the basic tenet of Vapnik [73],
it is natural to anticipate that learning an accurate joint model should be more
challenging than learning an accurate conditional model. Indeed, recent experi-
mental evidences show that DRF's tend to produce more accurate image labelling
models than MRFs do, in many applications like gesture recognition [55] and object
detection [33, 36, 74, 69].

Although DRFs tend to produce superior pixel labellings to MRFs, partly by
relaxing the assumption of conditional independence of observed images given the
labels, the approach relies more heavily on supervised training. DRF training typ-
ically uses labelled image data where each pixel label has been assigned. However,
it is considerably more difficult to obtain labelled data for image analysis than for
other classification tasks, such as document classification, since hand-labelling the
individual pixels of each image is much harder than assigning class labels to objects
like text documents.

Recently, semi-supervised training has become important in many application
areas due to the abundance of unlabelled data. Consequently, many researchers are
now developing semi-supervised learning techniques for a variety of approaches,

including generative models [51], self-learning [10], co-training [7], information-
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theoretic regularization [13, 20], and graph-based transduction [78, 79, 80]. However,
most of these techniques have been developed for univariate classification problems,
or class label classification with a structured input [78, 79, 80]. Unfortunately,
semi-supervised learning for structured classification problems, where the predic-
tion variables are interdependent in complex ways, have not been as widely studied.

Current work on semi-supervised learning for structured predictors [2, 26] has
focused primarily on simple sequence prediction tasks where learning and inference
can be efficiently performed using standard dynamic programming. Unfortunately,
the problem we address is more challenging, since the spatial correlations in a 2-D
grid structure create numerous dependency cycles. That is, our graphical model
structure prevents exact inference from being feasible. Kumar et al. [36] and Vish-
wanathan et al. [74] argue that learning a model in the context of approximate
inference creates a greater risk of the over-fitting and over estimating.

In this chapter, we extend the work on semi-supervised learning for sequence
predictors [2, 26], particularly the DRFs based approach [26], to semi-supervised
learning of DRFs. There are several advantages of our approach to semi-supervised
DRFs. (1) We inherit the standard advantage of discriminative conditional versus
joint model training, while still being able to exploit unlabelled data. (2) The use
of unlabelled data enhances our ability to avoid parameter over-fitting and over-
estimation in grid based random fields even when using a learner that uses only
approximate inference methods. (3) We are still able to model spatial correlations
in a 2-D lattice, despite the fact that this introduces dependency cycles in the
model. That is, our semi-supervised training procedure can be interpreted as a MAP
estimator, where the parameter prior for the model on labelled data is governed by
the conditional entropy of the model on unlabelled data. This allows us to learn
local potentials that capture spatial correlations while often avoiding local over-
estimation. We demonstrate the robustness of our model by applying it to a pixel
denoising problem on synthetic images, and also to a challenging real world problem
of segmenting tumor in magnetic resonance images. In each case, we have obtained

significant improvements over current baselines based on standard DRF training.

5.2 Semi-Supervised DRFs (SSDRFs)

We formulate a new semi-supervised DRF' training principle based on the standard

supervised formulation of [33, 36]. Let X be an observed input image, represented by

35



X = {x;}ies, where S is a set of the observed image pixels (nodes). Let Y = {y; }ies
be the joint set of labels over all pixels of an image. For simplicity we assume each
component y; € Y ranges over binary classes ) = {—1,1}. For example, X might
be a magnetic resonance image of a brain and Y is a realization of a joint labelling
over all pixels that indicates whether each pixel is normal or a tumor. In this case,
Y would be the set of pre-defined pixel categories (e.g. tumor versus non-tumor).
A DREF is a conditional random field defined on the pixel labels, conditioned on the
observation X. More explicitly, the joint distribution over the labels Y given the

observations X is written

po(Y|X) = Zng) exp (Z(I)w(yi,x) + Z \I’u(yi,yj,X)) (5.1)
i€S JEN;

Here N; denotes the neighboring pixels of i; ®w(y;, X) = log <0(yinhi(X)> de-
notes the node potential at pixel i, which quantifies the belief that the class label is
y; for the feature vector h;(X), where o(t) = #; Vo (Yi, yj, X) = yiy;v T pii(X) is
an edge potential that captures spatial correlations among neighboring pixels (here,
the ones at positions ¢ and j), such that p;;(X) is the pre-defined feature vector
associated with positions 7 and j from X. Z(X) is the normalizing factor, also

known as a (conditional) partition function, which is

Zo(X) =" exp (3 Pulyi X) + > (v, X)) (5.2)
Y

€S JEN;

Finally, # = (w,v) are the model parameters. When the edge potential ¥y (y;, y;, X)
is set to zero, a DRF yields a standard logistic regression classifier. The potentials in
a DRF can use properties of the observed image, and thereby relax the conditional
independence assumption of MRFs. Moreover, the edge potentials in a DRF can
smooth discontinuities between heterogeneous class pixels, and also correct errors
made by the node potentials.

Assume we have a set of independent labelled images X and their corresponding
pixel labels Y, D! = ((X(l),Y(l))), . (X(M),Y(M))>, and a set of independent
unlabelled images, D% = (X(M ) ... ,X(T)). Our goal is to build a DRF model
from the combined set of labelled and unlabelled examples, D! U DU

The standard supervised DRF training procedure is based on maximizing the

log of the posterior probability of the labelled examples in D'
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I/TV

- (53)

M
CL(6) = ) log P(Y®)|XH)
k=1

We assume a Gaussian prior over the edge parameters v and a uniform prior over
parameters w. Here p(v) = N(v;0, 7%I), where I is the identity matrix. The hyper-
parameter 72 adds a regularization term. In effect, the Gaussian prior introduces a
form of regularization to limit over-fitting on rare features and avoid degeneracy in
the case of correlated features.

There are a few issues regarding the supervised learning criteria (5.3). First,
the value of 72 is critical to the final result, and unfortunately selecting the appro-
priate 72 is a non-trivial task, which in turn makes the learning procedures more
challenging and costly [39]. Second, the Gaussian prior is data-independent, and is
not associated with either the unlabelled or labelled observations a priori.

Inspired by the work in [20] and [26], we propose a semi-supervised learning
algorithm for DRF's that makes full use of the available data by exploiting a form
of entropy regularization as a prior over the parameters on D“. Specifically, for a
semi-supervised DRF, we attempt to find € that maximizes the following objective

function

M
RL(A) = ) log (Y™ X))+

m=1

T
oY D P(YX)log Py(Y[X™) (5.4)
m=M+1 Y

The first term of (5.4) is the conditional likelihood over the labelled data set D!,
and the second term is a conditional entropy prior over the unlabelled data set D",
weighted by a tradeoff parameter v. The resulting estimate is then formulated as a
MAP estimate.

The goal of the objective (5.4) is to minimize the uncertainty on possible configu-
rations over parameters. That is, minimizing the conditional entropy over unlabelled
instances provides more confidence to the algorithm that the hypothetical labellings
for the unlabelled data are consistent with the supervised labels, as greater certainty
on the estimated labellings coincides with greater conditional likelihood on the su-

pervised labels, and vice versa. This criterion has been shown to be effective for
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univariate classification [20], and chain structured CRFs [26]; here we apply it to

the 2-D lattice case.

5.3 Parameter Estimation

Several factors constrain the form of training algorithm: Because of overhead and
the risk of divergence, it was not practical to employ a Newton method. Although
the criticism of the gradient descent’s principle is well taken, it is the most practical
approach we will adopt to optimize the semi-supervised MAP formulation (5.4) and
allows us to improve on standard supervised DRF training.

To formulate a local optimization procedure, we need to compute the gradient
of the objective (5.4) with respect to the parameters. Unfortunately, because of
the nonlinear mapping function o(.), we are not able to represent the gradient of
objective function as compactly as [26], which was able to express the gradient as
a product of the covariance matrix of features and the parameter vector 6. Never-
theless, it is straightforward to show that the derivatives of objective function with

respect to the node parameters w is given by !

0

8—WRL(6)
Z 3 ( ) X Zpe Y [X )y (2, X >>> hy(X™)  (5.5)
m=1ieS™
+ 7 Z > (Zpe (YI1X™) Ay (X, i, 1) 93 Qo (33, X))
m=M+1i€S5™
- [Zl’e(Y\X(m )AW7V(X7yiayj)]
Y
[Zpe (Y|x <yz,x<m>>]> hy(X™),  (5.6)
where

Qu (i, X)) =1 — o (y;why(XM)),

A (X, 9 5) = (@i X) + - V(593 X))
JEN;

and the terms in (5.5) are the gradient of the supervised component of the DRF over

'Note that the derivatives of objective function with respect to the edge parameters v are
computed analogously.
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labelled data, and the second terms are the gradient of conditional entropy prior of
the DRF over unlabelled data.

It is intractable to compute the conditional partition function Zy(X). Therefore,
as in standard supervised DRF's, we need to incorporate some form of approximation.
Following [5, 33, 36], we incorporate the pseudo-likelihood approximation, which
assumes that the joint conditional distribution can be approximated as a product

of the local posterior probabilities given the neighboring nodes and the observation

po(YIX) =~  []pe(wilyn,X) (5.7)
1€S
1

Poluilyne, X) = e (<I>w<yi,X>+];Ni%<yz-,yj,><>) (5.8)

Using the factored approximation in (5.8), we can reformulate the training ob-
jective as

M

RLPHO) = S0 logpe(Y™ Y G, X (M) (5.9)
:12’657”

+7 Z > polwilyn,, X™) log po(yilyn, X™)
m=M+1ieS™ y;
Here, the derivative of the second term in (5.9), with respect to the potential

parameters w and v, can be reformulated as a factored conditional entropy, yielding

9 L. pL
aWRL ) = (5.10)
Z > <yfm)9 ™ xm) Zpe yilyn,, X))y (yz,X(m))) h, (X))
m=1¢eSm

aatl Z > <ZP0 (ilyng, X™) A (X, 4, 7)) 9i e (2, X))

m=M+1ieS™

B [Zpe(yi\yNiX ™) A (X, i yﬂ')}
Yi

[ZPG (yi’yNw X(m))lew(yu X(m))} > h; (X(m))a

Yi
Assuming the factorization, the true conditional entropy and feature expecta-
tions can be computed in terms of local conditional distributions. This allows us
efficiently to approximate the global conditional entropy over unlabelled data. Note

that there may be an over-smoothing issue associated with the pseudo-likelihood
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approximation, as mentioned in [36, 74]. However, due to the fast and stable per-
formance of this approximation in the supervised case [5, 36] we still employ it, but
below show that the over-smoothing effect is mitigated by our data-dependent prior

in the MAP objective (5.4).

5.4 Inference

As a result of our formulation, the learning method is tightly coupled with the in-
ference steps. That is, for the unlabelled data, X, each time we compute Equation
(5.10), we perform inference steps for each node i and its neighboring nodes N;. Our
inference is based on iterative conditional modes (ICM), and is given by Equation
(2.14).

We could alternatively compute the marginal conditional probability P(y;|X) =
ZyS\i P(yi,ys\ilX) for each node using the sum-product algorithm (i.e. loopy belief
propagation), which iteratively propagates the belief of each node to its neighbors.
Clearly, there are a range of approximation methods available including Globerson
et al. [19] that approximates computations of marginal conditional probability, each
entailing different accuracy-complexity tradeoffs. However, we have found that ICM
yields good performance at our tasks below, and is probably one of the simplest

possible alternatives.

5.5 Experiments

In this section, we present a series of experiments on synthetic and real data sets
using our novel semi-supervised DRFs (SSDRFs). In order to evaluate our model,
we compare the results with those using maximum likelihood estimation (MLE) of
supervised DRFs [33]. We consider the standard MLE DRF from [33], instead of
the parameter regularized DRFs from [36], as we want to compare different perfor-
mance of “learned parameters” from the MLE and MAP [36, 39]. That is, proper
regularization helps find “good” parameters achieving accurate classification results.

To quantify the performance of each model, we used the Jaccard score as defined
in Chapter 3.

The tradeoff parameter, v, was hand-tuned and then held fixed at 0.2 for all the

experiments.
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Figure 5.1: Sample outputs from synthetic data sets. From left to right: Testing
instance, Ground Truth, Logistic Regression (LR), DRF, and SSDRF

5.5.1 Synthetic image sets

To see if our semi-supervised learning approach learns model parameters that achieve
good quality of classification results, we used 18 synthetic data sets, each with its own
shape (refer to Chapter 3). Figure 5.1 shows the results of using supervised DRFs,
as well as semi-supervised DRFs. Kumar et al. and Vishwananthan et al. [36, 74]
reported over-smoothing effects from the local approximation approach of pseudo-
likelihood (PL) while our experiments indicate that the over-smoothing is caused
not only by PL approximation, but also by the sensitivity of the regularization to
the parameters. However, using our semi-supervised DRF as a MAP formulation,
we have dramatically improved the performance over standard supervised DRF.
Note that the first row in Figure 5.1 shows good results from the standard DRF,
while the oversmoothed outputs are presented in the last row. Although the ML
approach may learn proper parameters from some of data sets, unfortunately its
performance has not been consistent since the standard DRF’s learning of the edge
potential tends to be overestimated. For instance, the last row shows that overes-
timated parameters of the DRF segment almost all pixels into a class due to the
complicated edges and structures containing non-target area within the target area.
Our semi-supervised DRF performance is, however, not degraded at all. Overall,
by learning more statistics from unlabelled data, our model dominates the standard
DRF in most cases. This is because our MAP formulation avoids the overestimate
of potentials and uses the edge potential to correct the errors made by the node

potential. Figure 5.2(a) shows the results over 18 synthetic data sets. Each point
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Table 5.1: Jaccard scores for DY Table 5.2: Jaccard scores for D°

Testing from DY Testing from D*
Studies LR | DRF | SSDRF | Studies LR | DRF | SSDRF |
D1 53.84 | 59.81 | 59.81 D1 68.01 | 68.75 | 68.75
D2 83.24 | 83.65 | 84.67 D2 69.61 | 69.73 | 70.06
D3 30.72 | 30.17 | 75.76 D3 23.11 | 21.90 | 71.13
D4 72.04 | 76.16 | 79.02 D4 56.52 | 63.07 | 68.40
3 73.26 | 73.59 | 75.25 D5 51.38 | 52.36 | 51.29
D6 88.39 | 89.61 | 87.01 D6 85.65 | 86.35 | 85.43
D7 69.33 | 69.91 | 75.60 D7 66.71 | 68.68 | 70.27
D8 58.49 | 58.89 | 73.03 D8 44.92 | 45.36 | 73.09
P9 60.85 | 56.49 83.91 P9 21.11 | 20.16 38.06
Average || 65.57 | 66.48 | 77.12 Average || 54.11 | 55.15 | 66.27

above the diagonal line in Figure 5.2(a) indicates SSDRF producing significantly
higher Jaccard scores for a data set at p < 0.001 level on a paired example t-test.
Note that our learning approach shows stable convergence as we increased the
ratio (nU/nL) of unlabelled data sets in our learning, as in Figure 5.2(b), where
nU denotes the number of unlabelled images and nL the number of labelled images.
This implies that model parameters tend to be insensitive to the increment of the
number of unlabelled data while fixing nL. Similar results have also been reported

in simple single variable classification task [20].

5.5.2 Brain Tumor Segmentation

We applied three models to the classification of nine studies from brain tumor MR
images. For each study, ¢, we partitioned the MR images into three disjoint sets:
DE DV and DZS , where DY denotes labelled, DY unlabelled, and DZS testing data
sets.

Per study i, LR and DRF take D as the training set, and test on DY and Dis .
Our SSDRFs is trained with labelled and unlabelled data: that is, DF and DY. The
tests are performed on DY and D7. Note that even though the ground truths of
DiU are available, they are not considered during training steps.

We segmented the “enhancing” tumor area, the region that appears hyper-
intense after injecting the contrast agent (we also included non-enhancing areas
contained within the enhancing contour). Table 5.1 and 5.2 present Jaccard scores
of testing DiU and DZS for each study, p;, respectively. While the standard supervised
DRF improves over its degenerate model LR by 1%, semi-supervised DRF signifi-
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Figure 5.3: From Left to Right: Human Expert, LR, DRF, and SSDRF

cantly improves over the supervised DRF by 11%, which is significant at p <0.006
using a paired example t test. Considering the fact that MR images contain much
noise and the three modalities are not consistent among slices of the same patient,
our improvement is considerable. Figure 5.3 shows the segmentation results by over-
laying the testing slices with segmented outputs from the three models. Each row
demonstrates the segmentation for a slice, where the white blob areas for the slice

correspond to the enhancing tumor area.

5.6 Conclusion

We have proposed a new semi-supervised learning algorithm for DRF's, which was
formulated as MAP estimation with conditional entropy over unlabelled data as
a data-dependent prior regularization. We introduced a simple approximation ap-
proach for this new learning procedure that exploits the local conditional probability
to efficiently compute the derivative of the objective function.

We have applied this new approach to the problem of image pixel classification
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tasks. By exploiting the auxiliary unlabelled data, we are able to improve the
performance of the state of the art supervised DRF approach. Our semi-supervised
DRF approach shares all of the benefits of the standard DRF training, including the
ability to exploit arbitrary potentials in the presence of dependency cycles, while
improving accuracy through the use of the unlabelled data.

The main drawbacks of our SSDRF (in comparison with DRFs) are (1) the in-
creased training time involved in computing the derivative of the conditional entropy
over unlabelled data and (2) the challenge in selecting an appropriate 7. Never-
theless, the algorithm is efficiently trained on unlabelled data sets, and obtains a
significant improvement in classification accuracy over standard supervised training
of DRFs as well as the iid logistic regression classifier. To further accelerate the
performance with respect to accuracy, we may apply loopy belief propagation [75]
or graph-cuts [8] as an inference tool. Since our model is tightly coupled with in-
ference steps during the learning, the proper choice of an inference algorithm will

most likely improve segmentation tasks.
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Models — Efficiency
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Chapter 6

De-coupled Conditional
Random Fields — DCRF's

6.1 Introduction

There are a number of random field approaches for classification tasks of spatially
correlated data instances, including generative models like Markov Random Field
(MRF) [31, 42], as well as discriminative models, including Conditional Random
Field (CRF) [37] and its variants — Discriminative Random Field (DRF) [35], As-
sociative Markov Nets (AMN) [68] , and our recent Support Vector Random Field
(SVRF) [40]. As MRF's assume conditional independence among observations given
class labels, their learning procedures tend to be faster than the discriminative mod-
els (variants of CRFs); however, this assumption means they are not as accurate.
The more accurate models, unfortunately, can be prohibitively slow, which may not
be tolerable to classification tasks such as image segmentations.

In this chapter, we propose a novel approach to our discriminative random fields
model to make it more efficient. We develop a “decoupled” learner, DCRF to avoid
the expense of learning parameters in the framework of random fields. We found
that, as expected, the resulting DCRF is much faster to train than the corresponding
(non-decoupled) SVRFs. Moreover, we were pleasantly surprised to find that this
improvement in speed did not cost a degradation in accuracy: that is, our DCRF is
essentially as accurate as SVRF's!

Section 6.2 presents a quick overview of related systems. It motivates our ap-
proach by noting that these systems — especially the ones that produce accurate
labelling — can be very slow to train. Section 6.3 introduces our novel “Decou-

pled Conditional Random Field” (DCRF) approach, and provides details for both
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learning the parameters and for inference (i.e. classification — here segmentation).
Section 6.4 demonstrates the accuracy and efficiency of our model by presenting ex-
perimental results over various domains, including the challenging real-world prob-

lem of segmenting brain tumor from MRI scans.

6.2 Related Work

In the MRF framework, the probability over the n joint labels Y given the obser-

vations X is written as
P(Y|X) o P(Y)P(X|Y) = P(Y) [[P(xi|w)

As the factorization of the likelihood is only a crude approximation to reality, this
approach will typically produce inferior labels. The prior P(Y ) can explicitly in-
corporate dependencies among the labels. Due to the equivalence between MRFs
and Gibbs Distributions [5], an MRF is formulated as

1

P(Y|X) x 70X exp ZD(Xiayi) + Z Vi(yiys) | (6.1)
€S JEN;

where S is the set of nodes (i.e. pixels), V(y;,v;) is a potential function of labels,
y; and y;, N; is a set of neighbors of node i, and the “partition function” Z(X) =
D v XD D ics D(xi,yi) + X jen, V(i yj)] is used to normalize the equation.

Notice V(y;,y;) depends only on the labels y; and y;, but not on the infor-
mation about the pixels {x;};cs. Therefore, an MRF prefers a set of labels Y*
where neighbors have the same value. Also, as the partition function Z(X) involves
summing over all |L|!Sl possible labellings (assuming there are |L| labels for each
pixel), it is very expensive to compute. However, an MRF assumes D(x;,y;) to
be Gaussian distributions, and hence estimating maximum likelihood parameters is
computationally efficient [4, 29, 35, 77].

CRFs have been extended to two well-defined models that differ by their choice
of Association potentials: Discriminative Random Fields (DRFs) [35], which use
Logistic Regression, and Support Vector Random Fields (SVRFs) [40], which use
Support Vector Machines (SVM) [9]. Note that CRF variants produce better ac-
curacy than their generative alternative, MRFs. However, their good performance

compromises the efficiency in learning steps.
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For example, the learning task in DRFs and SVRFs involves estimating the
parameters w and v that maximize the log-likelihood of the given data sample.
Both systems use a regularization term to avoid overfitting. The parameters are

estimated by maximizing the log-likelihood for M images formulated as

(W,10) =
(k) (k) viv
argmax ZZCI) ) + Z Yy 7y] 7X ) —log(Z*™(X)) | — 972
k=11i€S JEN;
(6.2)

Although SVRF significantly improves the accuracy of DRF even when features
may be correlated, SVRF has shown that selecting the appropriate 72 in SVRF and
DRF is a non-trivial task, which makes the overall learning procedures more chal-
lenging and costly. Coordination Classifiers [22], an ensemble classifier, expresses
the spatial correlations by synthetically creating “neighborhoods” among iid data
instances. Its performance depends on how the neighborhoods are determined. As-
sociative Markov Nets (AMN) [68], a variant of Max-Margin Markov Nets [67], dis-
criminatively train Markov nets. AMNs exploit the spatial correlations by adopting
the maximum-margin principle of maximizing the margin between target labels and
the best runner-up label assignments. Hence, this process employs the same ideas
underlying SVM. SVRFs differ by actually performing the same basic computations
that an SVM performs. Note that a Boosted Random Field (BRF) [70] combines
a set of iid classifiers that correspond to Association potentials, where each poten-
tial is trained on a specific class to quantify the likelihood of a class on a pixel.
Hence, a BRF does not explicitly consider the spatial correlation. We see there are
problems in training each of the systems mentioned in this section: some are inac-
curate (as they use inappropriate models), while others require significant amount

of computation time, or user inputs.

6.3 The DCRF System

This section presents the foundations to formalize our Decoupled Conditional Ran-
dom Field, DCRF. We first motivate our approach of decoupling the training of the
two potentials, then discuss inference — i.e. how to use the resulting system to

segment an image.
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First, if we ignore the dependencies among the labels of the pixels ( i.e. as-
sume that they are independent and identically distributed), we would use only the

“Association” potential, which attempts to maximize

Pa(Y[X) o eXp<Z<I>(yi,X)> (6.3)

€S
Many existing classifiers ( e.g. Naive Bayes, Logistic Regressions, SVM, etc.) are
(perhaps implicitly) attempting to optimize Equation (6.3).
Alternatively, a discriminative model that only considers spatial coherence would

attempt to optimize

Pre(Y|X) exp(Z\I/(yi,yNi,X)> (6.4)

€S
where yy, are the labels of i’s neighbors.

Equation (6.3) and (6.4) provide different frameworks for approximating the
probability distributions P(Y | X ). Each is only partial, in that the first (second)
does not properly incorporate spatial coherence (resp., the local observations).

Notice typical CRF models involve the sum of these equations — written in log

space as

> dwnx) + > T(yiyn,, X) (6.5)

€S €S
(Compare to Equation (2.17). Note that the neighborhood is considered in ¥(-)
explicitly.)

We now observe that the potentials forms in Equation (6.5) follows MAP formu-
lations for the joint probability over labels: that is, we can approximate the global
optimal joint class labels by maximizing the local probability distribution using the
principles of pseudo-likelihood and Iterative Conditional Modes (ICM)! [9] — i.e.
P(Y |X) =]l;cs P(yi|lyn,,X). Thus, for each pixel i, the formulation to model
P(yi|yn,, X)) given its neighbors yy;, is:

Dulyx) + 3 Uulyiy;, X) (6.6)
JEN;
N.b., as we will only be seeking the argmax, we can safely omit the normalizing

“—log(z;)” term from Equation (6.2), as it will be constant here.

! Although pseudo-likelihood and ICM principles are only guaranteed to achieve local maxima,
the discussion of the global optimality issues is beyond the scope of this chapter.
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Equation (6.6) shows that we can approximate a CRF model using a decoupled
system, corresponding to the simple sum of two different potentials. (This differs
from standard ensemble methods [14], as we are directly combining potentials rather
than classifiers.) We will see that, as expected, it is much faster to learn these
individual summands individually, before combining them. Our empirical evidence

shows that, surprisingly, the resulting DCRF system can be as accurate!

6.3.1 Association-only Potential

The association potential provides a local likelihood being class label y; for feature
characteristics x; to describe pixel i: P4(y;|x;). Our “decoupling” principle allows
us to select a function that quantifies the conditional probability for a given observed
instance. We incorporate a maximal margin approach where the two classes of pixels
are classified based on a hyperplane that maximizing the distances between the two
classes.

As suggested above, we consider a potential based on SVMs; note this method
inherits the SVM'’s relative insensitivity to class imbalance, and their ability to
typically outperform other discriminative classifiers such as GLMs, especially in
cases where the classes overlap [62], which is common case in imaging applications.

We find a decision function f(x) by solving the optimization problem as in
Equation (2.8) over the a;s, and produce f(x) = >, ;i y; X! x + [o then use
the decision function sign ( f(x)) to classify a test instance x. Our implementation
actually uses Sequential Minimal Optimization (SMO), which is even more efficient
than standard SVM implementations [52].

Notice that f(x) computes the distance to the hyperplane from the instance x.
We can use this to compute a sigmoid function [53, 43]:2

1
1+ exp(Aa X yi(WwTx;) + Ba)

using the parameters A4 and By4.
As noted above, our approach (like SVRFs) differs from Max-Margin Markov
Nets (M3N) [67] and AMN [68] as those system explicitly maximize a margin between

the target labels and most probable label assignments considering joint labels.

?We augment the instance x; by including a constant 1, and hence the w include a “constant”
term as well.
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6.3.2 Local-Consistency-only Potential

We use our “local-consistency-only” potential to model the “neighborhood coher-
ence” between pixels. Its goal is to encourage instances within the specified neighbor-
hood system to have the same labels when their feature characteristics are similar,
and therefore is mainly to smooth regions (and hence remove errors) produced by
the Association-only potential.

For similar instances in a neighborhood to have similar (in our discrete case,
“identical”) class labels, we introduce a max-margin based potential, which tries
to make the labels of a testing instance same as the labels of its neighbors. This
potential learns a pairwise max-margin model that quantifies the likelihood that two

pixels will have the same class labels, given their descriptions:

Uy (i, X) = I(yi,y;) x 7 (0(xi,%;),1)] (6.8)

where I(y;,y;) returns +1 if y; = y;, and —1 otherwise. (We define ¥ (x;, x;) below.)
Equation (6.8) reduces the pairwise discriminative learning problem to the binary
class problem, over similar versus dissimilar classes. That is, we apply Quadratic

Programming (QP) (refer to Equation (2.8)) to the training set

Spew = { (V(xr,%;), 1(yr,y;)) | j € Ny }

over all instances r with neighbors j € N,., to find the optimal parameter v.

Note that each pair of pixels is projected by (-) onto a similarity feature space.
In this chapter, we use 9(x;,%x;) = XZTXJ', which produces a scalar: the cosine mea-
sure of the similarity. Note this attains its largest value when the two vectors match
one another. Due to “localized” neighborhood system for the Local-consistency po-
tential, the increment to the training data size only grows linearly with the number
of pixels. Notice that feature-wise space depends on (-).

As we will need to combine this potential with the Association-only one, we need
to produce values within a “comparable” range. We therefore convert Equation (6.8)
to the probability scale, using the same transformation used to produce Equation

(6.7).

1
* I4exp(Are x I(yi, y;) T (¥(x4,%;),1)) + Bre)

where again Arc and Brco are set to optimize the fit to a sigmoid, which produces

(yi, yj, X) (6.9)

a probability distribution as in Association-only potential.
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6.3.3 Inference

Our goal in producing this DCRF system is then to find relevant regions within
images — e.g. tumor regions within MR images of a brain. This involves inferring
a binary label (tumor versus non-tumor) for each individual pixel. As noted above,
this corresponds to computing the most likely vector Y* = argmax, P(Y [ X)) given
the evidence X, based on the (possibly unnormalized) potential functions. In our
case, we will use the potential function in Equation (6.6), which is the sum of
the Association-only P4(-) (Equation (6.3)) and Local-Consistency-Only Prc(-)
(Equation (6.4)) potentials. While the inference seeking Y* can be expensive,
there are several existing approximation algorithms for CRFs, including Iterative
Conditional Modes (ICM) [9], Graph-Cuts (GC) [8], and Loopy Belief Propagation
(LBP) [28].

DCRF uses ICM since it converges quickly and has been shown empirically to
produce accurate results [40, 5].3 ICM iteratively maximizes the local conditional
probabilities, assuming the other labels are correct:

yi = argmax P(y;|yn,,X)
yie{+1, -1}

= argmax P(y;, X) + V(yi,yn,, X) (6.10)
yie{+1, —1}

Of course, we could add the normalization factor z; in Equation (6.10), which
constrains outputs to follow probability axioms. However, the constant factor is
irrelevant, since our inference approach seeks only the most likely value.

Our DCRF model uses QP within SMO. Assuming each image has n pixels, and
each pixel has E neighbors then learning the Association-only potential requires
O(n?) steps per image, and Local-Consistency-only potential requires O( (n x E)?)
per image. Here, we used E is 4. Inference (here, classifying the regions in a test
image) requires O(n) per iteration. Empirically, we found that ICM converged after

5 iterations, on average.

3While GC and LBP are considered be the best inference methods, even if the graph structure
has loops, we used ICM for the reasons shown above. Note this issue is orthogonal to the goal of this
chapter, which is to compare the training time and accuracy of our DCRF to other CRF-related
models.
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Target Test Image LR SVM SVRFs DCRFs

Figure 6.1: Results from synthetic image sets. Left to right: Target, Test Image,
LR, DRFs, SVM, SVRFs, and DCRFs. Rows 1 to 5 from the top down correspond
respectively to datasets 1, 3, 10, and 11 in Figure. 6.2

6.4 Experiments

We implemented the Decoupled CRF's described above, DCRF's, and compared it
with other random field techniques on both synthetic and real-world tasks. As
many imaging tasks are very imbalanced (in that the “positive” class includes only
a small percentage of the pixels), the standard evaluation criteria of “accuracy” is
problematic. We therefore use the Jaccard score. The details about data sets and

Jaccard score are discussed in Chapter 3.

6.4.1 Synthetic image sets

We first apply our DCRFs to artificially generated images where foreground and
background pixels are significantly corrupted by noises. This in turn provides us

with an opportunity — how our approach relaxes classification results based on iid
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Figure 6.2: Averaged Jaccard scores on synthetic data sets

assumption by encoding spatial correlations.

Figure 6.1 shows some of the experiment results. Each row in Figure 6.1 presents
one example, showing (from left to right), the true labels, the test images, and
outputs from Logistic Regression (LR), DRFs, SVM, SVRFs, and DCRF. We see
that, overall, SVRFs and DCRF's are most accurate. Especially when the test images
are imbalanced, LR (third column) and DRFs (fourth column) produce degraded
outputs caused by the poor parameter estimations from the imbalanced data.

As shown in Figure 6.1, SVRFs’ results do not always produce highest Jaccard
scores, which implies that regularization term 72 in the SVRF frameworks impacts
on the accuracy. The “appropriate” value of this parameter for data samples helps
find “optimal” model parameter v producing good segmentation results. In general,
it is not trivial to find such “good” values. While we can use cross-validation method
to estimate this parameter, others [35, 40] have argued that this does not guarantee
effective performance.

Figure 6.2 shows that the DCRF and the SVRF are the two best performers
overall, at this segmentation task, dealing with both the balanced and imbalanced
data: each was significantly better than the others at the p < 0.001 level based on a
paired example t-test; moreover, our DCRF performs better than the SVRF at the
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Table 6.1: Average elapsed learning time (seconds)
DRF | SVRF | DCRF
Synthetic 1581.3 | 714.5 21.2
Brain Tumor || 1392.4 | 1209.4 | 82.3

p < 0.004 level. Note that the SVRF can sometimes produce better results than the
DCRF— see data sets 3, 9, and 12 in Figure 6.2. Here, we assume that the SVRF
found good estimates for 72. It is also shown in data sets 6, 7, 9, 12, and 14 that
the good estimation of the regularization of DRFs help DRFs perform better than
SVM.

The first row of Table 6.1 reports the average learning time for DRFs, SVRF's and
DCRFs over these fifteen cases. Notice first that our DCRF requires significantly
less time than the other two approaches — 30 times faster than SVRF and over
70 times faster than DRF. This is because there are fast ways to solve DCRF’s
underlying QPs. We found the SVRF was superior to DRF at the p <0.001 level.
We attribute this to the observation that the SVRF learner regards the Association
potential as a constant while learning the Local consistency potential, but DRF's
attempt to optimize both potentials simultaneously. Finally, recall that our DCRF

does not compute the partition function during the training.

6.4.2 Brain Tumor Segmentation

We next apply our various models to the task of segmenting brain tumors from MR
images. In our experiment, we evaluate the following seven classifiers on thirteen
different time points from seven patients. Maximum Likelihood (ML = degener-
ate MRF), Logistic Regression (LR = degenerate DRF), SVM (degenerate SVRF),
MRF, DRF, SVRF and DCRF. For each of the Random Field methods, we initialize
inference with the corresponding degenerate classifier ( i.e. Maximum Likelihood,
Logistic Regression, or SVM). To provide a fair comparison between SVM-based
models (SVRF and DCRF) and the other models, we only used the linear kernel.
We consider the following 3 tasks, each using ground truth defined by an expert
radiologist:

The first task is the relatively easy one of segmenting the “enhancing” tumor
areas — the region that appears hyper-intense after injecting a contrast agent. (Note
this includes non-enhancing areas contained within the enhancing contour — e.g.

necrotic areas.) The second task is to segment the entire edema area associated
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Table 6.2: Jaccard scores (percentage) for Enhancing tumor areas
Enhancing tumor Area
Studies | ML | MRF | LR | DRF | SVM | SVRF | DCRF

1-1 23.1 | 24.6 | 444 | 46.1 50.7 52.8 53.2
2-1 0.0 00 | 613 | 61.5 | 874 | 87.7 87.1
3-1 69.2 | 69.7 | 61.8 | 61.8 | 83.0 | 84.8 86.8
3-2 40.1 | 40.3 | 84.8 | 84.6 | 85.7 | 85.8 85.8
4-1 269 | 27.3 | 49.1 | 504 | 788 | 81.7 82.6
4-2 589 | 59.7 | 683 | 70.2 | 76.7 | 77.9 79.2
4-3 49.2 | 50.2 | 71.3 | 71.6 | 88.2 88.1 88.8
4-4 65.6 | 68.2 | 87.5 | 87.1 | 87.0 | 87.1 86.9
5-1 67.0 | 67.5 | 52.2 | 514 | 828 | 84.3 84.1
6-1 374 | 376 | 764 | 76.2 | 79.2 | 80.4 80.0
7-1 63.2 | 63.0 | 755 | 76.7 | 81.0 | 81.4 81.1
7-2 37.7 | 393 | 759 | 75.8 | 86.5 | 87.3 86.8
7-3 45.3 | 45.6 | 81.8 | 81.5 | 87.7 | 87.6 87.8
Average || 449 | 45.6 | 63.6 | 68.8 | 81.1 82.1 82.3

with the tumor, which is significantly more challenging due to the high degree of
similarity between the intensities of edema areas and normal cerebrospinal fluid in
the various modalities. The final task is segmenting the gross tumor area as defined
by the radiologist. This can be a subset of the edema but a superset of the enhancing
area, and is inherently a very challenging task even for human experts, given the
modalities examined.

Tables 6.2, 6.3 and 6.4 present the classification results for the three tasks. Over
all three tasks, we see that the best results are typically obtained by either DCRFs
and SVRFs, which are comparable to one another, and statistically better than the
rest: The differences between SVRFs and the next best, SVM, across the three tasks
is significant at the p < 0.000002 level based on a paired example t-test, but the
same t-test between SVRFs and DCRF's across the tasks indicates no difference —
i.e. here p = 0.37. However, Table 6.1 (second row) shows that our method requires
significantly less training time — by a factor of 14! Although SVM performed very
well visually on the three tasks(see Figure 6.3), just as we saw on the synthetic data
results, this performance can not always be guaranteed.

In Table 6.2, the results from the second patient “2-1” produced an interesting
observation; significant overlap between Gaussians in the high dimensional feature
space leads ML and subsequently MRFs to misclassify all areas as non-tumors. This

example shows that inappropriate modelling of P(X|Y ) can generate extremely

o7



Table 6.3: Jaccard scores (percentage) for Edema tumor areas
Edema Area
Studies || ML | MRF | LR | DRF | SVM | SVRF | DCRF

1-1 219 | 21.6 | 35.7 | 36.7 | 58.0 | 58.2 58.0
2-1 33.3 | 342 | 59.2 | 614 | 89.4 | 89.2 89.3
3-1 344 | 344 | 755 | 772 | 81.7 | 82.2 81.9
3-2 476 | 48.1 | 73.6 | 74.1 | 80.3 | 81.1 80.5
4-1 283 1 29.1 | 38.6 | 41.2 | 54.0 | 55.4 54.6
4-2 43.2 | 46.8 | 45.3 | 46.7 | 54.7 | B7.7 54.9
4-3 354 | 354 | 699 | 70.6 | 69.2 69.1 69.1
4-4 44.1 | 43.7 | 786 | 79.0 | T7.7 | T7.3 79.5
5-1 47.8 | 48.6 | 63.6 | 65.7 | 748 | 76.9 74.6
6-1 40.3 | 40.1 | 793 | 79.7 | 82.2 | 83.7 82.9
7-1 749 | 777 1 91.2 ] 924 | 948 | 94.9 94.9
7-2 39.2 | 404 | 809 | 82.7 | 83.1 | 828 83.1
7-3 54.1 | 53.9 | 79.3 | 80.7 | 84.6 | 84.5 85.6
Average || 41.9 | 426 | 62.2 | 683 | 75.7 | 76.4 76.1

poor performance (see the first row of Figure 6.3). Although the segmentation tasks
for edema and gross tumor areas are very hard, the best discriminative approaches
(i.e. SVRF and DCRF) still produce segmentations that are typically very similar

to the manual segmentations, for all three tasks.

6.5 Conclusions

As standard independent and identically distributed classification algorithms do not
consider spatial correlations, they typically fail to correctly classify such correlated
data instances. Such spatial correlations can, however, be effectively modelled by
various Random Field frameworks. However, these systems (especially the ones
that work effectively.) can require a significant amount of time to learn. This time
constraint makes such models inappropriate for large scale real-world problems, such
as segmenting brain tumors.

In this chapter, we have proposed a Decoupled CRF (DCRF) to improve the effi-
ciency of a discriminative Random Field method for finding regions in an image. Our
proposed model first learns the two potentials (Association and Local-consistency)
independently, each based on a variant of Support Vector Machines. Afterwards, to
segment regions in a novel image, it uses a new potential that is the simple sum of
these potentials, using ICM (with respect to this combined potential) to produce a
labelling. One main drawback in the DCRF is the independently learned potentials
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Table 6.4: Jaccard scores (percentage) for Gross tumor areas
Gross Tumor Area
Studies || ML | MRF | LR | DRF | SVM | SVRF | DCRF

1-1 19.3 | 19.5 | 39.4 | 40.9 | 40.7 40.5 41.1
2-1 354 | 35.7 | 651 66.1 | 78.2 | 76.9 78.0
3-1 444 | 46.1 | 729 | 734 | 779 78.7 78.2
3-2 512 | 513 | 76.3 | 76.2 | 78.1 78.8 80.2
4-1 374 | 38.7 | 394 | 40.1 | 414 41.2 42.1
4-2 38.0 | 40.2 | 39.7 | 394 | 62.1 | 64.9 62.1
4-3 66.0 | 685 | 73.3 | 73.5 | 644 64.5 64.1
4-4 46.7 | 45.8 | 83.8 | 83.5 | 86.0 | 87.0 86.2
o-1 50.1 | 50.9 | 65.3 | 68.3 | 82.8 | 84.8 83.4
6-1 46.6 | 47.6 | 79.6 | 79.4 | 876 | 88.2 87.8
7-1 66.4 | 66.3 | 71.9 | 73.2 | 74.6 74.1 74.7
7-2 49.6 | 52.4 | 68.3 | 67.9 | 72,7 | 72.9 72.5
7-3 43.4 | 43.7 | 735 | 72.7 | 81.6 81.2 82.0
Average || 45.7 | 46.7 | 60.6 | 65.7 | 71.4 | 71.8 T71.7

do not guarantee “optimality” in modelling spatial correlations.

Our empirical results — on both synthetic and real-world data — show that
our DCRF approach is virtually as accurate as the most accurate random field for
this task (SVRF), but the learning time is many times faster (here, by a factor over
14 in one case, and over 30 in another). In addition, our model produces effective
classification results, even when data sets are heavily imbalanced.

We currently use only (a variant of) linear SVMs; we expect further accuracy
improvements by using other kernels. We also use only a very simple approach
for combining the two potentials; again we anticipate other combination rules may

produce yet better results.
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Human ML MRF LR DRF SVYM  SVRF DCRF

Figure 6.3: Classification results of seven methods on five different test slices, com-
pared with human expert segmentation
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Chapter 7

Pseudo Conditional Random
Fields — PCRF's

7.1 Introduction

As with much of related work, there are a range of approximation methods available
to learn parameters in the framework of general random fields including DCRF's [39]
and Pairwise training [64, 65]. As an alternative to such approximations, we present
a novel efficient supervised learning framework, Pseudo Conditional Random Fields
(PCRFs), to model spatial compatibility among data instances. Although DCRF's
learn two sets of model parameters including explicit learning parameters for edge
potentials, our PCRFs can be viewed as a regularized iid discriminative classifier,
where the classification task is performed with a regularization term that explicitly
incorporates correlated dependencies. Specifically, a classifier is first trained under
the iid assumption, and then relaxes its iid assumption during inference step. In
other words, we regularize a decision of an iid classifier for a pixel by considering its
neighboring pixels’ labels as well as their feature characteristics.

We demonstrate our framework’s performance by applying it to classify pixels
using synthetic and real world problem of MR image analysis. In each case, we
have obtained significant accuracy improvement over baselines — LR and SVM. In
addition, the PCRF is as accurate as state-of-the-art CRF variants. Note that our
training only involves learning an iid learner, and therefore its learning is much more
efficient than CRF-variants.

Section 7.2 briefly reviews related work highlighting our motivation. Section 7.3
then introduces our novel framework — PCRFs — describing the two major steps

in typical supervised learning — Learning and Inference. Section 7.3.2 discusses
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one major contribution to relax the iid assumptions made from base classifiers.
Section 7.4 shows empirical experiments for efficiency and effectiveness of our model.

In Section 7.5, we summarize our PCRF, also comparing with DCRFs.

7.2 Related Works

Extensions to CRFs such DRFs and SVRF's were designed to overcome these disad-
vantages of MRF's by relaxing conditional independency and incorporating observa-
tions when formulating spatial dependency. In Equation (2.17), the typical CRF’s
formulation is strictly based on conditional probability distribution, while an MRF
is formulated on joint distribution of X and Y. In addition, the CRF variants in-
corporate observations of data instances using the W(y;,y;,X). Empirically, CRF
variants have shown better accuracy over spatially correlated classification problems
than MRFs [35, 37].

The effectiveness of DRFs and SVRFs is compromised by the computational
complexity of computing Z(X) (refer to Equations (2.17) and (4.1)). Typically,
their learning algorithms involve maximizing conditional likelihood which requires
computing the derivatives of their objective. This in turn involves computing the
conditional expectation of feature [34, 35, 40]. DRFs and SVRFs use approxima-
tions to avoid intractable computations associated with the conditional expectation.
Recently, an alternative technique to deal with the computation of Z(X), matrix-
tree theorem, was applied to non-projective dependency parses: that is, dependency
parses involves the exponential number of structured possibilities in sentence pars-
ing tasks [32]. However, the naive application of the theorem yields time complexity
O(n*) for n words in a sentence.

The Decoupled Conditional Random Fields (DCRF) (discussed in Chapter 6)
was introduced to improve the efficiency of CRF-based formulations by decoupling
the two potential functions when learning parameters. Specifically, the DCRF sys-
tem views a CRF as the combination of two “independently learned” potentials [39].
PCRFs differ from DCRF's since PCRF's only require learning parameters for a sin-
gle potential. Coordination Classifiers [22], as an ensemble classifier, marginalizes
its local consistency potential to compute the singleton potential. This means that
two potentials are dependent which differs from our PCRFs.

In the next section, we propose a novel system, PCRF that efficiently learn

parameters that model spatial correlation, efficiently learning model parameters.
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This also produces effective classification results.

7.3 Pseudo Conditional Random Fields — PCRF's

While it is less expensive to estimate the maximum likelihood MRF parameters
than the CRF parameters, CRF (and its variants) are more accurate. We introduce
our Pseudo Conditional Random Fields (PCRF) system to take advantage of both
approaches.
Our PCRF seeks the most-likely labelling, viewed as
Pp(Y |X) = Hpe(yi\X7Y —¥i)
€S

Given feature vectors (observations) — x; and xy, for each pixel ¢ and its neighboring
pixels N; — as well as the class label y; for each neighboring pixel j € N;, the PCRF

formulation then defines

P@(yZ’XuXNuyNZ) = 1/}9(X27y2) XpNiu (71)

where the potential function y(.) is parameterized by 6 and py;, is a regularization
term that helps minimize uncertainty of ¢»(.) by incorporating spatial dependencies.
If we simply define ¥ = pg(y;|x;) and pn, = 1, i € S, we obtain the typical local
conditional probabilistic model that corresponds to an iid classifier — for instance,
logistic regression. However, the challenges to represent regularization term py;, still
remain: (1) it explicitly needs to model spatial dependency; (2) it needs to be data
dependent, implying that spatial correlations should consider observation similarity.
Therefore, we define py;, as a product of two functions, considering neighboring pixels
N;.

pn, = [T ¢°(xix5) % 6(wi, ;) (7.2)

JEN;
Note that ¢°(x;,x;) is a potential function that quantifies how much observations
of pixels at i and j are comparable. The ¢°(y;,y;) function measures interactions
between two class labels — y; and y; — and specifies how continuity with respect to
class labels can be determined. In other words, if ¢¢(y,y’) gives a large score when

y =9/, then it prefers to have neighboring pixels being the same class label.

7.3.1 Learning

Typical CRF variant models are slow as they try to compute exact expectations,

when learning parameters [34, 35, 37, 41]. To approximate the computation, one
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can use pseudo-likelihood, contrastive divergence, and pseudo-marginal approxima-
tion [34, 35, 41]. However, none of them consistently outperforms the others [34].

In the PCRF system, the parameter to be learned is associated with 1g(x;,y)

Po(xi,y) = o (0 h(x:)), (7.3)

where o(t) = corresponds to a local discriminative classifier (i.e. logistic

TR
regression), and h(x;) is a feature function. This explicitly quantifies the probabil-
ity being class y given observation x;. Note that we mainly focus on discriminative
approaches rather than generative ones due to their robustness over generative ap-
proaches [49].

PCREF’s learning algorithm is simple, and more efficient than CRF variants due
to its formulation (Equation (7.3)); we only need to find parameter 6* for a local
potential function v (.) by maximizing conditional log likelihood,

0* = arg méixz [y, log o (AT h(x;)) + (1 — y;) log(1 — J(HTh(xi)))], (7.4)
€S

where y; is a class label of observation x;.

7.3.2 Inference

Inference in our PCRF system explicitly incorporates spatial correlations. Our ob-
jective in inference is to find Y* maximizing P(Y|X), written in log scale as,
Y* = arg max log P(Y|X)
= argmax) <log (i, y3) + log pNi>, (7.5)
€S
where X = {x;}ics and Y = {y; }ics. Note that Equation (7.5) requires considering
an exponential number of possibilities (i.e. 2/°! for binary case) to find an optimal

Y*. To efficiently solve Equation (7.5), we express it as,

log P(Y|X) =
Stogvixim) + > (logo”(xixg) +log o (uiyy))  (7.6)
ieS JEN;

Here, we see Equation (7.6) as an energy minimization problem, and therefore use
graph cuts as they are designed to solve the pixel classification problem [8].

We solve graph cuts using linear programming to seek max-flow/min-cut, where
a graph is represented with nodes corresponding pixels and edges connecting neigh-

boring pixels. The weight between nodes i and j is determined by ¢°(.) and ¢°(.).
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Ground Truth  Testing slice LR MRF(LR) PCRF

Figure 7.1: Synthetic data examples

Here, we need to introduce two auxiliary nodes: s and t denoting tumor and non-
tumor class labels, respectively. The weight between node s and node 7 is weighted

with 1(x;, s), and ¥ (x;,t) for node t and 1.

7.4 Experiments

In this section, we present empirical results on synthetic and real world problem —
magnetic resonance image analysis — using our novel PCRF. In order to evaluate
our model, we first compare the results with baseline models — typical iid classifiers.
Since the PCRF can be viewed as a regularized discriminative iid classifier, we
want to highlight the effective performance of our PCRF in comparison with its
corresponding iid classifier. Second, we also perform experiments by augmenting
a typical MRF using a discriminative iid classifier that relaxes an MRF’s local
likelihood assumption. That is, we use a local conditional probability models —
logistic regression and support vector machine — in a typical MRF. They are denoted

as MRF(LR) and MRF(SVM), respectively.
T

We use ¢°(x;,%;) = x; x; which produces a scalar: the cosine measure of the
similarity. Note this produces its largest value as the two vectors match one another.
We also set ¢°(yi,y;) = o, if y; = y;, otherwise 1 — o, where o weighs the continuity

of same class labels. Here, we set a = 0.6

7.4.1 Synthetic image sets

This section demonstrates our PCRF performance as a binary classification over a 2-
D lattice comparing with base models using eighteen synthetic data sets introduced
in Chapter 3.

Examples in Figure 7.1 illustrate classification results from two of synthetic sets.

The first two columns are the ground truth and its testing image. The classification
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0.0013

Figure 7.2: Jaccard scores (percentage) from synthetic data sets
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results are presented from third columns: Logistic Regression(LR), MRF(LR), and
PCRF. It is clear that LR produces the worst classification results, even though it
accurately retrieves shape boundaries. Background pixels in LR are classified as
target labels since a classification decision for a pixel is made only by considering
the observation of the pixel. MRF(LR) produces better accuracy than LR since it
simply relaxes LR’s decisions by considering neighboring pixels’ label distributions.
This results in smoothing effects, but still suffers from under estimates of background
pixel labels.

The last column demonstrates effects of considering neighboring pixels with re-
spect to their labels as well as observation similarity. Our PCRF distinguishes
boundaries clearly, and the background pixels are relatively more corrected compar-
ing with LR and augmented MRF. This is because the PCRF formulation avoids
under estimates of spatial compatibility. Figure 7.2 supports robustness of PCRF
from eighteen data sets. Each point above the diagonal line in Figure 7.2 indicates

PCRF producing higher Jaccard scores for a data set.

7.4.2 Brain Tumor Segmentation

We first applied three models — LR, MRF(LR), and PCRF — to the classification of
eleven studies from brain tumor MR images, where an MR image (a.k.a. slice) has
three modalities available. Refer to Figure 3.3 for the examples of three modality.
We segmented the “enhancing” tumor area, the region that appears hyper-intense
after injecting the contrast agent, and we also included non-enhancing areas con-
tained within the enhancing contour. Figure 7.3 shows examples of classification
results including the ground truth and testing slice at the first and second column,
respectively. It is clear that the visual identification of tumor areas is not a trivial
task.

From examples on the first row in Figure 7.3, LR correctly classifies pixels from
the slice with an outlined tumor contour, but it also incorrectly produces many small
blobs as false positives. As shown in Figure 7.3, MRF(LR) further smooths rough
boundaries of LR result. However, it still suffers from many false positives. PCRF's
show better smoothed tumor areas. From the second and third rows examples, it
is clear that PCRF is robustly effective. Overall, PCRF’s accuracy is higher than
the other two models — LR and MRF(LR) — at the p < 0.0045 and p < 0.0048

level on a paired example t-test, respectively. Figure 7.4 presents Jaccard scores
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(a) Testing slice (b) Ground Truth  (c¢) LR (d) MRF(LR) (e) PCRF

Figure 7.3: Classification results from various models. PCRF reduces false positives,
resulting in better smoothed tumor shapes

(percentage) from all testing results.

Figure 7.5 presents other segmentation results, showing the results from seg-
menting the entire Edema Area associated with the tumor. This is known to be
more challenging because of the high degree of similarity between the intensities of
edema areas and normal cerebrospinal fluid in the various modalities.

Here, we implement PCRF(SVM), which differs from the PCRF system by using
an SVM to compute the ¢(x,y) (from Equation (7.5)) which models the relationship
between a voxel’s feature vector and its label. An SVM produces the distance be-
tween a hyperplane and a data instance as its decision value fsyar(x;) € (—o0, +00).

To normalize this unbounded range, we fit this value to a sigmoid function:

1
T 1+ exp(fo + Bi(fsvm(x)))’

estimating the parameters [y and (31 from the training data {(fsv s (x;), vi) }i- Refer

9606 (fsvm(x)) = P(y = +1]| fsvm(x)) (7.7)

to Section 4.2.1 for details.

Figure 7.6 compares the percentage Jaccard scores of PCRF(SVM) vs SVM
to classify enhancing, edema, and gross tumor areas. We see that PCRF(SVM)
outperforms its base classifier SVM at p < 0.0001.
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Ground Truth

LR(J=71.7461) MRF(LR)(J=71.7461) PCRF(J=72.6892)
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SVM(J=81.8403) MRF(SVM)(J=82.2355) PCRF(SVM)(J=84.2077)

(a) PCRF removes most of false positives that were determined by
its base classifiers.

Slice Ground Truth

]

LR(J=65.9437) MRF(LR)(J=65.9437) PCRF(J=68.2344)

SVM(J=78.8773) MRF(SVM)(J=79.1667) PCRF(SVM)(J=83.0994)

(b) PCRF successfully recovers false negatives by filling in holes.

Figure 7.5: Classification results for edema areas. Jaccard scores(percentage) are
presented along with classification results.
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Figure 7.7: Jaccard scores(percentage) from Enhancing areas

We also compared our PCRF system with the state-of-the-art CRF variant, the
Support Vector Random Field (SVRF [40]), whose potential functions are based on
Support Vector Machines (SVMs). Figure 7.7 shows that PCRF(SVM) is compara-
ble with SVRF.

We also perform efficiency tests for the PCRF: how efficiently the PCRF is
learned. As our PCRF did not need to learn parameters for modelling its spatial
correlation, we anticipated it would be significantly faster during the learning stage.

The learning times (average across 11 patients, in seconds) confirm this:

Table 7.1: Average elapsed learning time (seconds)
DRF | SVRF | DCRF | PCRF
Tumor segmentation | 1697 | 1276 63 38

Our PCRF was over 40 times faster than the DRF and over 30 times faster than
the SVRF (p < 10737 and p < 10727, paired-samples t-tests for DRFs and SVRFs,
respectively). Even DCRF, known as the fastest CRF variant, is significantly slower
than our PCRF (p < 10729).

72



7.5 Conclusion

We found that the PCRF(SVM) system, which uses a linear SVM to map from
a data instance to label, worked effectively. We might be able to obtain further
performance improvements by using a non-linear kernel function. We are extending
this work to develop effective systems to overcome the limitations of patient-specific
training, by taking advantage using semi-supervised learning principles.

This chapter has presented the Pseudo Conditional Random Field (PCRF)
model, a CRF-inspired formulation that incorporates a specified potential func-
tion to model the relationships between neighboring data instances. Our PCRF is
efficient to train as it does not need to fit parameters that model the neighbor rela-
tionships. This in turn allows PCRF to be trained much faster than DCRFs. Both
PCRF and DCRF are designed to be efficient. Which is better? If one has sufficient
domain knowledge to express the two PCRF potentials, then we recommend using
PCRFs. As data distributions can be changed, the hand-tuned potentials, which
may require multiple trials but taking advantage of domain expertise, could have an
advantage of accurately reflecting data characteristics. Our PCRF can be viewed
as a regularized iid classifier, which relaxes its decisions by considering neighboring
instances with respect to labels and observations. Thus, during inference, PCRF
relaxes the iid assumption. We demonstrate that PCRF is effective by showing it
can effectively segment brain tumors from MR images, achieving state-of-the-art

segmentation results, but at a small fraction of the training time.
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Chapter 8

Conclusions and Future
directions

This dissertation presents several novel models that incorporate spatial correlations,
to produce systems that are effective segmenters, and that can be learned efficiently.
They are extensions to conditional random fields (CRFs), often based on discrimi-
native iid classifiers such as Logistic Regression and Support Vector Machines.
Support Vector Random Fields (SVRFs) and Semi-Supervised Discriminative
Random Fields (SSDRFs) produce accurate classification results both on synthetic
and real world problems, outperforming their degenerate iid classifiers as well as
several random fields. Decoupled Conditional Random Fields (DCRFs) and Pseudo
Conditional Random Fields (PCRFs) are designed to efficiently learn models for

spatial correlations, while remaining as effective as typical CRF variants.

8.1 Future Directions

There are several future directions that can lead to yet other interesting theoretical
and empirical results. One of major challenges in incorporating spatial correlations
in 2-D lattice is dealing with the computational complexity of the CRF framework,
which involves an intractable computation for computing the normalizing factor
Z(X). This challenge forces practitioners to use approximations, including pseudo
likelihood, which have key impacts on classification results [34]. We believe that
“effective” approximations produce highly accurate classification results with “effi-

cient” learning procedures.
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8.1.1 Model

Here, we discuss several future directions in designing a model that incorporates

spatial correlations, which can produce accurate classification results.

1. The typical CRF formulations involves two potentials — one to express the
local conditional probability for a class label given features of the individual
pixel, and the other to express the local spatial compatibility among local
neighborhood. By exploring different ways to express the local spatial com-
patibility, we may be able to find some approaches that can produce yet other

accurate classification results on challenging tasks.

2. As mentioned above, a CRF can be seen as a combination of two potentials. A
DCRF uses only a very simple approach to combine the two potentials; again

we anticipate other combination rules may produce yet better results.

3. For the local conditional probability, our current methods use only linear
SVMs. We anticipate further improvements by using other kernels, although

this may require using extensive prior knowledge about data sets.

4. Dietterich et al. [15] propose learning a CRF by applying Friedman’s gradient
tree boosting method; their empirical experiments demonstrate that a CRF
can be learned efficiently, achieving high accurate classification results. We
also want to extend Friedman’s gradient tree boosting to deal with spatial
correlations in a 2-D structure, learning a model by stage-wise optimizations,

similar to the boosting process [59].

8.1.2 Applications

We anticipate being able to apply our models to several other applications.

1. In this dissertation, our experiments on brain tumor segmentation task are
based on patient-specific scenario, where training and testing are performed
on a specific patient. We can continue to extend our models to deal with non
patient-specific scenario, where we can train a model on k patients { Ay, ..., Ax},
and test the learned model on novel patient A;,1. We anticipate this approach

will still yield effective results.
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2. The problem we have investigated so far is “classification” where each pixel in
a given image is categorized into a class. For the brain tumor segmentation
task, it would be interesting and useful to develop a framework that produces
a probability map; that is, mapping each voxel x; into the probability that it
is a tumor. Currently, we use graph cuts [8] for inference (i.e. to produce the
class labels for voxels); graph cuts can be modified to produce a probability

map as an alternative to the classification result.

3. The empirical evaluations on challenging real world problems show encourag-
ing results, and hence we can extend the models to a wide range of applications

such as 3-D classification problems.

8.2 Summary of Contributions

This dissertation extends typical iid classification to a 2-D lattice structure that
incorporates spatial correlations of class labels. Essentially, the primary results in

this thesis are:
e Our SVRF system, as a novel type of CRFs, is an effective segmenter.

e Our SSDRF system incorporates unlabelled as well as labelled data in a su-

pervised learning framework produces an effective segmenter.

e Our DCRF and PCRF systems, which efficiently learn models that incorporates

spatial correlations, can achieve effective classification results.

The first statement is addressed in Chapter 4 which defines Support Vector Ran-
dom Fields (SVRFs), that exploit the ideas underlying Support Vector Machines.
The SVRF is based on a typical supervised learning framework. Its classification
accuracy is significantly better than degenerate iid basis classifier and other random
fields.

To explore the challenge of the second statement, we propose a semi-supervised
learning framework to learn a model that incorporates spatial compatibility in Chap-
ter 5. Empirical results demonstrate that by incorporating unlabelled data into the
learning procedure, we can produce a conditional random field that is more accurate
than the one learned without the unlabelled data.

While working on these two challenges, we noticed that the learning efficiency

was one of the critical issues in CRF-variants especially when the graph structure
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of class labels contains cycles (e.g. on grids). Chapter 6 first presents a “decou-
pled” approach, that separately learns the two potentials. To further enhance the
learning efficiency, Chapter 7 presents an alternative; use a standard iid discrimina-
tive classifier to learn the local conditional probability model without considering
dependencies among class labels. This system uses a hand-tuned model of spatial
dependencies in the inference steps. Our empirical results show that these learning
approaches are significantly faster than the standard approaches, while achieving
the classification results as effective as CRF-variants.

We anticipate that we will be able to use these ideas in other applications where
correlations exist among data instances such as social network analysis and web

information extraction [50, 66].

7



Bibliography

1]

Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying support
vector machines to imbalanced datasets. In In Proceedings of the 15th Furopean
Conference on Machine Learning (ECML, pages 39-50, 2004.

Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised
learning for structured variables. In Advances In Neural Information Processing
Systems 18. 2006.

Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A
maximum entropy approach to natural language processing. Computational
Linguistics, 22:39-71, 1996.

J. Besag. Spatial interaction and the statistical analysis of lattice systems.
Journal of Royal Statistical Society, Series B, pages 36:192-236, 1974.

J. Besag. On the statistical analysis of dirty pictures. Journal of Royal Statis-
tical Society. Series B, 48:3:259-302, 1986.

C. Bishop, N. Lawrence, T. Jaakkola, and M. Jordan. Approximating pos-
terior distributions in belief networks using mixtures. In Advances in Neural
Information Processing Systems 10, MIT Press, Cambridge MA (1998)., 1998.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In COLT, pages 92-100, 1998.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy mini-
mization via graph cuts. ICCV, pages 377-384, 1999.

Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.

G. Celeux and G. Govaert. A classification EM algorithm for clustering and
two stochastic versions. Comput. Stat. Data Anal., 14(3):315-332, 1992.

O. Chapelle, B. Scholkopf, and A. Zien, editors. Semi-Supervised Learning.
MIT Press, Cambridge, MA, 2006.

Ting Chen and Dimitris N. Metaxas. Gibbs prior models, marching cubes, and
deformable models: A hybrid framework for 3d medical image segmentation.
In International Society and Conference Series on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), pages 703-710, 2003.

A. Corduneanu and T. Jaakkola. Data dependent regularization. In
O. Chapelle, B. Schoelkopf, and A. Zien, editors, Semi-Supervised Learning,
pages 163-182. MIT Press, Cambridge, MA, 2006.

Thomas G. Dietterich. Machine-learning research: Four current directions. The
AI Magazine, 18(4):97-136, 1998.

78



[15]

Thomas G. Dietterich, Adam Ashenfelter, and Yaroslav Bulatov. Training
conditional random fields via gradient tree boosting. In In Proceedings of the
21th International Conference on Machine Learning (ICML, pages 217-224.
ACM, 2004.

Pedro Domingos and Michael J. Pazzani. On the optimality of the simple
bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103-130,
1997.

C. Garcia and J.A. Moreno. Kernel based method for segmentation and mod-
eling of magnetic resonance images. LNCS, 3315:636—645, Oct 2004.

D.T. Gering. Recognizing Deviations from Normalcy for Brain Tumor Segmen-
tation. PhD thesis, MIT, 2003.

Amir Globerson and Tommi S. Jaakkola. Approximate inference using pla-
nar graph decomposition. In B. Schélkopf, J. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19, pages 473-480. MIT
Press, Cambridge, MA, 2007.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy
minimization. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors,
Advances in Neural Information Processing Systems 17, pages 529-536. MIT
Press, Cambridge, MA, 2005.

Russell Greiner and W. Zhou. Structural extension to logistic regression. Pro-
ceedings of the Fighteenth Annual National Conference on Artificial Intelligence
(AA102), 2002.

Yuhong Guo, Russell Greiner, and Dale Schuurmans. Learning coordination
classifiers. In IJCAI pages 714-721, 2005.

Trevor Hastie, Robert Tibshirani, and Jerome Friedma. The Elements of Sta-
tistical Learning. Springer, New York, NY, 2002.

John Henderson, Steven Salzberg, and Kenneth H. Fasman. Finding genes in
dna with a hidden markov model. Journal of Computational Biology, 4:127-141,
1997.

Richard Hughey and Anders Krogh. Hidden markov models for sequence anal-
ysis: Extension and analysis of the basic method. CABIOS, 12:95-107, 1996.

F. Jiao, S. Wang, C. Lee, R. Greiner, and D Schuurmans. Semi-supervised
conditional random fields for improved sequence segmentation and labeling. In
COLING/ACL, Sydney, Austrailia, July 2006.

T. Joachims. Making large-scale svm learning practical. In B. Scholkopf, C.J.C.
Burges, and A.J. Smola, editors, Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1999.

M. Jordan, editor. Learning in Graphical Models. MIT Press, 1998.

Zoltan Kato and Ting Chuen Pong. A markov random field image segmentation
model for color textured images. Image and Vision Computing, 24(10):1103—
1114, 2006.

M.R. Kaus, S.K. Warfield, A. Nabavi, P.M. Black, F.A. Jolesz, and R. Kikinis.
Automated segmentation of MR images of brain tumors. Radiology, 218:586—
591, 2001.

R. Kindermann and J.L. Snell. Makrov random fields and their applications.
American Mathematical Society, 1980.

79



[32]
33]

[34]

[35]

[36]

[42]
[43]

[44]

Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins. Structured
prediction models via the matrix-tree theorem. In In EMNLP-CoNLL, 2007.

S. Kumar and M. Hebert. Discriminative random fields: A discriminative
framework for contextual interaction in classification. In CVPR, 2003.

Sanjiv Kumar, Jonas August, and Martial Hebert. Exploiting inference for
approximate parameter learning in discriminative fields: An empirical study.
In EMMCVPR, pages 153-168, 2005.

Sanjiv Kumar and Martial Hebert. Discriminative fields for modeling spatial
dependencies in natural images. Advances in Neural Information Processing
Systemsf 16, 2003.

Sanjiv Kumar and Martial Hebert. Discriminative random fields: A discrimi-
native framework for contextual interaction in classification. Proceedings of the
2003 IEEFE International Conference on Computer Vision (ICCV ’03), pages
1150-1157, 2003.

J. Lafferty, F. Pereira, and A. McCallum. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In ICML Proceedings
of the 23rd international conference on Machine learning (ICML), 2001.

Chi-Hoon Lee, Russ Greiner, and Shaojun Wang. Using query-specific variance
estimates to combine bayesian classifiers. In ICML ’06: Proceedings of the 23rd
international conference on Machine learning, pages 529-536, New York, NY,
USA, 2006. ACM Press.

Chi-Hoon Lee, Russ Greiner, and Osmar Zaiane. Efficient spatial classification
using decoupled conditional random fields. In 10th Furopean Conference on
Principles and Practice of Knowledge Discovery in Databases, pages 272—283,
2006.

Chi-Hoon Lee, Russell Greiner, and Mark Schmidt. Support vector random
fields for spatial classification. In European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases, pages 121-132, 2005.

Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, and Russell
Greiner. Learning to model spatial dependency: Semi-supervised discriminative
random fields. In B. Scholkopf, J. Platt, and T. Hoffman, editors, Advances in
Neural Information Processing Systems 19. MIT Press, Cambridge, MA, 2007.

S. Z. Li. Markov Random Field Modeling in Image Analysis. Springer-Verlag,
Tokyo, 2001.

H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on platt’s probabilistic outputs
for support vector machine. Technical report, 2003.

Richard Maclin, Edward W. Wild, Jude W. Shavlik, Lisa Torrey, and Trevor
Walker. Refining rules incorporated into knowledge-based support vector learn-
ers via successive linear programming. In AAAI pages 584-589, 2007.

Olvi L. Mangasarian, W. Nick Street, and William H. Wolberg. Breast cancer
diagnosis and prognosis via linear programming. Technical Report MP-TR-
1994-10, 1994.

Andrew Mccallum, Dayne Freitag, and Fernando Pereira. Maximum entropy
markov models for information extraction and segmentation. pages 591-598.
Morgan Kaufmann, 2000.

Medical image processing, analysis and visualization,
http://mipav.cit.nih.gov/, Online.

80



[48]
[49]

Tom Mitchell. Machine Learning. McGraw Hill, 1997.

A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. In in Advances in Neural Information
Processing Systems 14. Cambridge, MA: MIT Press, 2002.

Zaiqing Nie, Ji rong Wen, and Bo Zhang. 2d conditional random fields for web
information extraction. In Proc. of ICML, pages 1044-1051. ACM Press, 2005.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine Learning, 39(2/3):103—
134, 2000.

J. Platt. Fast training of support vector machines using sequential minimal
optimization. In Advances in Kernel Methods - Support Vector Learning, pages
185-208. MIT Press, 1999.

J. Platt. Probabilistic outpus for support vector mahcines and comparison to
requlaized likelihood methods. MIT Press, Cambridge, MA, 2000.

Marcel Prastawa, Elizabeth Bullitt, Sean Ho, and Guido Gerig. A brain tu-
mor segmentation framework based on outlier detection. International Society

and Conference Series on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), 2002.

A. Quattoni, M. Collins, and T. Darrell. Conditional random fields for object
recognition. In Advances In Neural Information Processing Systems 17, 2004.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

L. R. Rabiner and B. H. Juang. An introduction to hidden Markov models.
IEEE ASSP Magazine, pages 4-15, January 1986.

R.Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.

Robert E. Schapire. A brief introduction to boosting. In Journal of Japanese
Society for Artificial Intelligence, pages 1401-1406, 1999.

M.W. Schmidt. Automatic brain tumor segmentation. Master’s thesis, Univer-
sity of Alberta, 2005.

Bernhard Scholkopf and Alex Smola. Advances in kernel methods: Support
vector learning. MIT Press, 1999.

Shawe-Taylor and Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge, UK, 2004.

Statistical parametric mapping, http://www fil.ion.bpmf.ac.uk/spm/, Online.

Charles Sutton and Andrew McCallum. Fast, piecewise training for discrim-
inative finite-state and parsing models. Technical Report IR-403, Center for
Intelligent Information Retrieval, 2005.

Charles Sutton and Andrew McCallum. Piecewise training of undirected mod-
els. In Conference on Uncertainty in Artificial Intelligence (UAI), 2005.

Jie Tang, Jing Zhang, Limin Yao, and Juanzi Li. Extraction and mining of an
academic social network. In WWW “08: Proceeding of the 17th international
conference on World Wide Web, pages 1193-1194, New York, NY, USA, 2008.
ACM.

81



[67]

[68]

B. Taskar, C. Guestrin, and D. Koller. Max margin markov networks. In
Advances In Neural Information Processing Systems, 2003.

Ben Taskar, Vassil Chatalbashev, and Daphne Koller. Learning associative
markov networks. In Proceedings of the 23rd international conference on Ma-
chine learning (ICML), page 102, New York, NY, USA, 2004. ACM Press.

A. Torralba, K. Murphy, and W. Freeman. Contextual models for object detec-
tion using boosted random fields. In Advances In Neural Information Processing
Systems 17, 2004.

Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Contextual mod-
els for object detection using boosted random fields. In Lawrence K. Saul, Yair
Weiss, and Léon Bottou, editors, ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS 17 MIT Press, Cambridge, MA, 2005.

Jayaram K. Udupa, Vicki R. Leblanc, Ying Zhuge, Celina Imielinska, Hilary
Schmidt, Leanne M. Currie, Bruce E. Hirsch, and James Woodburn. A frame-
work for evaluating image segmentation algorithms. Computerized Medical
Imaging and Graphics, 30(2):75-87, March 2006.

Bram van Ginneken, Mikkel B. Stegmann, and Marco Loog. Segmentation of
anatomical structures in chest radiographs using supervised methods: a com-
parative study on a public database. Medical Image Analysis, 10(1):19-40,
February 2006.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, NY, November 1999.

S.V.N. Vishwanathan, N. Schraudolph, M. Schmidt, and K. Murphy. Acceler-
ated training of conditional random fields with stochastic gradient methods. In
Proceedings of the 23rd international conference on Machine learning (ICML),
2006.

J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. In
Advances In Neural Information Processing Systems 13, pages 689-695, 2000.

J. Zhang, K. Ma, M.H. Er, and V. Chong. Tumor segmentation from mag-
netic resonance imaging by learning via one-class support vector machine. Int.
Workshop on Advanced Image Technology, pages 207-211, 2004.

Yongyue Zhang, Stephen Smith, and Michael Brady. Hidden markov random
field model and segmentation of brain mr images. IEEE Transactions on Med-
ical Imaging, 20:45-57, 2001.

D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, and B. Scholkopf. Learning
with local and global consistency. In Advances In Neural Information Processing
Systems 16, 2004.

D. Zhou, J. Huang, and B. Scholkopf. Learning from labeled and unlabeled
data on a directed graph. In Proceedings of the 23rd international conference
on Machine learning (ICML), 2005.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaus-

sian fields and harmonic functions. In Proceedings of the 23rd international
conference on Machine learning (ICML), 2003.

82



