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Abstract

This dissertation studies the parameter estimation problem of Bayesian networks in the budgeted

learning setting. More precisely, we assume that the correct structure of the Bayesian network

representing the underlying distribution is given together with a fixed positive budget, and each

data attribute of the training set is associated with a cost. During the training phase, the learner is

allowed to purchase value of an attribute of a certain data instance by deducting the corresponding

cost from the budget. The goal of the learner is to make the purchases wisely so that when the

budget is exhausted, the learned parameters from the purchased data are as close as possible to the

underlying distribution that generates the data. The dissertation presents a theoretical framework for

the problem, analyzes its hardness, and compares different algorithms and heuristics for solving the

problem efficiently and economically.
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Chapter 1

Introduction

A Bayesian network is a compact and natural graphical representation of a multivariate probabilis-

tic distribution, which encodes all the dependencies of the underlying distribution using a directed

acyclic graph (DAG). There have been many successful applications of Bayesian networks to practi-

cal problems, e.g. a large expert system for the diagnosis of lymph-node pathology and troubleshoot-

ing systems for printing, photocopier feeders, automobiles, and gas turbines [16, 4]. Given the con-

siderable cost and limited accuracy of the engineered Bayesian network by experts (it is particularly

difficult for the expert to pinpoint the exact parameters of the Bayesian network [35]), inducing

Bayesian network parameters and structure from given data has been studied extensively [17]. In

this paper, we study the challenge of estimating Bayesian network parameters when the learner is

initially given no data but instead allowed to purchase certain data attributes to help construct an

accurate model. We assume that each data attribute takes a finite number of discrete values in the

domain of the corresponding variable, and is associated with a cost; and a fixed budgeted is given.

By deducting the cost of a data attribute for a certain instance from the budget, the learner is able

to observe the value of the variable, which we call a probe. When the budget is exhausted, the

leaner has to learn the parameters of the Bayesian network using the observed data. The goal of the

budgeted learner is to make the probes wisely so that the learned generative model is as close to the

underlying distribution as possible. We use the term budgeted learning to refer to this approach [23].

The budgeted learning task emerges naturally in many real life problems. Consider building a

medical diagnosis Bayesian network starting with partial or no data. The network structure com-

posed of symptom and disease diagnosis variables and their dependencies, together with the costs

for probing different variables, is given by experts. A budget is provided for us to purchase data.

Our task is to make the selective purchases so that we can make a good estimate of the parameters

of the given Bayesian network modeling the underlying joint distribution of the various symptoms

and diseases using the purchased data, subject to the budget. Data can be costly in terms of different

measurements, such as time, energy, and etc, but based on the utility theory [10], we assume that

all these measurements can be converted to a single value for each variable in the distribution. We

choose KL-divergence as our loss function, because it is efficient to compute the KL-divergence
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between distributions over the same Bayesian network structure, and a small KL-divergence implies

a small L1 norm, which properly models the practical problems.

Similar problem exists in other domains, which involve making decision under uncertainty. This

thesis investigates the budgeted parameter learning problem in Bayesian networks. The thesis state-

ment of this dissertation is: well-defined allocation algorithms, though suboptimal, solves the bud-

geted parameter learning problem efficiently. We formally formulate the problem, discuss different

loss functions, and study different policies for addressing the problem. We show that the budgeted

learning problem under our framework is NP-hard even when all the variables are independent from

each other. For the budgeted learning problem with uniform costs, we show theoretically that for

a network with all independent nodes and uniform costs, an iterative greedy allocation algorithm

is an optimal allocation algorithm, whereas for a complete network with certain priors constraints,

Round-Robin might be preferred.

The rest of the dissertation is organized as follows: Chapter 2 presents the background knowl-

edge for Bayesian network and its parameter learning; Chapter 3 studies the budgeted parameter

learning problem in Bayesian networks with all independent nodes, gives the hardness result and

optimality proof of the iterative greedy allocation algorithm, and presents results of our empirical

studies. Chapter 4 discusses the budgeted parameter learning problem in general Bayesian networks.

Chapter 5 gives a brief literature review of the related work and discusses their distinctions from our

research. Chapter 6 concludes the dissertation.
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Chapter 2

Background

2.1 Bayesian Networks

2.1.1 Introduction

Cloudy

RainSprinkler

WetGrass

C P(R=F|C) P(R=T|C)

F

T
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F 0.1 0.9

T 0.1 0.9

T 0.01 0.99

P(C=F) P(C=T)

0.5 0.5

Figure 2.1: Sprinkler Bayesian network [31] modeling the “Cloudy-WetGrass” domain. Variables
are denoted by ellipses with their names at the centers. CPTs are denoted by tables. Dependencies
are indicated by directed arcs.

A Bayesian network is a graphical probabilistic representation of the domain of interest. It has

gained significant popularity in recent decades due to its conciseness and naturalness. It is concise

because it models dependencies of the underlying joint distribution and this modeling scheme avoids

the construction of the whole joint distribution table, which is exponential in the number of variables.

Moreover, since all the dependencies and causal relationships of the underlying distribution are

explicitly modeled by the Bayesian network, it is also a natural representation. In this chapter, we

review some of the fundamentals of Bayesian networks including its representation, and standard

3



parameter learning.

A Bayesian network is composed of a DAG and local probability models for each node in the

graph structure. Figure 2.1 gives a sample Sprinkler Bayesian network from Russell and Norvig [31].

“Cloudy” (C) denotes whether the weather is cloudy; “Sprinkler” (S) denotes whether the sprinkler

in the yard is on; “Rain” (R) denotes whether it rained; “WetGrass” (W) denotes whether grass in

the yard is wet. For simplicity, all the variables in the network are binary. The structure encodes

the dependencies of the underlying distribution. Each node in the Bayesian network is associated

with a local conditional distribution given its parents. For instance, in the Sprinkler network, the

probability of WetGrass depends on the values of Sprinkler and Rain. In general, the conditional

probability distribution (CPD) of the child given its parents is encoded by a conditional probability

table (CPT). The DAG, together with all the local conditional distributions, models the underlying

joint distribution compactly and naturally. If we have to represent the full joint probability distri-

bution of N 1 binary variables, O(2N ) space is required. However, the factored Bayesian network

representation requires only O(N2m) space, where m is maximum number of parents for a node.

Also, the structure of the network properly encodes the fact that each node is independent from its

non-descendants knowing the values of its parents. For example, through investigating Figure 2.1,

it is easy to retrieve and express the probability of a rain happening given that it is a cloudy day.

Finally, by multiplying the relevant entries of each CPT, it is not hard to reconstruct the full joint

probability table.

For example, the full joint distribution P (C, S, R, W ) can always be represented as the following

using the chain rule of probability:

P (C, S, R, W ) = P (C)P (S|C)P (R|S, C)P (W |C, S, R). (2.1)

By applying the conditional independencies encoded in the Bayesian network, Equation 2.1 can be

simplified to:

P (C, S, R, W ) = P (C)P (S|C)P (R|C)P (W |S, R). (2.2)

In general,

P (X1, ..., Xn) =
∏

i

P (Xi|Ui), (2.3)

where P (X1, ..., Xn) denotes the probability distribution of random variables X1, ..., Xn, and Ui

denotes the set of parents of variable Xi.

2.2 Parameter Estimation

In this section, we discuss the standard ways to estimate parameters of Bayesian networks. For

standard parameter estimation, we are given a Bayesian network structure G that contains N nodes,
1N denotes number of variables, M denotes number of data instances, and Ki = |Xi| denotes number of possible values

of the variable Xi.
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together with a data set D = {d1, ..., dM} of M data instances, where each data instance, also

called a data tuple, is characterized by N attributes d
j = {dj

1, ..., d
j
N}, which correspond to values

of the N variables. If the value of the ith attribute of the jth instance is missing, dj
i is denoted as

a question mark “?”; otherwise, dj
i takes a value from the domain of variable Xi. In the paper, we

also assume that all the variables are discrete. Recall that parameters refer to the function potentials

associated with each node in the graph structure. The goal of standard Bayesian network parameter

estimation algorithms is to learn the parameters θ = {θ1, ..., θN} 2 given G from D.

Bayesian network parameters do not have to be learned in a Bayesian way; any method, if

applicable, can be used to deal with the parameter learning task. The Maximum likelihood estimation

(MLE) is the frequentist approach to learning the parameters of a Bayesian network, while the

maximum a posterior (MAP) is a Bayesian counterpart. Therefore, the name Bayesian network is

slightly incongruous. In this dissertation, because we shall take the Bayesian approach, we focus

our attention on the MAP learning.

2.2.1 The Beta Distribution
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Figure 2.2: Probability density function of beta distributions: Beta(1, 1), Beta(2, 3), and Beta(5, 3).

For the MAP learning, the beta distribution is commonly chosen for modeling parameters of

Bayesian networks with discrete variables. It is popular because: (1) it is a continuous distribution

defined on the interval [0, 1], which makes it a good choice for modeling probabilities; and (2) it

is conjugate for binomial signals, which makes the computation of the posterior efficient. The beta

distribution is a two parameter distribution. The probability density function of the beta distribution
2We use bold θs to denote sets of parameters. For example, here θ = {θ1...θN} denotes all the parameters for all the

variables in a Bayesian network, where θi = θXi
denotes the set of parameters for variable Xi.
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is in the form of

p(θ) = Beta(α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1, (2.4)

where Beta is a distribution of θ, α and β are the two parameters for Beta and can take any positive

real values, and the Gamma function Γ is defined as:

Γ(z) =

∫ +∞

0

tz−1e−tdt. (2.5)

for all positive real numbers z ∈ R>0. Figure 2.2 plots the probability density function of 3 beta

distributions.

The beta distribution is well defined for positive real numbers, but in this paper, the two param-

eters are positive integers (α, β ∈ Z>0) most of the time. For positive integer α ∈ Z>0, the Gamma

function can be simplified to:

Γ(α) = (α − 1)!. (2.6)

One property of the Gamma function that we use extensively in our derivations is,

Γ(α + 1) = αΓ(α). (2.7)

The multivariate generalization of the beta distribution is the Dirichlet distribution. The proba-

bility density function is given by

p(θx1 , ...θxK ) = Dirichlet(αx1 , ...αxK ) =
Γ(
∑K

k=1 αxk)
∏K

k=1 Γ(αxk)

K
∏

k=1

θ
α

xk−1

xk (2.8)

Each of the αxk ∈ R>0 is a hyper-parameter for the variable X with the kth value; Γ is the gamma

function; θxk > 0, and
∑

θxk = 1.

In most of the examples and discussions, we will use beta distributions to illustrate our ideas,

which can be easily extended to multivariate Dirichlet distributions.

2.2.2 Complete Data

The MAP learning starts with a prior knowledge of the model, which is updated as new data are col-

lected. Because we assume that the correct structure is given, we only need to have prior distribution

for the parameters in the target network. The goal of the standard MAP learning is to compute the

posterior probability distribution of the parameters.

For a given structure G and data set D, the posterior distribution of the parameter can be com-

puted as:

P (θ|G,D) =
P (D|θ,G)P (θ|G)

P (D|G)
(2.9)

The computation is also called an update to the prior using the data.

With the parameter independence assumption [17], p(θ) =
∏

i

∏

ui
p(θXi|ui

), we can decom-

pose the prior p(θ) into independent Dirichlet distributions 3. Standard results [19] show that it is

easy to update conjugate Dirichlet priors:
3ui denotes an instantiation of the parents of Xi.
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Theorem 2.2.1. If p(θx1 , ...θxK ) = Dirichlet(αx1 , ...αxK ) then p(θx1 , ...θxK |D) = Dirichlet(αx1+

Mx1 , ...αxK + MxK ), where Mxk is the number of occurrences of xk in the dataset D 4.

To make predictions or inferences, we employ the prediction distribution of the model. Based

on our data and model, suppose we wish to predict the next observation, dM+1. This computation

is achievable by integrating out the uncertainty in the model parameters:

P (dM+1|G,D) =

∫

θ

P (dM+1|θ,G,D)P (θ|G,D)dθ (2.10)

This is called the Bayesian one-step prediction. The bad news is that in general, it is hard to compute

the integration exactly and efficiently, although various approximation techniques exist. Luckily,

Dirichlet distributed priors over parameters for discrete variables is one exception. In the rest of this

section, we shall discuss how we can incorporate Dirichlet distributions in our parameter estimation

task. It is also not hard to compute the Bayesian one-step prediction, which is often used as the point

estimate of the distribution when doing inferences:

P (d1 = xk) = E[θxk ] =
αxk

∑K
j=1 αxj

, (2.11)

and

P (dM+1 = xk|D) = E[θxk |D] =
α′

xk

∑K

k=j α′
xj

=
Mxk + αxk

∑K

k=j(Mxj + αxj )
. (2.12)

We call the summations of all hyper-parameters of each Dirichlet distribution
∑K

j=1 αxj and
∑K

j=1 α′
xj

the effective sample sizes, and the counts Mxks, the sufficient statistics for the sample. Intuitively,

the hyper-parameter αxk is the imaginary counts (pseudo-counts) and Mxk is the number of the

instances observed of the kth value of the variable.

Figure 2.3 shows an example of the whole MAP parameter learning procedure. We collect the

data, use them to update our prior knowledge to produce the posterior, then use the point estimate

for future decision making tasks. We may want to keep the posterior and take it as the prior for

further learning tasks.

To set the priors for the parameters, we need to choose the values of all the hyper-parameters of

the Dirichlets. Uniform and BDe (Bayesian Dirichlet likelihood equivalent) [17] are the two popular

assignment for the Dirichlet priors over parameters. In the example, we use uniform Dirichlet priors,

e.g. P (C) ∼ Beta(1, 1). It can be seen from the flat line in Figure 2.2 that uniform Dirichlet priors

are uniform distributions of parameter values in the range of [0, 1]. This means all values are equally

likely, which is why technically it is also called non-informative priors. For our problem, the BDe

constraint basically says that effective sample sizes of the priors for all variables should be the same.

To set BDe priors for a Bayesian network, we start with an effective sample size M0 and a prior

joint distribution J0, and set each αxi|ui
= M0 × P (xi, ui|J0).

4xk denotes the instantiation of the random variable X with the kth value

7
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Figure 2.3: MAP parameter learning without missing data. In (a), data generated from the underly-
ing distribution (the true Sprinkler network) is shown in a table. Each row of the table corresponds
to a data instance dj , while each column corresponds to the values of a data attribute di. All the
variables are binary, with T denoting true and F denoting false. Below the data is our prior knowl-
edge (b), which is composed of the correct structure and uniform priors. We use #(·) to denote the
fictitious counts (hyper-parameters) e.g., #(C = T ) = 1 for the prior. The data, together with the
prior, give the posterior estimate (c) of the network parameters after the standard Bayesian update.
By taking the mean values of the posterior distributions, we get the point estimate (d).

The BDe constraint is not satisfied in our example because in the CPT of Cloudy θCloudy ∼

Beta(1, 1) corresponds to the claim that Cloudy has been true and false one time each, whereas in

the CPT of Sprinkler θSprinkler|Cloudy=T ∼ Beta(1, 1) corresponding to Cloudy being true twice

and θSprinkler|Cloudy=F ∼ Beta(1, 1) corresponding to Cloudy being false twice. To set a BDe

prior for these three nodes, we need to change the prior of Cloudy to θCloudy ∼ Beta(2, 2) 5.

Here the prior for Cloudy is not uniform anymore, which results in an informative prior. Generally

speaking, uniform priors are not BDe priors, but the more data we get, the less pronounced the

difference of the point estimate of the posterior is.

2.2.3 With Missing Data

We have to use more sophisticated algorithms to compute the posteriors with the missing data. This

is because the posterior distribution of the parameters are not independent from each other any more.

In fact, no simple update rule is available. See Section 5.3 for a brief review of popular algorithms

to learn parameters of Bayesian networks with missing data, and Section 4.1.3 for a discussion of

the (in)applicability of the Expectation-Maximization (EM) and other imputation algorithms to the
5Note that the other parts of the network still do not satisfy the BDe constraint.
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budgeted parameter learning problem.

2.3 KL-Divergence and Expected KL-Divergence

This section defines the loss function that we use to measure the learner’s final performance, and the

risk function for posterior distributions.

2.3.1 KL-Divergence as the Loss Function

To evaluate the parameter estimate, we choose the Kullback-Leibler (KL)-divergence [7] as our loss

function. The KL-divergence is defined as

KL(θ||θ̂) =
∑

x

Pθ(x) ln
Pθ(x)

P
θ̂
(x)

, (2.13)

where θ is the set of true parameters, and θ̂ is our estimate 6.

The KL-divergence measures the difference between θ and θ̂. It can be interpreted as the ad-

ditional bits used when encoding events from θ with a code based on θ̂. Actually, it is not hard to

show that KL(θ||θ̂) ≥ 0, and KL(θ||θ̂) = 0 if and only if θ = θ̂. As the KL-divergence is not

commutative and does not satisfy the triangle equality, it is not a metric.

Another common used loss function, log-likelihood `(θ) =
∑

x Pθ(x) ln P
θ̂
(x), is highly re-

lated to the KL-divergence.

KL(θ||θ̂) = −
∑

x

Pθ(x) ln P
θ̂
(x) −

(

−
∑

x

Pθ(x) ln Pθ(x)

)

. (2.14)

We see that maximizing log-likelihood of θ̂ corresponds to minimizing the KL-divergence, as Pθ(x)

does not depend on θ̂.

The KL-divergence decomposes over Bayesian networks with the parameter independence as-

sumption, which makes the computation efficient. It is also a meaningful loss function to choose

because a small KL-divergence implies a small L1-norm 7.

The mean value of the posterior distribution, which we used as the point estimate in the previ-

ous section, can be easily proven to be the one that minimizes the expected KL-divergence for the

posterior distribution [34]:

θ̂ = E[θ] = argmin
θ̃

∫

θ

KL(θ||θ̃)p(θ)dθ. (2.16)

6Here, 0 ln 0
P

θ̂
(X)

= 0, and Pθ(X) ln
Pθ(X)

0
= ∞. Because we take a Bayesian approach in this paper, the priors

serve as a smoother, and we will never have zero probabilities in our estimate. Thus, the second case does not happen.
7For example, one can show that [1]

||θ − θ̂||1 =

Z

X

|θx − θ̂x|dx ≤ 2

q

1 − exp(−KL(θ||θ̂)) ≤

q

2KL(θ||θ̂). (2.15)
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Thus, from now on we will use the θ̂ to denote the mean of a Dirichlet distribution. That is for

θX ∼ Dirichlet(αx1 , ...αxK ):

θ̂xk = E[θxk ] =
αxk

∑

j αxj

. (2.17)

2.3.2 Expected KL-divergence as the Risk Function

As the KL-divergence is chosen as the loss function, we use the expected KL-divergence to the mean

value (point estimate) of the distribution as the risk. pθ is a distribution over a set of parameter θ,

but because the risk function does not depend on θ, we write it as pθ instead of p(θ).

Risk(pθ) = E[KL(pθ)] =

∫

θ

KL(θ||θ̂)p(θ)dθ, (2.18)

where θ̂ is the mean value of the parameter distribution p(θ).
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Figure 2.4: Properties of the risk function defined as expected KL-divergence to the mean value.

For a beta distribution, the risk is a function of the hyper-parameters α and β. The full formula

of Risk(Beta(α, β)) is given in the next chapter. Figure 2.4(a) plots the risks of beta distributions

Beta(α, β) that have the same effective sample size α + β = 100, where α ranges from 1 to 99,

and β ranges from 99 to 1; Figure 2.4(b) plots the risks of beta distributions that have different

effective sample sizes ranging from 2 to 200 with a step of 2, where for the dashed line α = β

and for the solid line β = 1 and α ranges from 1 to 199 with a step of 2. Figure 2.4 shows that

the risk function correctly captures the intuition of the sureness of the beta distributions (refer to

Figure 2.2): first, with the same effective sample size (when α + β is a constant), more skewed beta

distributions whose |α−β| values are larger have a smaller risk, because their variances are smaller

(see Lemma 3.3.6); second, the more data sample we have (the larger α + β hence sharper beta

distributions), the smaller is the risk. It is also worth noticing that, compared to the skewness of the

distribution, the risk function is more sensitive to the effective sample sizes.
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Chapter 3

Bayesian Network with All
Independent Nodes

3.1 Problem Formulation

Before moving on to the general budgeted parameter estimation of Bayesian network problem, we

first study a simplified problem where the variables in the Bayesian network are independent from

each other, to derive several theoretical results and gain some insights.

Definition 3.1.1. [Independent Variable Problem] We are given a collection of N variables X =

{X1, ..., XN}, where the ith variable Xi has a cost ci = c(Xi) and a prior distribution θi ∼ p(θi).

All the variables are independent from each other. A fixed total budget is given by B ∈ R>0. Each

time the learner probes the variable Xi, a value in the domain of Xi is observed and a cost of ci

is spent. The job of the learner is to determine a sequence of probes, so that once the budgeted is

exhausted, the joint distribution of all variables estimated by the learner based on the outcomes of

all the probes θ̂ gives the least KL-divergence KL(θ||θ̂) from the underlying true distribution θ.

3.1.1 Loss Function and Risk Function

In this section, we apply the loss function and risk function, which we defined in the previous

chapter, to the independent variable problem and show that this leads to some simplifications.

Loss Function

A loss function is decomposable if it can be written into a weighted summation of loss function of

every variable, where the weights may be dependent on the other variables; a loss function for the

a problem is strongly decomposable if it can be written into a summation of the loss functions of

every variable. As mentioned before, the advantage of the KL-divergence is that it decomposes over

Bayesian networks, with the parameter independence assumption [17]. The decomposition property

makes the computation of KL-divergence efficient. For the independent variable problem, we can

show that the KL-divergence between the estimated and the true parameters for all the variables is

11



the sum of that for each variable. Using the fact that all the variables are independent from each

other,

KL(θ||θ̂) = KL(θ1 × θ2 × ... × θN ||θ̂1 × θ̂2 × ... × θ̂N )

=

K1
∑

k1=1

K2
∑

k2=1

...

KN
∑

kN=1

θ
x

k1
1

θ
x

k2
2

...θ
x

kN
N

ln
θ

x
k1
1

θ
x

k2
2

...θ
x

kN
N

θ̂
x

k1
1

θ̂
x

k2
2

...θ̂
x

kN
N

=

K1
∑

k1=1

K2
∑

k2=1

...

KN
∑

kN=1

θ
x

k1
1

θ
x

k2
2

...θ
x

kN
N

(ln
θ

x
k1
1

θ̂
x

k1
1

+ ln
θ

x
k2
2

θ̂
x

k2
2

+ ... + ln
θ

x
kN
N

θ̂
x

kN
N

)

=

K1
∑

k1=1

(

K2
∑

k2=1

...

KN
∑

kN=1

θ
x

k2
2

...θ
x

kN
N

)

θ
x

k1
1

ln
θ

x
k1
1

θ̂
x

k1
1

+

K2
∑

k2=1

(

K1
∑

k1=1

K3
∑

k3=1

...

KN
∑

kN=1

θ
x

k1
1

θ
x

k3
3

...θ
x

kN
N

)

θ
x

k2
2

ln
θ

x
k2
2

θ̂
x

k2
2

+... +

KN
∑

kN=1





K1
∑

k1=1

...

KN−1
∑

kN−1=1

θ
x

k1
1

...θ
xN−1kN−1



 θ
x

kN
N

ln
θ

x
kN
N

θ̂
x

kN
N

, (3.1)

where Ki denotes the number of possible values for the ith variable Xi, θx
ki
i

denotes the true param-

eter for the ith variable with an instantiation of the kith value, and θ̂
x

ki
i

denotes the corresponding

estimate. Using the property of probability distribution
∑K2

k2=1 ...
∑KN

kN=1 θ
x

k2
2

...θ
x

kN
N

= 1,
∑K1

k1=1

∑K3

k3=1 ...
∑KN

kN=1 θ
x

k1
1

θ
x

k3
3

...θ
x

kN
N

= 1,...,
∑K1

k1=1 ...
∑KN−1

kN−1=1 θ
x

k1
1

...θ
xN−1kN−1 = 1, we

can simplify Equation 3.1 to

KL(θ||θ̂) =

K1
∑

k1=1

θ
x

k1
1

ln
θ

x
k1
1

θ̂
x

k1
1

+

K2
∑

k2=1

θ
x

k2
2

ln
θ

x
k2
2

θ̂
x

k2
2

+ ... +

KN
∑

kN=1

θ
x

kN
N

ln
θ

x
kN
N

θ̂
x

kN
N

=
∑

i

KL(θi||θ̂i). (3.2)

It is clear that KL-divergence is strongly decomposable for the independent variable problem. We

shall see in the next chapter that KL divergence is decomposable over general Bayesian networks

but not strongly decomposable.

Risk Function

For the independent variable problem, the risk function also has the nice strong decomposability.

With the parameter independence assumption, it decomposes as the summation of the risk for each
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beta distribution:

Risk(pθ) = E[KL(pθ)] =

∫

θ

KL(θ||θ̂)p(θ)dθ

=

∫

θ1θ2...θN

p(θ1)p(θ2)...p(θN )
∑

i

KL(θi||θ̂i)dθ1θ2...θN

=

∫

θ1

p(θ1)

(∫

θ2...θN

p(θ2)...p(θN )dθ2...θN

)

KL(θ1||θ̂1)dθ1

+

∫

θ2

p(θ2)

(∫

θ1θ3...θN

p(θ1)p(θ3)...p(θN )dθ1θ3...θN

)

KL(θ2||θ̂2)dθ2

+... +

∫

θN

p(θN )

(

∫

θ1...θN−1

p(θ1)...p(θN−1)dθ1...θN−1

)

KL(θN ||θ̂N )dθN .

(3.3)

As in the previous derivation
∫

θ2...θN
p(θ2)...p(θN )dθ2...θN ,

∫

θ1θ3...θN
p(θ1)p(θ3)...p(θN )dθ1θ3...θN ,

...,
∫

θ1...θN−1
p(θ1)...p(θN−1)dθ1...θN−1 all integrate to 1. Thus, Equation 3.3 equals

Risk(pθ) =

∫

θ1

p(θ1)KL(θ1||θ̂1)dθ1 +

∫

θ2

p(θ2)KL(θ2||θ̂2)dθ2 + ... +

∫

θN

p(θN )KL(θN ||θ̂N )dθN

=
∑

i

Risk(pθi
). (3.4)

Tong shows that when the parameters are Dirichlet distributed, the risk for each parameter dis-

tribution can be computed as

Risk(pθi
) =

∫

θi

p(θi)KL(θi||θ̂i)dθi

=

Ki
∑

k=1

αxk
i

∑Ki

j=1 α
x

j
i

× (Ψ(αxk
i

+ 1) − Ψ(

Ki
∑

j=1

α
x

j
i
+ 1)) −

Ki
∑

k=1

θ̂xk
i
ln θ̂xk

i

=

Ki
∑

k=1

αxk
i

∑Ki

j=1 α
x

j
i

× (Ψ(αxk
i

+ 1) − Ψ(

Ki
∑

j=1

α
x

j
i
+ 1)) + H(P (Xi)), (3.5)

where the Digamma function Ψ(α) = d
dx

ln Γ(x) = Γ
′

(α)
Γ(α) is defined as the derivative of the log-

arithm of the gamma function, and the entropy function H(P (X)) = −
∑

x P (x) ln P (x). See

Tong’s thesis for a full derivation [34].

3.1.2 Update Rule

Since all the variables are independent and every time we probe a variable the outcome, which falls

in the domain of Xi, is fully observed, we can use the standard Bayesian update rule discussed in

Section 2.2.2 to compute the posterior distributions.

3.2 Computational Complexity

In this section, we show that it is NP-hard to solve the independent variable problem even with the

restriction that the domain size of each variable is 8.
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Figure 3.1: An elephant(0.4)-coin.

Definition 3.2.1. [Elephant-Coin] For any a ∈ [0, 1], a coin is an elephant(a)-coin if

1. with probability a, it is a double-headed coin i.e. p(θ = 1) = a,

2. with probability 1 − a, it is a double-tailed coin i.e. p(θ = 0) = 1 − a,

where θ is the head probability of the coin. It is called an elephant-coin because it never forgets: if

it is seen to be a head once, it will always be heads; if it is seen to be a tail once, it will always be

tails. Refer to Figure 3.1 for an example of an elephant(0.4)-coin.

Note that E[θ] = a, P (X = 1|θ = 1) = 1, P (X = 1|θ = 0) = 0, and P (X = 1|E[θ] = s) =

a. Also,

Risk(pθ) = E[KL(θ||E[θ])]

= P (θ = 1) × KLθ=1(θ||E[θ]) + P (θ = 0) × KLθ=0(θ||E[θ])

= P (θ = 1) ×

[

1 × ln
1

a
+ 0 × ln

0

1 − a

]

+P (θ = 0) ×

[

0 × ln
0

a
+ 1 × ln

1

1− a

]

= a × (− ln a) + (1 − a) × (− ln (1 − a)), (3.6)

which is exactly the entropy H(pθ) of the distribution pθ.

Moreover, after a single flip, we know the coin is either a double-headed or a double-tailed coin.

Either way, Risk(pθ|1-flip) = 0. As a result, a single flip changes the information of an elephant

coin from H(pθ) = −a ln a − (1 − a) ln (1 − a) to 0.

Definition 3.2.2. [Independent Variable Decision Problem]

INSTANCE: For a set of variables S = {S1, ..., SM}, where each variable is associated with a cost

c(Sj) and a probability distribution pSj
, a budget B ∈ R>0, and a target value V ∈ R>0.
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QUESTION: Is there a subset S
′ ⊂ S such that

1.
∑

Sj∈S′ c(Sj) ≤ B,

2.
∑

Si∈S′ H(pSi
) ≥ V .

Now consider, the exact cover by 3-sets (X3C) problem, which is known to be NP-complete:

Definition 3.2.3. [X3C]

INSTANCE: For a set of elements X = {X1, ..., X3K} and a collection of 3-element subsets of

X: S = {S1, ..., SM}, where ∀j|Sj | = 3 and Sj ⊆ X. Write Sj = {Xj1, Xj2, Xj3}.

QUESTION: Is there a subset S
′ ⊂ S, where |S′| = K, that is an exact cover of X i.e.

∪Sj∈S′Sj = X.

Note this means each Xi is in exactly one Sj ∈ S
′. Moreover, X3C remains NP-complete, even

if each Xi appears in at most 3 Sjs [11].

We need the following lemma for providing the hardness result.

Lemma 3.2.4. For f(t) = 1
42t where t ∈ Z≥2,

4 × H(pf(t+1)) < H(pf(t)), (3.7)

where H(pf(t)) = −f(t) ln f(t) − (1 − f(t)) ln (1 − f(t)).

Proof. See Appendix A.

With Lemma 3.2.4, we now show that the independent variable decision problem is NP-hard 1.

Theorem 3.2.5. The independent variable decision problem is NP-hard.

Proof. To show the problem is NP-hard, we reduce an arbitrary X3C with the constraint that each

element Xi appears in at most 3 Sjs to an independent variable decision problem where each variable

has a domain size of 8. We map the X3C problem to an independent variable decision problem with

M different variables, where each variable corresponds to a 3-element subset Sj . Each element Xi

in X3C is viewed as an elephant(f(i))-coin, where f(i) = 1
42(N+2−i) , and a cost associated with Xi

is defined as c(Xi) = 4i. Probing variable Sj = {Xj1, Xj2, Xj3} will cost c(Sj) = 4j1 +4j2 +4j3

and will basically “flip” all the 3 coins in the corresponding subset, which reduces the entropy of

this variable from H(pSj
) = H(pf(j1)) + H(pf(j2)) + H(pf(j3)) to 0. Finally, set the budget

of the independent variable decision problem to be B =
∑3K

i=1 4i and the total value to be V =
∑3K

i=1 H(pf(i)).
1We can trivially map the Knapsack problem to our independent variable decision problem by setting the weight of each

item to the cost of each variable, the value of each item to the value of each variable, the weight limit to the budget, and
the target value of the knapsack problem to the target value of the independent variable decision problem. However, it is not
clear how we can set the prior distributions, which involves computing the inverse function of the entropies.
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Suppose there is a solution to the independent variable decision problem, i.e., S
′ is a subset of

variables in S such that
∑

Sj∈S′ c(Sj) ≤ B and
∑

Sj∈S′ H(pSj
) ≥ V . We use induction to show

that the corresponding union of ∪Sj∈S′Sj for the X3C problem contains each xi exactly once.

Start from XN , where N = 3K. If XN does not appear in ∪Sj∈S′Sj ,
∑

Sj∈S′ H(pSj
) ≤

∑N−1
i=1 3H(pf(i)) < 4H(pf(N−1)) < H(pf(N)) <

∑3K

i=1 H(pf(i)) = V , where the first inequality

follows from the assumption that each element appears at most 3 times in X3C, the second and

third inequality follows from Lemma 3.2.4. This contradicts our assumption that S
′ is a solution to

the independent variable decision problem because
∑

Sj∈S′ H(pSj
) ≥ V . So XN has to appear at

least once in ∪Sj∈S′Sj . If XN appears more than once in ∪Sj∈S′Sj ,
∑

Sj∈S′ c(Sj) > 2c(XN) ≥

2 × 4N >
∑N

i=1 4i = B, which again contradicts our assumption that S
′ is a solution to the

independent variable decision problem because
∑

Sj∈S′ c(Sj) ≤ B. Thus, XN has to appear no

more than once in ∪Sj∈S′Sj . Combining the arguments from both the target value function and the

budget, XN appears exactly once in ∪Sj∈S′Sj . Use a similar approach, we can show that each Xi

has to appear in ∪Sj∈S′Sj exactly once. As a result, S
′ is a solution to the original X3C problem.

Now, suppose there is a solution to the X3C problem, i.e. S
′ is a subset of 3-element sets in S

such that |S′| = K and∪Sj∈S′Sj = X.
∑

Sj∈S′ c(Sj) =
∑3K

i=1 c(Xi) ≤ B, and
∑

Sj∈S′ H(pSj
) =

∑3K

i=1 H(pf(i)) ≥ V . Thus, S
′ is a solution to the independent variable decision problem.

It remains unclear if with one or more of the following constraints the independent variable

problem is still NP-hard or not: binary variables, uniform costs, and unimodal prior distributions;

e.g. a problem of binary variables with uniform costs and beta priors.

3.3 Policies

In this section, we describe several policies that are applicable to the independent variable problem.

In particular, we show that an iterative greedy algorithm is an optimal allocation algorithm for the

uniform-cost independent binary-variable problem. Other policies discussed include: round-robin,

random; greedy, weighted greedy, and exhaustive search. We provide formal descriptions, together

with theoretical and performance discussions.

3.3.1 Adaptivity

An adaptive policy makes decisions sequentially, during the probing process. Hence, it can use in-

formation about outcomes of precursors, when deciding which variable to probe next. On the other

hand, a non-adaptive policy allocates all the probes at the beginning. Therefore, it cannot use infor-

mation of results of variable probes. Lizotte et al. call these non-adaptive policies “allocations” [23].

For a more elaborate explanation on the effects of this adaptivity, please refer to the first chapter of

Dean’s thesis [8].
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3.3.2 Allocation Policies

In this section, we study an iterative greedy allocation algorithm, which we will prove to be the

optimal allocation algorithm for the uniform-cost independent binary-variable problem, and two

other well-known allocation algorithms as baselines for our empirical studies.

Iterative Greedy Allocation
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Figure 3.2: Expected risks computed with different priors and a budget B = 50. The height of
each point at x = b is the expectation taken over all the possible outcomes of b probes. (a)
starts with Beta(1, 1); (b) starts with Beta(1, 999); (c) starts with Beta(999, 1); (d) starts with
Beta(1000, 1000). Note all these figures re-scale on y-axis.

Although the independent variable problem is NP-hard, we shall show that among allocation

algorithms, the uniform-cost independent variable problem can be solved optimally by an efficient

iterative greedy algorithm. First, we need to define the score function that the iterative greedy

17



algorithm uses to make the allocations. We use the expected risk function as this score

ExpRiskprior(b) =
∑

ob

P (ob)Risk(pθ|o
b), (3.8)

where b denotes the number of probes, ob denotes one possible outcome after b probes. For example,

if we start with a binary variable X whose prior is Beta(2, 3), i.e. θ ∼ Beta(2, 3) and b = 1,
∑

ob P (ob)Risk(pθ|o
b) = P (o1 = F )Risk(pθ|o

1 = F ) + P (o1 = T )Risk(pθ|o
1 = T ) =

2
5Risk(Beta(3, 3))+ 3

5Risk(Beta(2, 4)). The ExpRisk is actually a function of both the number

of probes b and the prior. However, since the prior is fixed when the ExpRisk is computed, we

put it as a subscript.

Figure 3.2 plots the expected risk of one variable starting from different priors. Each point

is the expectation taken over all the possible outcomes of b probes. We make four observations

on the expected risk function. First, as mentioned before, a highly unbalanced beta distribution

(Figure 3.2(b)) has a much lower expected risk than a flat beta distribution (Figure 3.2(d)). That is,

it is harder for one to be sure about a variable X whose P (X = 1) = 0.5 than a variable Y whose

P (Y = 1) = 0.9. Second, as indicated by the risk function, the expected risk is symmetric to the

effective sample size of 0s and 1s (Figure 3.2(b) and 3.2(c)) 2. Third, when the effective sample

sizes are comparatively small, the expected risk is dominated by the effective sample sizes. In other

words, a greedy learner would prefer variables with small effective sample sizes most of the time.

Finally, the expected risk function is strictly monotonically decreasing and convex. It is the rescaling

of the Y axis that makes Figure 3.2(b), 3.2(c), and 3.2(d) look steeper. The last observation is crucial

in the optimal allocation proof of the iterative greedy algorithm.

We will first demonstrate how the expected risk function can be efficiently computed, and then

prove its monotonicity and convexity. The following remark can be made on the computation of the

expected risk.

Remark 3.3.1. [Polynomial ExpRisk Computation Time] To compute ExpRiskpriori
(b), one needs

to build a DAG with (b+1)(b+2)
2 number of nodes and compute b + 1 risks of possible distributions

at the bth level of the DAG. Level starts from zero.

The function can be computed by building a DAG of all reachable states given the budget B and

the prior, as illustrated in Figure 3.3. Each probability in the triangle can be computed easily from

its parents, and the distributions can be determined by the column and row number. For example, if

priori is Beta(α, β), where α = 2 and β = 3 (root of the DAG) and we want to compute the risk

of the distribution at Row = 3 and Column = 2, the probability is given by 2
5 × 1

2 + 3
5 × 1

3 = 2
5

and the distribution is given by Beta(α + Row − Column, β + Column − 1) = Beta(3, 4).

Theorem 3.3.2. The expected risk function for a variable with prior = Beta(α, β), α, β ∈ R>0 is

strictly monotonically decreasing in the number of probes b and is convex.
2This is different from the discriminative budgeted learning problem [26, 23] and the classic bandit problem [13]. It

makes sense because ,in our setting, the learner tries to learn the distributions and 0s and 1s are just two symbols. For the
discriminative budgeted learning problem and the bandit problem, 1s are preferred.
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Figure 3.3: A DAG built to compute the expected risk starting from a Beta(1, 1). All the beta
distributions denote the posterior states after probing the variable for the depth of time. The fractions
denote the probability for reaching that state. This DAG should not be confused with the Bayesian
network structures.

Proof. See Appendix A.

The properties can be understood from an information theory perspective: in the expected sense,

by probing a variable the learner always gathers more information about the true underlying distri-

bution, and information never hurts. Moreover, the more probes the learner assigns to a variable, the

less additional information the learner gets from another probe. These properties of the ExpRisk

function, together with the strong decomposability, are necessary for proving that the iterative greedy

algorithm gives an optimal allocation for the uniform-cost independent binary-variable problem. If

the ExpRisk does not have these properties, even finding an optimal allocation of probes is actually

NP-complete [5]. See also Theorem 3.2.5.

We define the iterative greedy allocation algorithm as follows: (1) For each variable and each

budget b ∈ {1, ...,B}, precompute and store the expected risk as defined in Equation 3.8. The

strong decomposability allows us to do so efficiently, and we only have to compute each expected

risk function up to the budget B. Keep the numbers of allocated probes for each variable in a

vector allocation, where each allocationi is initialized as 0; (2) Compute RDi(allocationi +1) =

ExpRiskpriori
(allocationi) − ExpRiskpriori

(allocationi + 1) for each variable, and pick the

variable that gives the greatest one-step risk reduction per cost, increase allocationi by 1, and

deduct the budget B by ci; the 2nd step is then iterated until the budget is exhausted. Pseudocode

of the iterative greedy allocation algorithm is shown in Figure 3.4. Also refer to Section 3.4 for an

example. We can show that the allocation generated by the iterative greedy algorithm is an optimal

allocation.

Theorem 3.3.3. The iterative greedy algorithm is an optimal allocation algorithm for the uniform-

cost independent binary-variable problem in that it generates an allocation of probes minimizing

expected risk ExpRisk.

Proof. Strict monotonicity and convexity properties mean that for each variable Xi, RDi(b) ≥ 0

for b ∈ Z≥0 and RDi(b + 1) < RDi(b). We can re-express any allocation A = [a1, a2, ..., at] ∈
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Algorithm 1: Iterative Greedy Allocation
Input: N variables with priors {prior1, ..., priorN} and costs {c1, ..., cN}, and a budget B
Output: An allocation = {allocation1, ..., allocationi, ..., allocationN}
foreach Variable i do1

expectedRiskFunctioni = computeExpectedRiskFunction({prior1, ..., priorN}, B);2

allocationi = 0;3

end4

while B > 0 do5

bestI = 0;6

foreach Variable i do7

RDi = expectedRiskFunctioni(allocationi) -8

expectedRiskFunctioni(allocationi + 1);
end9

bestI = argmaxi(RDi/ci);10

B = B − cbestI;11

if B ≥ 0 then12

allocationbestI = allocationbestI + 1;13

end14

end15

Figure 3.4: Iterative Greedy Allocation Policy

{1, 2, ...,B}n as a size-B subset of the set of all possible indices, IJ = {(i, j) : i = 1, ..., n; j =

1, ..., B} : A′ = {(1, 1), ..., (1, a1); (2, 1), ..., (2, a2); ...; (n, 1), ..., (n, an)}.

We use Alloc(S) to denote that a subset S ⊂ IJ is an allocation. Note that Alloc(S) is true if

and only if (i, j + 1) ∈ S ⇒ (i, j) ∈ S. In general, the final expected risk associated with any such

set of indices is

ExpRisk(A) =
∑

i

ExpRiski(0) −





∑

i

ai
∑

j=1

RDi(j)





=
∑

i

ExpRiski(0) −





∑

(i,j)∈A′

RDi(j)



 (3.9)

To minimize this, we just need to maximize

f(A′) =
∑

(i,j)∈A′

RDi(j). (3.10)

So our task is to find C∗ = argmaxC⊂IJ,|C|=B,Alloc(C)

∑

(i,j)∈C RDi(j), i.e., find the size-B

allocation subset of IJ . Now consider the simpler task of just finding the size-B subset of IJ :

D∗ = argmaxD⊂IJ,|D|=B

∑

[i,j]∈D RDi(j), i.e., ignore the Alloc(D) constraint. Notice

1. It is trivial to compute this D∗: we can simply take the B largest values of IJ .

2. This D∗ is necessarily allocation, i.e., it satisfies Alloc(D∗).

Proof. Towards a contradiction, assume D∗ is not an allocation, i.e., there is a (i, j) such

that D∗ includes (i,j+1) but not (i, j). Now let D′ = D + (i, j) − (i, j + 1), and note

20



f(D′) = f(D) + RDi(j) − RDi(j + 1) > f(D). This means that D∗ was not an optimal

size-B subset of IJ .

Hence, the optimal allocation is just the B largest values of {RDi(j)}. Note this is exactly what

iterative greedy allocation algorithm returns. (This requires re-using the observation 2. above: the

largest size-B allocation is just the largest size-B subset.)

The arguments hold for not only binomial beta distributions but also multinomial Dirichlet dis-

tributions. For the uniform-cost independent variable problem, we can show that the iterative greedy

allocation algorithm is also consistent.

Definition 3.3.4. [Consistency] A learning algorithm is consistent if it converges to the density that

generates the data as the size of the data samples tends to infinity.

Theorem 3.3.5. The iterative greedy allocation algorithm is consistent for the independent variable

problem.

Proof. As the standard Bayesian update is known to be consistent [34], we need only show that each

variable will be probed infinitely often as the budget tends to infinity. Without loss of generality,

we have to show that very variable g will be probed once after a certain number of probes. Notice

that the expected risk function for each variable is strictly decreasing and convex. The one-step risk

reduction RDf (bf ) of any other variable f tends to zero limbf→+∞ RDf (bf ) = 0 as the number

of probes assigned to that variable increases. This can be easily seen from the definition of the RD

function. Therefore, RDg(b
g) > RDf (bf ) has to be true after a certain number of probes. When

∀f ∈ X\g RDg(b
g) > RDf (bf ), variable g will then be probed by the iterative greedy allocation

algorithm.

Actually, using a similar approach we can show that all the other allocation and adaptive policies

that we shall examine in the paper are consistent.

Round-Robin

The round-robin policy probes variable 1 through N in turn. Every time a variable is probed the

corresponding cost is deduct from the budget. The algorithm then loops around the variables, until

the budget is exhausted. For an independent variable problem with N uniform-cost variables, and

a budget B, the round-robin algorithm allocates bB/Nc + 1 probes to the first B − bB/Nc × N

variables and bB/Nc to the rest of the variables. It does not take the costs of variables into consider-

ation. Thus, it is a uniform allocation of probes, but might not be a uniform allocation of resources.

Figure 3.5 gives the pseudocode of the round-robin policy.
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Algorithm 2: Round Robin
Input: N variables with priors

{prior1, ..., priorN} and costs
{c1, ..., cN}, and a budget B

Output: An allocation =
{allocation1, ..., allocationN}

Initialize elements of allocation to zeros;1

while B > 0 do2

foreach Variable i do3

B = B − ci;4

if B ≥ 0 then5

allocationi = allocationi + 1;6

end7

end8

end9

Algorithm 3: Random
Input: N variables with priors

{prior1, ..., priorN} and costs
{c1, ..., cN}, and a budget B

Output: An allocation =
{allocation1, ..., allocationN}

Initialize elements of allocation to zeros;1

while B > 0 do2

/* Randomly generate i. */
i = randInt([1, ..., N ]);3

B = B − ci;4

if B ≥ 0 then5

allocationi = allocationi + 1;6

end7

end8

Figure 3.5: Baseline allocation policies

Random

The random policy draws each probe from a uniform discrete distribution, i.e. probability of probing

any variable i is 1
N

when there are N variables. Since random and round-robin both asymptotically

assign uniform number of probes to variables, when the budget B is large enough, they should have

similar performances. The random policy also ignores the costs of variables. Refer to Figure 3.5 for

the pseudocode.

The advantages of the two baseline allocation policies, random and round-robin, are their com-

putational efficiency and their robustness against bad priors. We use “bad” priors to refer to the

priors that are misleading. That is they are not the true priors that generates the parameters.

3.3.3 Adaptive Policies

In this subsection, we discuss adaptive policies including the greedy, weighted greedy, and the ex-

haustive search policies. These policies employ the information of the priors, the posterior states

after every probe, the costs, and the budget when choosing the next variable. Hence, they require

more computational time, and their performance may suffer if the prior information is misleading.

Greedy

An adaptive greedy policy can be described as follows: compute the one-step expected risk for each

variable, pick the one with the largest one-step risk reduction RDi = Riskpriori
−ExpRiskpriori

(1),

probe the that variable, update the current state using the outcome (standard Bayesian update),

and iterate the process until the learner runs out of budget. Pseudocode of the greedy algorithm

is shown in Figure 3.6. The greedy algorithm only needs to compute the one-step expected risk
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Algorithm 4: Adaptive Greedy
Input: N variables with priors {prior1, ..., priorN} and costs {c1, ..., cN}, and a budget B
Output: N posteriors {posterior1, ..., posteriorN}
{posterior1, ...posteriorN} = {prior1, ..., priorN};1

while B > 0 do2

bestI = 0;3

maxRD = 0;4

foreach Variable i do5

/* Greedy: RD = expectedRiskReduction(posteriori); */

RD = expectedRiskReduction(posteriori)
ci

;6

if RD > maxRD then7

maxRD = RD;8

bestI = i;9

end10

end11

B = B − cbestI;12

if B ≥ 0 then13

outcome = probe(bestI);14

posteriorbestI = update(outcome, posteriorbestI);15

end16

end17

Figure 3.6: Adaptive greedy

ExpRiskpriori
(1). Therefore, the computational complexity of greedy is O(N). However, we can

still gain computational time with the following lemma.

Lemma 3.3.6. For uniform-cost binary variables with beta priors θi ∼ Beta(αi, βi) and the same

effective sample size, i.e. αi+βi is constant, the greedy learner prefers variables with more balanced

parameter distributions. More precisely, if αi +βi = αj +βj and |αi−βi| < |αj −βj | for variable

i and j, the greedy algorithm prefers variable i.

Proof. See Appendix A.

Therefore, the greedy learner can divide the whole set of variables into subsets, where variables

in each subset have the same effective sample size. For each subset of variables, the greedy learner

only needs to compute the value |αi − βi| for each beta distribution, and pick the variable with the

smallest value. To make the final probe choice for the step, the greedy learner has to compute the

one-step risk reductions for all of the subset-winner variables, and choose the one with the greatest

risk reduction.

The greedy algorithm might not give a good approximation bound for the general independent

variable problem. Let ε be an arbitrarily small positive quantity. Suppose we have one variable with

a cost c1 = 1 and the largest one-step risk reduction RD1 = r, a large number of variables with

costs cj = ε, for j = 2, ..., N and risk reductions RDj = r − ε, for j = 2, ..., N , and a budget
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B = 1. The greedy algorithm would probe the first variable and get a risk reduction of r, but by

probing the rest of the variables it is possible for the learner to get a much better risk reduction.

Algorithm 5: Exhaustive Search
Input: N variables with priors {prior1, ..., priorN} and costs {c1, ..., cN}, and a budget B
Output: N posteriors {posterior1, ..., posteriorN}
{posterior1, ...posteriorN} = {prior1, ..., priorN};1

/* Precompute the risks for all variable states reachable
given B. */

riskTable = mkRiskTable;2

/* Grow the tree with all possible combinational states in a
top-down approach. Each of the combinational state is a
node. This can be done using a breath first search. */

tree = growTree({posterior1, ..., posteriorN}, B);3

/* Compute the risk of each node; value of any leaf node is
the sum of the risk for each variable; values for other
nodes is the mean of the risks of their children. This is
done in a bottom-up approach. */

risks = computeRisks(tree, riskTable);4

while B > 0 do5

bestI = 0;6

minRisk = Inf;7

/* find the variable with the minimum risk and probe that
variable. */

foreach Variable i do8

risk = expectedRisk(risks, {posterior1, ...posteriorN});9

if risk < minRisk then10

minRisk = risk;11

bestI = i;12

end13

end14

B = B − cbestI;15

if B ≥ 0 then16

outcome = probe(bestI);17

posteriorbestI = update(outcome, posteriorbestI);18

end19

end20

Figure 3.7: Dynamic programming of exhaustive search policy

Weighted Greedy

An immediate idea to solve this issue is to run a weighted greedy algorithm (greedy on RDi

c(i) ).

Unfortunately, the weighted greedy algorithm by itself may not perform well either. Consider the

case where we have two variables and the budget B = r; the first variable X1 having a cost c1 = r

and a one-step risk reduction RD1 = r, and the second variable having a cost c2 = ( r
2 + ε)(1 + ε)

and a one-step risk reduction RD2 = r
2 + ε. The optimal solution is to probe X1 and get a risk

reduction of r, but the weighted greedy algorithm probes the second variable and get a risk reduction
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of ( r
2 + ε)(1 + ε), which is slightly more than r

2 . Pseudocode of the weighted greedy algorithm is

given in Figure 3.6.

Exhaustive Search

Another well-studied algorithm is the exhaustive search. The idea is to enumerate all possible com-

binations of probe sequences that are reachable given the budget B. Dynamic programming can be

employed. See Figure 3.7 for the pseudocode. By definition, exhaustive search is optimal. However,

due to the intensive computation, the exhaustive search algorithm is not practical for real problems.

Also, it might be trapped by bad priors just as the greedy based algorithms. Because of its extensive

time of computation, exhaustive search is not included in our empirical study. However, we will

give an example in the following section to show how a deeper lookahead might be beneficial to our

learner.

3.4 An Example
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Figure 3.8: An example showing the benefit of a deeper lookahead with two DAGs built by the inter-
ative greedy allocation algorithm. In the example, the learner starts with two uniform-cost variables
Beta(1, 49) and Beta(28, 28), and a budget B = 2. ExpRisks for each level are displayed by the
side of the DAGs (to the left for the left DAG, and to the right for the right DAG). Numbers with
indentations are the difference between each pair of ExpRisks a.k.a. the risk reductions.

Figure 3.8 gives an example of two uniform-cost binary variables with a budget B of 2. The

iterative greedy algorithm first computes the ExpRisk for each variable at all levels reachable given

B. It then computes the one step risk reduction RD for each variable from the current level. In the

example 3, RDA1 = 1.5146 × 10−4 and RDB1 = 1.5390 × 10−4. It then compares the RDs and

allocates 1 probe to B, which gives the greatest RD at this step. In the second step, it compares

RDA1 = 1.5146 × 10−4 with RDB2 = 1.4864 × 10−4, and allocates 1 probe to A. So the final

allocation for this problem is 1 probe to A and 1 probe to B. It is clear that both the iterative greedy

allocation and the adaptive greedy algorithm would probe the second and the first variable, because

after 1 probe to B, this B would end up in states with the same risk and RD. However, the optimal

policy is to probe the first variable; and if it is 0, probe it again (RDBeta(2,49) = 1.6314 × 10−4),

otherwise, probe the second variable. The illustrates the benefit of a deeper lookahead. If we change
3We use RDA1 to denote the one step risk reduction for variable A from the first level.
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the second variable to Beta(28, 29), with the same analysis, we can show that both the adaptive

greedy and the exhaustive search algorithm would behave exactly like the optimal policy in the

original example, which is still optimal for the modified example. However, the iterative greedy

allocation algorithm would probe the first variable and second variable in order, which is suboptimal.

This illustrates the benefit of adaptivity.

3.5 Empirical Results

In this section, we report empirical results of a series of experiments to compare the effectiveness

of the policies for the independent variable problem. Here, all the experiments are conducted on

an independent variable problem with 5 binary variables and a budget of 50. Non-uniform costs

are generated from a uniform discrete distribution on {1, 2, ..., 5}, where each integer cost has a

probability of 1
5 . Non-uniform priors are generated as follows: first, an effective sample size e is

sampled from a uniform discrete distribution on {10, 11, ..., 30}; α is then sampled from another

interval [1, e − 1], and β is assigned as e − α. To test the robustness of the algorithms, we also

consider misleading (bad) priors, which are not the priors that generate the true θs. When the priors

are good, the true θs are generated from the priors; whereas, for bad priors, the true θs are generated

from a uniform distribution. Each experiment is based on 4000 runs.
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(a) Uniform-cost with uniform priors.
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(b) Non-uniform-cost with uniform priors.

Figure 3.9: Uniform-cost and non-uniform-cost independent variable problem of 5 variables with
uniform priors.

Figure 3.9(a) and 3.9(b) present the results starting with uniform priors. Uniform priors are not

informative, and as observed before, the expect risk function is dominated by the effective sample

size. Thus, for the uniform-cost case, uniform allocation algorithms like random and round-robin

has a very similar performance to the iterative greedy allocation and the adaptive algorithms. How-

ever, round-robin is not effective as the greedy algorithm. For example, after a certain number of
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(a) Uniform-cost with good informative priors.
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(b) Non-uniform-cost with good informative priors.

Figure 3.10: Uniform-cost and non-uniform-cost independent variable problem with good informa-
tive prior.
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(a) Uniform-cost with bad informative priors.
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(b) Non-uniform-cost with bad informative priors.

Figure 3.11: Uniform-cost and non-uniform-cost independent variable problem with bad informative
prior.
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probes starting from uniform priors of two variables, the learner may encounter a state {Beta(14, 1),

Beta(8, 8)} with a remaining budget of 1, a uniform sampling policy like round-robin might sample

Beta(14, 1) which gives a RD = 0.0016, whereas the greedy learner would sample Beta(8, 8) and

get a RD = 0.0017. Note that these cases rarely happen, which is the reason why in the randomized

empirical study the difference is not pronounced.

Only the performance of greedy ,out of greedy and weighted greedy, is shown in Figure 3.9(a),

Figure 3.10(a) and 3.11(a), because when the costs are uniform, greedy and weighted greedy are

the same algorithm. However, for the non-uniform-cost case, the weighted greedy learner beats the

other algorithms. This suggests that considering the costs is beneficial.

We also investigated the independent variable problem with good informative priors. Since the

true parameters are generated from the priors, we believe that taking the priors into consideration

will benefit our greedy-based learners. This is shown in Figure 3.10(a) and 3.10(a). Figure 3.10(a)

is bumpier than the other graphs. This may result from the randomness when generating the good

priors.

We experimented with the misleading bad priors. As foreseen in the previous section, greedy-

based learners are trapped in these tests, and uniform sampling policies are preferred if the true

priors are uniform distributions. This fact does not contradict the optimal allocation statement of the

iterative greedy algorithm.

Finally, iterative greedy and greedy have almost the identical performance. The fact suggests that

the benefit of adaptivity is limited. This is also observed by Dean [8] and Guha and Munagala [14]

for other stochastic scheduling problems.

Due to the multiple degrees of randomness, the variances of the results are fairly large. However,

by running the Wilcoxon signed rank test, we can verify that the performance comparison above

are statistically significant. For example, in Figure 3.10(a) at 5% significance level, the Wilcoxon

signed rank test fails to reject the null hypothesis of zero median in the difference between each pair

of the greedy, the weighted greedy, and the iterative greedy allocation algorithm, but rejects the null

hypothesis between round-robin and the greedy algorithm.

3.5.1 Summary

In general, the greedy-based learners are favored for tasks when we have a prior that it is not mislead-

ing. If we have a prior but are not certain of its quality, it is safer to use the round-robin algorithm.

If our problem has different costs for variables, we had better take the costs into consideration by

choosing a weighted greedy algorithm. The adaptivity is not crucial for the specific problem. Algo-

rithms with and without adaptivity deliver a similar performance.
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Chapter 4

Budgeted Parameter Estimation in
General Bayesian Networks

4.1 Problem Formulation

In this section, we formally define the budgeted parameter estimation of Bayesian networks problem.

Here, we assume:

1. Correct Structure: The structure G of the Bayesian network is given, and it is one of the cor-

rect graphical representations of the underlying distribution. We do not require the network

structure to have all the true causal relationships between the variables, but we do need the

given structure to be a Markov equivalent of the true causal structure. Since in the disser-

tation each variable of the underlying distribution corresponds to one and only one node in

the Bayesian network, we use the term variable and node interchangeably, unless mentioned

otherwise.

2. Finite and Discrete Variables: Each of the variables in the underlying distribution has a finite

number of discrete values. This assumption simplifies our analysis and implementation, and

enables us to utilize the Dirichlet distributions for parameter modeling.

3. Parameter Independence: As mentioned in the previous section, we make the parameter in-

dependence assumption [12], so that we can impose independent Dirichlet distribution to each

parameter in the network. The parameter independence assumption p(θ) =
∏

i

∏

ui
p(θXi|ui

)

is a combination of the global p(θ) =
∏

i p(θi) and the local p(θi) =
∏

ui
p(θXi|ui

) param-

eter independence assumptions.

4. Dirichlet Distributions: Each of the parameters is Dirichlet distributed p(θXi|ui
) = p(θ1, ...θK) =

Dirichlet(α1, ...αK) =
Γ(

P

K
i=1 αk)

Q

K
i=1 Γ(αk)

∏K

i=1 θαk−1
k . Because the Dirichlet distribution is the

conjugate prior of the multinomial distribution, both the prior and the posterior given com-

plete instances are Dirichlets.
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4.1.1 Formal Model
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Figure 4.1: Budgeted parameter learning. In (a), a data pool generated from the underlying dis-
tribution (the true Sprinkler network) is shown in a table. Each row of the table corresponds to a
data instance dj , while each column corresponds to the values of a data attribute di. Initially, all the
values of the data pool are unobserved (denoted by “?”s). The cost for observing value of a certain
attribute is shown in the brackets here, e.g. W (2) means that it costs “2” units of the budget to ob-
serve the variable W for a data instance. Beside the data is our prior knowledge, which is composed
of the correct structure and priors (here, uniform). We use #(·) to denote the parameters for the prior,
e.g., #(C = T ) = 1. The budgeted learner then makes decisions using the prior knowledge in (c)
on which data value to buy, and continues probing entries in the table until the budget is exhausted,
which yields the data in (d). The probed data, together with the prior, give the posterior estimate
(f) of the network parameters after an update procedure. By taking the mean values of the posterior
distributions, we get the point estimate (g).

In the budgeted learning setting, we start with the given structure G and a fixed budgeted B ∈

R≥0. Moreover, we know it costs ci = c(Xi) to see the value of variable i for a certain data

instance. At the start, no data is provided, and a strategy has to be employed to collect the data.

Since a Bayesian approach is taken, we assume that some prior over the parameters is given. It is

helpful to view the data set D as a growing matrix with each row corresponding to a data instance

and each column corresponding to an attribute. We start with an empty matrix, where the values
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of the cells can be achieved through probes. A probe is defined as a purchase of the value of the

i-th attribute of the jth instance, cell dj
i , at cost c(Xi). A probej

i probes the ith attribute of the

jth instance. A probe can be applied to a previously probed instance or an un-probed instance 1. A

probe to an un-probed instance will increase the number of rows of D by one. The task of the learner

is to make the probes wisely, so that the point estimate of posterior parameters 〈θ̂|D〉 updated by

the probed data D is as close as possible to the underlying distribution. This budgeted parameter

learning process is illustrated in Figure 4.1. In the example, we set the budget B to 20, and costs

c(C) = 1, c(S) = 2, c(R) = 1, and c(W ) = 2. Figure 4.1 shows that the budgeted learner interferes

with the standard parameter learning procedure at the data collecting stage.

4.1.2 Loss Function and Risk Function

Recall that we chose KL-divergence as our loss function for our parameter estimation and expected

KL-divergence as our risk function for distributions of parameters. Heckerman [17] and Tong [34]

have shown that both of this two functions are decomposable over Bayesian networks.

Loss Function

The KL-divergence for measuring the final quality of the learned parameters can be written as [17]:

KL(θ||θ̂) =
∑

i

KL(θXi|Ui
||θ̂Xi|Ui

), (4.1)

where θ denotes the true parameters, θ̂ denotes our estimate, and each form of the right hand side

sum, KL(θXi|Ui
||θ̂Xi|Ui

), is defined as the conditional KL-divergence:

KL(θXi|Ui
||θ̂Xi|Ui

) =
∑

ui

Pθ(ui)KL(θXi|ui
||θ̂Xi|ui

). (4.2)

Risk Function

The risk function for the estimated intermediate distributions of true parameters can be written

as [34]:

Risk(pθ) = Exp[KL(pθ)] =

∫

θ

KL(θ||θ̂)p(θ)dθ

=
∑

i

∑

ui

P
θ̂
(ui)

Ki
∑

k=1

αxk
i
|ui

∑Ki

j=1 α
x

j
i
|ui

× (Ψ(αxk
i
|ui

+ 1) − Ψ(

Ki
∑

j=1

α
x

j
i
|ui

+ 1)) + H(P (Xi|ui)).

(4.3)

Unlike the independent variable problem in the previous chapter, both the KL-divergence and

the risk function are not strongly decomposable for a general Bayesian network. They can only
1The budgeted learning problem is different from the interventional active learning problem [35, 27, 33] in that the

interventional active learner fixes values of certain attributes (interventions) of an instance, finds the values of the remaining
attributes, and uses the the whole instance without missing data to update the current belief. However, our budgeted learner
uses probes to get values for cells, and uses the observed data to update the current belief.
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be factorized to a weighted sum of the corresponding function of each variable, where the weights

depend on the parent(s) of the variable. There is where the correlations between the variables take

place. On the other hand, for the independent variable problem, the function value of the whole

problem can be strongly decomposed into the sum of function values of each variable. Due to this

correlation, we have to deal with a learning problem with missing data, unless the optimal option

for the budgeted learner involves using full tuples.

4.1.3 Applicability of Imputation Methods for Missing Data
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Figure 4.2: An example of the E-step of the EM algorithm. “?” denotes cells with missing values.
Another column with weights is added to the data matrix after the E-step.

When training data is partially observed, we cannot apply the simple standard Bayesian update to

get the posterior distribution. Imputation algorithms have been applied to learn the parameters from

missing data in Bayesian networks. These algorithms all iterate between an imputation step, where

the learner somehow fills the missing entries of the data using the current believes of the parameters

and the partial data, and a update step, where the learner uses the imputed data to compute the new

parameters. For example, we consider applying the Expectation Maximization (EM) algorithm,

which is able to learn the model parameter in the presence of missing data, to our budgeted learning

problem. It estimates model parameters and computes the expected sufficient statistics in turn. The

algorithm starts with some parameter 2
θ

0, which can be generated randomly or chosen as the point

estimate of the priors. The performance of EM algorithm might be highly sensitive to the choice of

starting point.

In this section, we briefly describe an application of the EM algorithm to our budgeted parameter

learning problem, and discuss why it is not very suitable for our problem. The algorithm alternates

the following Expectation step (E-step) and Maximization step (M-step) until some stopping crite-

rion like θ
i ' θ

i+1 or `(θi|D) ' `(θi+1|D) is met.

E-step Figure 4.2 shows an example of the E-step starting from the point estimate of uniform priors.
2θi denotes the set of all parameters in the ith iteration.
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The learner splits each partial data instance into a set of weighted complete data instances.

Each missing entry of a split instance is filled with all possible assignments to the missing

variables, e.g. In Figure 4.2, the first row of the left table 〈T, ?, T, T〉 becomes the first 2 rows

of the right table 〈T, T, T, T〉 and 〈T, F, T, T〉. The total number of imputed instances for each

data instance equals the number of all possible value assignments to the missing variables. A

weight P (Assignment|ObservedV alues, θi) is then computed through an inference on the

imputed instance using the current parameter and associated with the imputed instance, e.g.

weights for the first 2 rows of the right table in Figure 4.2 are both 0.5, because of the uniform

priors. After the E-step, we achieve a data set with no missing values and each instance is

associated with a weight ∈ (0, 1].

M-step In the M-step, the learner updates the hyper-parameters of the Dirichlet distributions using

the imputed data. Instead of counting “1” as the sufficient statistics for each data instance, it

counts the weight. Theoretical analysis show that this procedure guarantees the improvement

of the log-likelihood function `(θ) [19].

There are several reasons why the EM algorithm, which is designed from an frequentist perspec-

tive, is not a good choice for the budgeted learning problem. The major problem is: We need the

entire posterior distribution to compute the Risks, but the above EM algorithm estimates the mode

of the posterior distribution, treats the posteriors as unimodal distributions, and uses the expected

sufficient statistics (the weights) to update the prior. When data are missing, the true posterior distri-

bution is a mixture of Dirichlet distributions, which is not unimodal, and a Dirichlet with the mean

value set to one mode of the mixture does not give a good approximation. Also, the EM algorithm

only finds the local maxima. A good approximation of the global maxima requires multiple restarts

or earlier pruning of unpromising starting points. Finally, the EM algorithm is computationally

very expensive, due to multiple inferences. Other imputation algorithms, like Gradient Ascent and

Gibbs Sampling, can also be applied, but they suffer the same problem of the EM algorithm. See

Section 5.3 for a review.

4.2 Discussions on Budgeted Parameter learning in Bayesian
Networks

In this section, we give several conjectures on the budgeted parameter learning problem in Bayesian

networks.

4.2.1 Complete Bayesian Networks with BDe Priors and Uniform Costs

Definition 4.2.1. A complete Bayesian network is a Bayesian network whose structure is a DAG in

which every node is connected to every other node in the DAG.

A graph with the above property is also called a clique.
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Conjecture 4.2.2. For complete Bayesian networks with BDe priors and uniform costs, when the

budget B is a multiple of the number of variables N , uniform allocation algorithms like round-robin

in Figure 3.5 that takes full tuples gives a posterior distribution with the minimum expected Risk.

The conjecture says that if the learner starts with a complete Bayesian network and BDe priors, it

probes the cells of the training data in a way that generates no missing data. Hooper proved that we

can impose one Dirichlet prior for a complete Bayesian network with BDe priors [18]. Therefore,

we can also view a complete Bayesian network with BDe priors as one multivariate variable in our

independent variable problem. As a result, if the above conjecture holds and we are given a network

that is composed of several independent cliques of subset of variables with BDe priors, we can run

our greedy-based algorithms to determine the number of probes for each clique and take full tuples

inside of each clique.

4.2.2 Connected Bayesian Networks with BDe Priors and Uniform Costs

We believe the above conjecture could be generalized to non-complete connected Bayesian net-

works. Consider a network with a structure X → Y where both X and Y are cliques composed

of many nodes. Conjecture 4.2.2 implies that for X and Y separately , the learner should take full

tuples to get a maximum RD. Since the structure X → Y is a clique itself, the learner should

take full tuples for the whole network as well. In all, by recursively applying Conjecture 4.2.2, we

believe that for connected Bayesian networks with BDe priors taking full tuples is optimal.

4.2.3 Connected Bayesian Networks with Non-BDe Priors and Uniform Costs

When the priors do not satisfy the BDe constraint, the problem becomes more complex. For ex-

ample, given a network structure X → Y where both X and Y are binary variables, if the learner

has a prior of a very small Risk on X , e.g. θX ∼ Beta(999, 1), but two priors of large Risks on

Y , e.g. θY |X=T ∼ Beta(1, 1) and θY |X=F ∼ Beta(1, 1), it might want to keep probing Y for a

while, because this will have a much larger RD on Y and the correlation between X (X is nearly

deterministic) and Y can almost be inferred. However, when the values of the hyper-parameters

change, the optimal solution becomes less obvious.
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Chapter 5

Related Work

5.1 Interventional Active Learning of Generative Models in Bayesian
Networks

Interventional active learning of a generative model has been studied in the context of Bayesian

networks, albeit in an myopic approach [36, 35, 27, 33]. In this setting, the learner collects instances

and updates its current state sequentially. For each instance, the learner is able to choose some data

attributes and set them to certain values (this process is called a clamp or an intervention), and the

rest of the attributes in that instance are sampled from the underlying distribution given the clamped

variables. The goal of the learner is to make an estimation as close as possible to the underlying

distribution measured by KL divergence with a minimal number of data instances.

The cost is measured differently in interventional active learning versus budgeted learning. In-

terventional active learning takes the number of data instances as the cost, while budgeted learning

takes the number of probed data attributes times the corresponding attribute costs as the total cost.

In both the interventional active learning and budgeted learning problem, the learning agent is

allowed to choose salient data that helps to learn a more accurate model with minimal cost instead of

just passively observing data. However, one major difference between interventional active learning

and budgeted learning is whether the learner is allowed to clamp the values of the chosen attributes.

In interventional active learning, the learner has the power of intervention, whereas, in budgeted

learning, the learner does not. Murphy asserts that this power of intervention is necessary for causal

discovery, distinguishing two Markov equivalent network structures [27].

Another distinction is whether the learning agent is provided with fully observed data tuples

or data tuples with observed values for only chosen attributes. In interventional active learning

setting, full data tuples are observed. Since the chosen data attributes are forced to certain values

by the learner, the other passive observational data attributes are crucial for the learner to learn the

underlying distribution. The problem is that the clamped node values do not tell us anything about

how often a value for a variable occurs in the real world. By contrast, budget learning agent takes

only values of the chosen data attributes into consideration and treat all the other data attributes as
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missing. As a result, an interventional active learning agent does not have to deal with missing data,

while our budgeted learning agent does.

The third difference is whether they have an explicit budget. Interventional active learning has

no explicit budget. Therefore, the objective of interventional active learning is typically to learn the

parameters or the structure of the Bayesian network as fast/cheaply as possible [36, 35, 27, 33]. In

other words, the active learning agent tries to reduce the need for training data. On the other hand, in

budgeted learning, we try to make the purchasing as wisely as possible so as to learn a good model,

subject to a firm budget. Thus, the active learning problem is attacked mostly greedily, whereas,

people tend to use a deeper lookahead to address the budgeted learning problem.

Tong and Koller investigate interventional active learning for both parameters and structure in

Bayesian networks [36, 35]. For parameter estimation, they choose expected KL divergence between

the posterior distribution and the posterior point estimate of parameters as their loss function. They

do a myopic search on all possible interventions, which they term queries, and pick the one that

reduces the expected loss function the most. The parameter distributions of the network are then

updated using standard Bayesian network update approach, except that the values of the clamped

nodes and their parents are simply ignored. This is because the values of the clamped nodes and their

parents are not drawn from the underlying distribution due to our intervention. The experimental

results show that this greedy algorithm learns the parameters of the network faster than a random

uniform-sampling algorithm. For structure learning, the same idea is applied. The loss function is

defined as the summation of the entropies of each edge distribution, and a myopic search is employed

to find the best query. The distribution over all possible graphs is then updated using the results by

Cooper and Yoo [6]. To simplify the computation, Tong and Koller sample a set of ordering of

nodes from the distribution over models using MCMC, and compute the averaged expected utility

of the query over all the samples, and pick the best query based on the averages. Again, they show

that the number of observations is reduced by employing the interventional active structure learning

algorithm.

Murphy studies the same problem of learning of Bayesian models actively [27]. The difference

between Murphy’s algorithm and Tong and Koller’s algorithm is that Murphy chooses the entropy

of the whole model distribution as the loss function instead of the summation of all edge entropies,

and he uses a MCMC on all possible DAGs instead of all possible node orderings.

Steck and Jaakkola investigate three different loss functions, namely expected KL divergence,

backward expected KL divergence, and the sum of the two, on the same active learning task. They

argue that the third loss function can be computationally more efficient when applied with their

“Query by Committee” method to compute the loss of a distribution of models [33], and empirical

results show that the resulting algorithm is effective for various problems.

Despite all the differences, research on interventional active learning, especially their formula-

tion of loss functions, and the ideas to simplify the computation, sheds light on our budgeted learning
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task, e.g. Tong and Koller, Murphy, and we all use the same risk function defined on the Dirichlet

distributions to quantify the their qualities, while Steck and Jaakkola use a modified version of it.

5.2 Active Model Selection and Budgeted Learning for Classi-
fiers

Active model selection and Budgeted Learning for Classifiers are studied by Madani et al. [26] and

Lizotte et al. [23] respectively. Madani et al. simplify the active model selection problem to the

“coins problem” [26]. They define the coins problem as a case where you are given a collection

of independent coins with different priors, each coin is associated with a cost to flip and observe

the outcome (head/tail), and a fixed budget is given. The objective of active model selection is to

arrange the sequence of the coin flips wisely, so that after the budget is spent during the exploration

phase, the learner is able to pick the coin with the highest head probability to exploit. The different

objectives play an very important role based on our results and theirs.

Lizotte et al. extend the coins problem to learning naive Bayesian network classifiers, where a

class node and a set of feature nodes are given. Each feature is associated with a cost and a prior.

All the class values for each instance are known beforehand, together with a predetermined budget.

The task is to build a good classifier after spending all the budget probing features corresponding

to certain class values. Computing the optimal solution of these two problems are shown to be NP-

hard [26, 14], so extensive heuristics are proposed and studied. Some of the policies can be briefly

described as follows:

Optimal Build the whole decision tree using enumeration. Because the two problems are NP-

hard [26, 14], the optimal policy is only computationally feasible in very limited scale.

Random Flip the coins or probe the features randomly.

Round-Robin Sequentially flip the coins or probe the features for each data tuple in order.

Greedy Compute the action with the best expected utility with one step lookahead, and take the

best action.

Single Coin Lookahead Compute the expected utility for allocating all the remaining budget for

one coin or feature, flip the best coin or probe the best feature once, and keeping doing this

until the budget is exhausted.

Gittins Index Compute the gittins index for each coin/feature, and flip the coin or probe the feature

with the highest gittins index in turn [13].

Madani et al. [26, 23] show that policies like Biased Robin and Single Coin Lookahead work

pretty well in practice for problem with unit costs. In this paper, we study the budgeted learning for

generative models instead of discriminative models, but some of the policies are adapted from or
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inspired by the above policies. We define similar simpler independent variable problem to motivate

our study and then apply the techniques to more complex Bayesian networks. However, definitions

of the Active Model Selection and Budgeted Learning for Classifiers avoids problem of learning

with missing data (see below).

5.3 Learning with Missing Data

After the probing process, the learner acquires values for the probed data while all the other data

entries are left as missing. Hence we must deal with the learning parameters in the presence of

incomplete data. Three ways of parameter estimation in Bayesian networks with missing data are

well studied [17]: gradient ascent, Gibbs sampling, and Expectation-Maximization (EM). Note that

all of these algorithms assume that the missing data mechanism can be “ignored” as defined by

Rubin [29]. The incomplete data set that we have to face satisfies Rubin’s condition, “...the proba-

bility that some component is missing may depend on observed components, but not on unobserved

components” [28].

The gradient of the parameters of a Bayesian network given the partially observed data can be

computed analytically [30]. With the constraint that the parameters of the network describe a legal

probability distribution, we can then use a standard conjugate gradient ascent procedure to optimize

the parameters.

The Gibbs sampling method deals with the missing data in a different way. It first fills the

missing entries by drawing samples from the current estimate of the distribution, and then updates

the parameters using the filled complete data set. This process is then iterated utill the parameters

converge [17].

Lauritzen [22] applied the EM algorithm proposed by Dempster et al. [9] to Bayesian networks.

The EM algorithm contains two steps that are similar to the Gibbs sampling process as discussed in

Section 4.1.3.

In Section 4.1.3, we describe an EM algorithm for our budgeted parameter learning task, and

gave the reasons why it is not quite applicable. The other two methods are also designed from a

frequentist perspective, and share the same imputation properties of the EM algorithm.

Our work is also related to the on-line parameter estimation problem studied by Bauer et al. [2],

which involves learning from missing data. Bauer et al. proposed a parameterized version of the

EM algorithm and show that by carefully selecting the weights, the parameterized EM out-performs

the standard EM as it converges faster. An on-line parameter estimator updates the parameters after

observing one data sample at a time. This is very similar to our learner, who would “think”, “probe”,

“observe”, and “update” for one data attribute at a time. However, there are two key differences

between the on-line learner and our budgeted learner. First, an important limitation of the on-line

learner is that it can not store any of the past data. So the on-line learner can not save all the data and

run a batch parameter estimation algorithm. On the contrary, the budgeted learner keeps track of all
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the probed data, and is able to update its state using the new data and the whole data pool collected.

Second, by probing a new attribute of a previously probed data instance, the budgeted learner not

only has a new data instance but also loses an old one.

5.4 The Value of Information Problem

The budgeted parameter learning problem is different from the value of information problem studied

by Krause and Guestrin [20, 21]. The value of information problem is defined as the problem where

both the structure and the parameters of a graphical model is given together with a budget; and the

task is to select a subset of variables to observe where each variable is associated with a cost, so that

the residual entropy of the network is minimized. Note that there is no real learning in the value of

information problem. As a result, the hardness results and approximation algorithms do not apply

to our budgeted parameter learning problem.

5.5 Stochastic Scheduling

Our research of budgeted parameter learning in Bayesian networks is related to the work of stochas-

tic scheduling in the area of both algorithm, and operations research. Stochastic scheduling problem

can be viewed as a knapsack problem with nondeterministic costs. In his dissertation [8], Dean

studies stochastic scheduling problems under hard deadline constraints. The basic formulation of

the problem is: We are given a set of jobs, where each job is associated with a known distribution

of processing time and a value, and all the jobs share the same start/completion deadline. The task

is to find the scheduling policy that maximizes the total value of successfully scheduled jobs. Dean

studies a weighted shortest expected processing time policy (WSEPT), which basically ranks the

jobs by their weights (value divided by the expected processing time), and schedules the job with

the highest weight first. Using linear programming (LP), Dean shows that in the worst case scenario

this policy delivers a performance that is a quarter of the optimal solution (4 approximation) for the

start deadline model.

Guha and Munagala extend the same idea to solve the active model selection/budgeted learning

for classifier problem, and present a 4-approximation algorithm [14]. The algorithm first builds a

DAG for each of the coins. The root of each DAG is the original state of a coin, which is represented

by the sufficient statistics of the beta distribution for that coin. The out degree of each node in the

DAG is the number of possible values for that variable (for the coins problem, this number is 2). Each

node in the DAG is a possible outcome by flipping the corresponding coin certain number of times,

e.g. the nodes at the third level of the DAG for a Beta(1, 1) coin would be Beta(3, 1), Beta(2, 2), and

Beta(1, 3). Each node of the DAGs is then associated with 3 values: a probability to reach that node,

a probability to stop at that node and pick the coin as the best, and a probability to keep flipping

that coin. A LP is then formulated to maximize the total reward when certain coins are chosen for
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exploitation, with the constraint that the total cost never exceeds the budget and the total probability

for the coins to be picked for exploitation never exceeds 1. With the solution of the LP, Guha

and Munagala then employ the idea by Dean, and view the problem as a two-constraint stochastic

packing problem. They show that by applying the same WSEPT policy, we could achieve a gain at

least 1/4 of the optimal policy. Even though the approximation gives the worst case guarantee, it

dose not out-perform the heuristics, like biased robin, by Madani et al. [26]. Note that this approach

only works for the problem where the coins are independent from each other.

Another relevant research area in stochastic optimization is the bandit problem. The gittins index

policy in the active model selection and budgeted learning for classifier section is due to the result

by Gittins [13] for the classic bandit problem. There are three subtle differences between the classic

bandit problem and the problem studied by Madani et al. [26]. Firstly, the classic bandit problem

assumes that rewards are collected during the exploration phase; secondly, there is a discount asso-

ciated with discrete time steps, which basically makes the learner puts more weights on the nearer

rewards; finally, the classical bandit problem is defined with an infinite time horizon. Schneider and

Moore [32] investigate a classic bandit problem with finite exploration time (a budget), and show

that by properly converting the total rewards from the infinite horizon with a temporal discount to a

budgeted case, gittins index policy works reasonably well as a heuristic.

The classic bandit problem has been generalized by Whittle to restless bandits [37], where the

agent is able to operate on multiple bandits (flip multiple coins), and the non-activated bandits can

still change states with passive rewards. Heuristics [3] and approximation algorithms [15] are de-

veloped. The restless bandits problem is related to our budgeted parameter learning task in general

Bayesian networks, because when the variables are correlated, by probing one variable the state of

the other variables may change. Some of their results might be applicable to the budgeted learning

problem. We leave this as future work.
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Chapter 6

Conclusions

6.1 Future Work

The first extension is to derive some theoretical hardness results on the adaptive uniform-cost inde-

pendent variable problem. We believe the problem is at least NP-hard, but could not reduce it to a

hard problem so far. Another related extension is to show performance bounds for the algorithms

that we studied for the independent variable problem, especially for the iterative greedy allocation

and the adaptive greedy algorithm. We also hope to quantify the performance effects of adaptivity

by the adaptivity gap proposed by Dean [8].

For the budgeted parameter learning problem for general Bayesian networks, an immediate ex-

tension is to prove the conjectures that we proposed. This might be achieved through doing an

accurate analysis of the Risk reduction of different probe patterns for Bayesian networks with dif-

ferent structures and priors. Also, to derive an efficient algorithm for the budgeted learning problem

in general Bayesian networks, we need an effective way to approximate the posterior distributions,

which are mixtures of Dirichlets. This requires learning the parameters of a model with missing data

using a Bayesian approach. For policies, we hope to adapt heuristic [37, 3] and approximation [15]

algorithms for the restless bandit problem to our task.

Finally, the proposed loss function and Risk function use the point estimate of the posterior

distribution as the final estimate. A different problem may be formulated using a pure Bayesian

approach, where the learner take the whole posterior distribution as the estimate instead of taking

a point estimate. In this setting, the learner needs to measure the information for each posterior

distribution. We could define an information gain as the KL divergence between a pair of prior and

posterior distribution, and then to solve this new problem, we need to maximize this information

gain. This approach have been studied by Mackey for discriminative active learning problems [24].

6.2 Contributions

In this dissertation, we have studied the budgeted parameter learning problem for generative mod-

els. We have formally formulated the problem, and shown that it is NP-hard to solve even a very

41



restricted independent variable problem optimally. We proposed the iterative greedy allocation algo-

rithm, and show that, for the uniform-cost independent variable problem, it is an optimal allocation

algorithm using the monotonicity and convexity of the defined risk reduction. In empirical studies,

we compared both our greedy-based allocation and adaptive policies with two uniform allocation

baseline policies (round-robin, random), and observed that learning algorithms that utilize the cor-

rect prior information and consider different costs of probing different variables generally performs

better; and the adaptivity does not significantly affects algorithms’ performances. Empirical re-

sults on synthesized data show that our greedy based algorithms work well for problems with no

misleading priors.

We also extended our budgeted learning formulation to parameter learning problems of general

Bayesian networks. We have pointed out that learning with missing data is a main issue for solving

the budgeted parameter learning problem in general Bayesian networks, and proposed conjectures

on problems with certain restrictions. Finally, we have reviewed research related to our budgeted

learning problem, and propose several future directions that may be interesting in the budgeted

learning setting.
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Appendix A

Proofs

In this section, we provide proofs for some of the lemmas and theorems.

We shall frequently use Gibbs inequality [25]:

−

n
∑

k=1

pk ln pk ≤ −

n
∑

k=1

pk ln qk (A.1)

with equality if and only if pk = qk for all k for two probability distributions.

We shall also use the following inequality:

x

x + 1
< ln(1 + x) < x (A.2)

for all x > −1 and x 6= 0.

Lemma 3.2.4 (used in page 15) For f(t) = 1
42t where t ∈ Z≥2,

4 × H(pf(t+1)) < H(pf(t)), (A.3)

where H(pf(t)) = −f(t) ln f(t) − (1 − f(t)) ln (1 − f(t)).

Proof. See Appendix A.

H(pf(t)) − 4 × H(pf(t+1))

= 4 ×

[

1

42t+2
ln (

1

42t+2
) + (1 −

1

42t+2
) ln (1 −

1

42t+2
)

]

−

[

1

42t
ln (

1

42t
) + (1 −

1

42t
) ln (1 −

1

42t
)

]

(A.4)

> 4 ×

[

1

42t+2
ln (

1

42t
) + (1 −

1

42t+2
) ln (1 −

1

42t
)

]

−

[

1

42t
ln (

1

42t
) + (1 −

1

42t
) ln (1 −

1

42t
)

]

(A.5)

=
12t

42t+1
ln 2 + (3 +

3

42t+1
) ln (1 −

1

42t
)

>
12t

42t+1
ln 2 + (3 +

3

42t+1
) ×

−1

42t − 1
, (A.6)
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where Inequality A.5 follows from Gibbs inequality and Inequality A.6 follows from Inequality A.2.

Define

r(t) = 42t+1

[

12t

42t+1
ln 2 + (3 +

3

42t+1
) ×

−1

42t − 1

]

= 12t ln 2 + (3 + 3 × 42t+1) ×
−1

42t − 1
. (A.7)

Taking the derivative of r(t) yields

d(r(t))

dt
= 12 ln 2 +

30× 42t+1 ln 2

(42t − 1)2
,

which is larger than 0 for t > 0. Also, when t = 2, r(t) = 4.5767 > 0. Thus, H(pf(t)) − 4 ×

H(pf(t+1)) > 0 when t ∈ Z≥2. This proves the lemma.

Theorem 3.3.2 (used in page 18) The expected risk function for a variable with prior = Beta(α, β),

α, β ∈ R>0 is strictly monotonically decreasing in the number of probes b and is convex.

Proof. To prove the expected risk function is strictly monotonically decreasing in b, we need to

show:

ExpRiskprior(b) > ExpRiskprior(b + 1). (A.8)

Figure A.1: A tree structure showing the outcomes of two probes to a variable with a prior of
Beta(1, 1). If we can show the risk of the first level nodes in A and B are bigger than the expected
risks of the second level nodes respectively, the weighted sum of the risks of the first level nodes is
certainly bigger than the weighted sum of the expected risks of the second level nodes. This tree
structure shows another way to compute the expected risk.

Due to the structure of the problem presented in Figure A.1, we only need to show

Risk(prior) = ExpRiskprior(0) > ExpRiskprior(1), (A.9)

for all priors.

46



Tong demonstrates that [34]:

ExpRiskpriori
(0) − ExpRiskpriori

(1)

= H(
α

α + β
,

β

α + β
)

−

(

α

α + β
H(

α + 1

α + β + 1
,

β

α + β + 1
) +

β

α + β
H(

α

α + β + 1
,

β + 1

α + β + 1
)

)

.

(A.10)

We need to prove that Equation A.10 is greater than zero 1. Applying Gibbs inequality to Equa-

tion A.10 yields:

ExpRiskprior(0) − ExpRiskprior(1)

= −
α

α + β
ln

α

α + β
−

β

α + β
ln

β

α + β

−

[

α

α + β
(−

α + 1

α + β + 1
ln

α + 1

α + β + 1
−

β

α + β + 1
ln

β

α + β + 1
)

+
β

α + β
(−

α

α + β + 1
ln

α

α + β + 1
−

β + 1

α + β + 1
ln

β + 1

α + β + 1
)

]

≥ −
α

α + β
ln

α

α + β
−

β

α + β
ln

β

α + β

−

[

α

α + β
(−

α + 1

α + β + 1
ln

α

α + β
−

β

α + β + 1
ln

β

α + β
)

+
β

α + β
(−

α

α + β + 1
ln

α

α + β
−

β + 1

α + β + 1
ln

β

α + β
)

]

= −
α

α + β
ln

α

α + β
−

β

α + β
ln

β

α + β

−

[

α

α + β

(

−(
α + 1

α + β + 1
+

β

α + β + 1
) ln

α

α + β

)

+
β

α + β

(

−(
β + 1

α + β + 1
+

α

α + β + 1
) ln

β

α + β

)]

= −
α

α + β
ln

α

α + β
−

β

α + β
ln

β

α + β

−(−
α

α + β
ln

α

α + β
−

β

α + β
ln

β

α + β
)

= 0 (A.11)

Because Inequality A.11 is built on Inequality A.1, moreover pk = β
α+β+1 6= qk = β

α+β
for

α, β ∈ R≥1, the equality never holds. This proves the strictly monotonically decreasing part.

To prove the convexity, we need to show:

ExpRiskprior(b)−ExpRiskprior(b+1) > ExpRiskprior(b+1)−ExpRiskprior(b+2). (A.12)

Use the same argument from the preceeding proof, we only need to prove:

ExpRiskprior(0) − ExpRiskprior(1) > ExpRiskprior(1) − ExpRiskprior(2). (A.13)
1If we used Log loss LL(θ||θ̂) = −

P

x
Pθ(X) ln P

θ̂
(X) as the loss function, the difference would remain the

same [27, 34]. In other words, the expected risk reduction defined in the dissertation is the same as the expected entropy
reduction of the parameters.
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The left side of the inequality equals:

ExpRiskpriori
(0) − ExpRiskpriori

(1)

= −
α

α + β
ln

α

α + β
−

β

α + β
ln

β

α + β

−

[

α

α + β
(−

α + 1

α + β + 1
ln

α + 1

α + β + 1
−

β

α + β + 1
ln

β

α + β + 1
)

+
β

α + β
(−

α

α + β + 1
ln

α

α + β + 1
−

β + 1

α + β + 1
ln

β + 1

α + β + 1
)

]

= −

[

α

α + β
(

α + 1

α + β + 1
ln

α

α + β
+

β

α + β + 1
ln

α
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)

+
β

α + β
(

α

α + β + 1
ln

β
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β + 1

α + β + 1
ln

β
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)

]

−

[

α

α + β
(−

α + 1

α + β + 1
ln

α + 1

α + β + 1
−

β

α + β + 1
ln

β

α + β + 1
)

+
β

α + β
(−

α

α + β + 1
ln

α

α + β + 1
−

β + 1

α + β + 1
ln

β + 1

α + β + 1
)

]

= −

[

α

α + β

(

α + 1

α + β + 1
ln

α(α + β + 1)

(α + 1)(α + β)
+

β

α + β + 1
ln

α + β + 1

α + β

)

+
β

α + β

(

α

α + β + 1
ln

α + β + 1

α + β
+

β + 1

α + β + 1
ln

β(α + β + 1)

(β + 1)(α + β)

)]

(A.14)

Use a similar approach, and we have:

ExpRiskpriori
(1) − ExpRiskpriori

(2)

= −

[

α

α + β

(

α + 1

α + β + 1
(

α + 2

α + β + 2
ln

(α + 1)(α + β + 2)

(α + 2)(α + β + 1)
+

β

α + β + 2
ln

α + β + 2

α + β + 1
)

+
β

α + β + 1
(

α + 1

α + β + 2
ln
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ln
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)

)
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β
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α
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ln
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ln
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)
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(
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ln
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ln
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(A.15)

Subtracting Equation A.15 from Equation A.14 yields:

ExpRiskpriori
(0) + ExpRiskpriori

(2) − 2ExpRiskpriori
(1)

=
α

α + β
×

α + 1

α + β + 1
×

α + 2

α + β + 2
× ln (

α + 1

α
×

α + 1

α + 2
)

+
β

α + β
×

β + 1

α + β + 1
×

β + 2

α + β + 2
× ln (

β + 1

β
×

β + 1

β + 2
)

− ln
(α + β + 1)(α + β + 1)

(α + β)(α + β + 2)
(A.16)
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Applying Inequality A.2 yields

ExpRiskpriori
(b) + ExpRiskpriori

(b + 2) − 2ExpRiskpriori
(b + 1)

>
α

α + β
×

α + 1

α + β + 1
×

α + 2

α + β + 2
×

1

(α + 1)2

+
β

α + β
×

β + 1

α + β + 1
×

β + 2

α + β + 2
×

1

(β + 1)2

−
1

(α + β)(α + β + 2)

=
1

(α + β)(α + β + 2)
×

αβ − 1

(α + β + 1)(α + 1)(β + 1)

≥ 0 (A.17)

for α, β ∈ R≥1. This proves the convexity.

Lemma 3.3.6 (used in page 23) For uniform-cost binary variables with the same effective sample

size θi ∼ Beta(αi, βi) when αi + βi is constant, the greedy learner prefers variables with more

balanced parameter distributions. More precisely, if αi + βi = αj + βj and |αi − βi| < |αj − βj |

for variable i and j, the greedy algorithm prefers variable i.

Proof. As the Risk reduction shown in Equation A.10 is a sum of logarithms, it is differentiable for

α, β ∈ Z>0. Let s = α + β, which is a constant. Taking the derivative w.r.t α, we have:

∂RD(1)

∂α
=

ln s−α
s

s
−

ln α
s

s
−

α

s

(

ln s−α
s+1

s + 1
−

ln α−1
s+1

s + 1

)

−
s − α

s

(

ln s−α+1
s+1

s + 1
−

ln α
s+1

s + 1

)

. (A.18)

Multiplying Equation A.18 with s(s + 1) then applying some algebraic manipulation, we obtain:

s(s + 1)
∂RD(1)

∂α
= ln

s − α

α
+ α ln

α + 1

α
− (s − α) ln

s − α + 1

s − α
. (A.19)

For Lemma 3.3.6 to hold, we need to show that if α takes an integer value in (0, s
2 ), Equation A.19

is greater than zero; if α takes an integer value in ( s
2 , s), Equation A.19 is smaller than zero. By

symmetry, we only need to prove the first part.

For 2α ≤ s − 1, apply Equation A.2

s(s + 1)
∂RD(1)

∂α
>

s − 2α

s − α
+

α

α + 1
− 1

=
a(s − 2a − 1)

(s − a)(a + 1)

≥ 0 (A.20)

Thus, for the independent binary-variable problem, where α, β ∈ Z>0, the smaller |α − β|, the

larger the RD(1). This proves the lemma.
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